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Abstract: Single-point incremental forming (SPIF) has emerged as a cost-effective and rapid manufac-
turing method, especially suitable for small-batch production due to its minimal reliance on molds,
swift production, and affordability. Nonetheless, SPIF’s effectiveness is closely tied to the specific
characteristics of the employed sheet materials and the intricacies of the desired shapes. Immediate
experimentation with SPIF often leads to numerous product defects. Therefore, the pre-emptive use
of numerical simulations to predict these defects is of paramount importance. In this study, we focus
on the critical role of the forming limit curve (FLC) in SPIF simulations, specifically in anticipating
product fractures. To facilitate this, we first construct the forming limit curve for Al1050 sheet material,
leveraging the modified maximum force criterion (MMFC). This criterion, well-established in the
field, derives FLCs based on the theory of hardening laws in sheet metal yield curves. In conjunction
with the MMFC, we introduce a graphical approach that simplifies the prediction of forming limit
curves at fracture (FLCF). Within the context of the SPIF method, FLCF is established through both
uniaxial tensile deformation (U.T) and simultaneous uniform tensile deformation in bi-axial tensile
(B.T). Subsequently, the FLCF predictions are applied in simulations and experiments focused on
forming truncated cone parts. Notably, a substantial deviation in fracture height, amounting to
15.97%, is observed between simulated and experimental samples. To enhance FLCF prediction
accuracy in SPIF, we propose a novel method based on simulations of truncated cone parts with
variable tool radii. A FLCF is then constructed by determining major/minor strains in simulated
samples. To ascertain the validity of this enhanced FLCF model, our study includes simulations and
tests of truncated cone samples with varying wall angles, revealing a substantial alignment in fracture
height between corresponding samples. This research contributes to the advancement of SPIF by
enhancing our ability to predict and mitigate product defects, ultimately expanding the applicability
of SPIF in diverse industrial contexts.

Keywords: SPIF (single-point incremental forming); forming limit curve at fracture (FLCF); forming
limit curve at necking (FLCN); modified maximum force criterion (MMFC); graphical method; sheet
material Al1050; Finite Element Method (FEM)

1. Introduction

Single-point incremental forming (SPIF) has gained prominence as a cost-effective
and rapid method for manufacturing sheet metal parts, complementing traditional ma-
chining techniques, and seamlessly integrating with computer numerical control (CNC)
machines. Its versatility has led to its adoption across a multitude of industries, including
aerospace [1,2], automotive [3,4], molds [5], medical devices [6–8], architecture [9,10], and
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beyond. Nevertheless, challenges persist in SPIF, particularly regarding defects in wall
thickness uniformity, geometric accuracy, and other process limitations, which impede
its broader industrial applications. To address these limitations and enhance SPIF’s pre-
dictability, a considerable body of research has been dedicated to numerical simulations of
the forming process [11–17].

Bouhamed et al. [18] have concentrated on advancing the accuracy of SPIF simulations
by introducing material anisotropy considerations, employing Hill’s models to achieve
improved fits with experimental data. Han et al. [19] have extended their investigations
to establish forming limit curves at fracture (FLCF) for various sheet materials, employ-
ing plane stress conditions and Barlat’s non-quadratic anisotropic yield criterion. Their
comprehensive approach, which combines the Cockroft–Latham ductile fracture criterion
and maximum shear stress criteria, has yielded a means to accurately predict FLCFs with
diverse shapes. In a parallel line of inquiry, Rusu et al. [20] study the SPIF behavior of
Al1050 material sheets with differing thicknesses. This material was joined through both
one-sided and two-sided Wolfram inert gas (WIG) welding methods, resulting in truncated
cone profiles with varying wall angles. Their findings revealed significant differences in tear
behavior, with double-sided welding achieving the desired depth of 25 mm, while single-
sided welding often resulted in premature tearing. Xiao et al. [21] delved into the influence
of longitudinal low-frequency vibrations on the performance of SPIF with AA1050 alu-
minum sheet material. Their study integrated numerical simulations and experimental
verification to showcase the significant reduction in forming forces and improvement in
geometric accuracy through the application of low-frequency vibrations.

Shang et al. [22] explored the use of hydraulic oil pressure to enhance thickness
uniformity and critical forming angles in hydraulically supported single-point incremental
forming (HS-SPIF). Through finite element simulations and experimental comparisons, they
determined the sensitivity of critical forming angles to hydraulic pressure. The research
highlighted substantial differences between conventional SPIF and HS-SPIF, with critical
angles ranging from 47 to 53◦.

Saidi et al. [17] focused on the SPIF of Ti–6Al–4V sheet material, relevant in the
production of medical prosthetics. By incorporating heating during the machining pro-
cess, they significantly improved formability. The study introduced a simulation model
at different temperatures, providing accurate predictions compared to corresponding
experimental outcomes.

In this study, the modified maximum force criterion (MMFC) was harnessed to pre-
dict the forming limit curve of Al1050 sheet material. A graphical method was devised
to simplify FLC forecasting, constructed through uniaxial tensile deformation (U.T) and
simultaneous biaxial tensile deformation (B.T). The deviation in fracture height between
the simulated and experimental samples was notably large, reaching 15.97%. To enhance
FLCF in SPIF, this study proposes a method based on simulations of truncated cone
parts with varying tool radii and the determination of major and minor strains in sim-
ulated samples. The verification of the improved FLCF model involved simulating and
testing truncated cone samples with different wall angles, demonstrating a significant
agreement in fracture height between corresponding samples. This research endeavors
to contribute to the further development and applicability of SPIF across a wide array of
industrial domains.

2. Material Properties

This section delves into an extensive examination of the material properties that are
integral to this study’s focus on Al1050 aluminum alloy sheets with a thickness of 0.5 mm.
This material was chosen as a fundamental element in the investigation, and understanding
its chemical composition and mechanical characteristics is pivotal in comprehending its
performance in the context of SPIF of truncated cone parts. The chemical composition
of the Al1050 aluminum alloy, as referenced in [23], assumes a pivotal role in shaping its
properties, necessitating a detailed investigation.
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Material anisotropy, an aspect profoundly impacting the quality of the fabricated
product, was a significant focus of this research. Tensile test samples were prepared
via waterjet cutting in three specific directions: the rolling direction (RD), the horizontal
direction perpendicular to the rolling direction (TD), and a direction 45 degrees from the
rolling direction. As demonstrated in Figure 1a,b, these directions were chosen strategically
for their relevance.
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Figure 1. Tensile test samples of Al1050 aluminum alloy material: (a) cutting direction of tensile
test specimens in rolling direction (RD)—transverse direction (TD) and (b) material samples cut in
three directions.

Subsequent tensile tests were conducted at room temperature on a YS-L45-J11 ma-
chine (Dongguan, China), as depicted in Figure 2. These tests adhered to ISO 6892-1
standards [24], providing consistent and reliable data for analysis. The results of these
tensile tests encompass the stress–strain curves, presented graphically in Figure 3, and are
condensed into a concise summary of material properties presented in Table 1.
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Figure 3. True stress–true strain curves of Al1050 material in three directions: rolling direction, (45◦),
and transverse direction (90◦).

Table 1. Mechanical properties of Al1050 material.

Material Al1050

Rolling direction 0◦ 45◦ 90◦

Yield strength (MPa) 81.6 79.7 89.8
Anisotropy coefficient (r) 0.62 0.38 0.85

Density (ρ, kg/mm3) 2.7 × 10−6

Elastic modulus (E, kN/mm2) 69
Poisson coefficient 0.33

The investigation aimed to determine an appropriate plasticity model for the material.
The stress–strain curve of Al1050 in the rolling direction (RD), as presented in Figure 4, was
utilized for this purpose. The chosen plasticity model is the Kim–Tuan model, which is well
detailed in Equation (1). To quantify the strain hardening behavior, several strain hardening
equations are available in the literature. In this study, we followed the approach outlined in
references [25–27]. Notably, we adopted the Kim–Tuan strain hardening model, which has
demonstrated a strong fit and high accuracy in modeling strain hardening behavior. The
choice of the Kim–Tuan model was made after a careful consideration of its appropriateness
for our material and the excellent correlation between predictions and experimental results:

σ = σ0 + K(1− exp(− tε))(ε + 0.002)h (1)

where σ represents the true stress. ε represents the true strain. σY stands for the yield
strength (81.6 MPa). K, t, and h are model coefficients, with values of K = 34.26 MPa,
t = 471.62, and h = 0.225. These coefficients were meticulously determined through
Formulas (2a)–(2c), with a deviation threshold of 0.2%.

Formulas for coefficients (2a)–(2c):

h =
σ*

σ* − σ0
(ε* − ε0) (2a)

K =
σ* − σ0

(ε* − ε0)h (2b)
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t =
20
ε∗

(2c)

In this research, the Hill’48R stress function, detailed in Equation (3), is employed to
deduce the anisotropy parameters governing the material’s behavior.

General equation for equivalent stress (Equation (3)):

σ2 = H(σ11 − σ22)
2 + F(σ22 − σ33)

2 + G(σ33 − σ11)
2 + 2Lσ2

23 + 2Mσ2
31 + 2Nσ2

12 (3)

σ: equivalent stress. σ11, σ22, σ33, σ11, σ23, and σ31 : stress components determined in var-
ious directions. G, F, H, N, L, M: material constants requiring determination based on
experimental data.

In the case of plane stress conditions, Equation (3) can be simplified as Equation (4).

σ =
√

H(σ11 − σ22)2 + Fσ2
22 + Gσ2

11 + 2Nσ2
12 (4)

For this study, anisotropy values (r0, r90, r45) were derived from three uniaxial tensile
tests (0◦, 45◦, and 90◦ with respect to the RD). Additionally, the uniaxial yield stress (σ0)
was obtained, maintaining a consistent relationship (G + H = 1). Recognizing the difficulty
of evaluating anisotropy in the direction of material thickness, the properties were assumed
to be isotropic (L = M = 1.5).

The Hill’48R stress criterion, under plane stress conditions (σ33 = σ23 = σ31 = 0),
was instrumental in predicting the uniaxial yield stress in direction θ, as expressed in
Equation (5).

σθ =
σ√

(F + H)sin4θ + (G + H)cos4θ + 2(N − H)sin2θcos2θ
(5)

Subsequently, uniaxial anisotropy in the same rolling direction (θ) was determined
utilizing the stress criterion in Equation (6).

rθ =
H + (2N − 4H − G− F)sin2θcos2θ

Fsin2θ + Gcos2θ
(6)

The anisotropy parameters for the Hill’48R stress criterion [28] were established based
on the experimental yield stress and the coefficient of plastic anisotropy, as presented in
Table 1. Meanwhile, Table 2 encapsulates the parameters of the Hill’48R yield criterion,
with coefficients calculated following Equations (7a)–(7d).

G =
1

1 + R0
(7a)

H =
R0

1 + R0
(7b)

F =
R0

R90(1 + R0)
(7c)

N =
(R0 + R90)(1 + 2R45)

2R90(1 + R0)
(7d)

The subsequent calculation of anisotropy coefficients (R11, R22, R33, R12, R13, R23) from
these coefficients (Table 2) is detailed in Equation (8), and the outcomes are displayed in
Table 3.
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Formulas for coefficients (8):

R11 =
√

1
G+H

R22 =
√

1
F+H

R33 =
√

1
F+G

R23 =
√

3
2L , R13 =

√
3

2M , R12 =
√

3
2N

(8)

A comprehensive investigation was conducted to examine the anisotropy coefficient’s
alignment with the Hill’48R stress criteria against experimental data. This comparative
analysis, as demonstrated in Figure 5a,b, brings to light the distribution of in-plane uniaxial
anisotropy coefficients and stress distributions in different directions relative to the rolling
direction. The apparent variance in yield stress for the 45◦ rolling direction between
the model and experimental data is likely attributable to the particular values of these
coefficients and the influence of the anisotropy model in this specific orientation (Figure 5b).
It is crucial to recognize that anisotropic models can provide precise predictions that are
contingent upon the specific criteria employed. Further research efforts are imperative
to delve into the intricacies of anisotropic modeling and its ramifications on predictive
accuracy. This is especially pertinent for the single-point incremental forming (SPIF)
method, which warrants more in-depth exploration in future investigations.
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Table 2. Hill’48R’s material constants.

Value F G H L M N

Hill’48R 0.4503 0.6173 0.3827 1.5 1.5 0.9394

Table 3. Anisotropy coefficients of Hill’48R.

Coefficient R11 R22 R33 R12 R13 R23

Hill’48R 1 1.0957 0.9679 1.2636 1 1
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Figure 5. Comparison of anisotropy coefficient between model and experiment: (a) uniaxial tensile
anisotropy coefficient and (b) different stress criteria.

The predicted stress surfaces were plotted using varying yield criteria for σ11 and
σ22, as showcased in Figure 6, ultimately yielding a maximum stress value based on the
Hill’48R stress model.

This comprehensive exploration of material properties paves the way for a deep
understanding of Al1050 aluminum alloys and their mechanical characteristics, enabling
informed and rigorous numerical simulations and experiments. This research builds on
these foundations to draw insightful conclusions and offer innovative contributions to
the field.
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3. Prediction of the Forming Limit Curve (FLC)
3.1. Modified Maximum Force Criterion Method

In the context of uniaxial tensile testing, the determination of the maximum tensile
force can be formulated through Equation (9):

dF = d(σS) = Sdσ + σdS = 0 (9)

Here, S denotes the cross-sectional area of the test specimen and F represents the measured
tensile force. The condition is further expressed as

σ = −dσ
S

dS
=

dσ

dε
(10)

Upon careful observation, Swift [29] introduced a theory of crack propagation and
progression criteria to estimate the plastic deformation limit within the forming limit curve
(FLC) for sheet metals. This criterion has gained widespread recognition for predicting
the FLC of diverse materials. Subsequently, Hora et al. [30] introduced a criterion termed
the modified maximum force criterion (MMFC), which involves the examination of strain
path transitions following the appearance of cracks. The expression for the MMFC is
articulated as

∂σ1

∂ε1
dε1 +

∂σ1

∂β

∂β

∂ε1
dε1 ≥ σ1dε1, (11)

Here, β = ∆ε2/∆ε1 represents the deformation ratio in two primary directions and
α = σ2/σ1 signifies the stress ratio in the two principal directions. Two functions,
f (α) = σ/σ1 and g(α) = ∆ε/∆ε1, depict the relationship between the first principal
stress (σ1), the strain (ε1) components, and the (σ) and strain (ε) values, respectively. For
each chosen hardening function within the stress–strain relationship, the terms ∂σ1/∂ε1
and ∂σ1/∂β1 can be expressed as follows:

∂σ1

∂ε1
=

∂σ1

∂σ

∂σ

∂ε

∂ε

∂ε1
= g(α)H′/ f (α) (12)



Materials 2023, 16, 7266 9 of 19

∂σ1

∂β
=

∂σ1

∂α

∂α

∂β
= − f ′(α)

[ f (α)]2
σ

∂α

∂β
= − f ′(α)

[ f (α)]2
H/(

∂β

∂α
) (13)

In Equations (12) and (13), H = H(ε) represents the hardening function, and H’
represents the slope of the hardening curve. According to the principles of continuum
mechanics, we can establish the following:

β =
dε2

dε1
=

∂σ/∂σ2

∂σ/∂σ1
(14)

Consequently, β′(α) becomes precisely defined. The evaluation of ∂β/∂ε1 necessi-
tates an iterative approach. Nevertheless, to enhance efficiency and simplify calculations,
β ≈ ε2/ε1 is adopted as an approximation. Therefore, the derivative obtained is

∂β

∂ε1
≈ − β

ε1
(15)

Substituting Equations (12)–(15) into Equation (11) yields an explicit formulation of
the modified maximum force criterion (MMFC) as

H′

H
≥ 1

g(α)

[
1− f ′(α)

f (α)
β

β′(α)

1
ε1

]
(16)

3.2. Graphical Method for Al1050 Material

In this study, a graphical method was utilized to construct the forming limit curve
(FLC) for an Al1050 aluminum alloy sheet. This approach encompasses specific deformation
modes, including the plane strain (P.S) (β = 0), uniaxial tensile strain (U.T) (β = −1/2),
and uniform tensile strain in bi-axial tensile (B.T) (β = 1), which are commonly applied
in traditional forming methods. For the single-point incremental forming (SPIF) method,
the FLC is determined as discussed by various authors [31,32] In this context, both FLCN
and FLCF for equi-biaxial strain conditions nearly converge at a single point and exhibit
linear behavior as they pass through two deformation states, characterized by β values of
−1/2 and 1. This method is explicitly defined in accordance with Equation (16) and can be
subsequently transformed into Equation (17a).

H′

H
≥ A− B

ε
(17a)

A = 1/g(α) (17b)

B = ( f ′/ f )× (β/β′) (17c)

The values of A(α) and B(α) can be determined from the coefficients of the Hill’48R
stress function, calculated as per Equations (18a)–(19b). Specific deformation modes such
as the uniaxial tensile strain (U.T) (β = −1/2) and simultaneous bi-axial uniform tensile
strain (B.T) (β = 1) are included in Table 4.

Table 4. Coefficients determined in two forming stages, based on Hill’48R stress function.

Coefficient Tensile Strain (U.T) Bi-Axial Tensile (B.T)

Hill’48R

α 0 1
β −0.5 1

A(α) 1 0.597
B(α) 0.213 0.171
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Based on the computed values and the previously mentioned equations, Equation (17a)
can be graphically represented as illustrated in Figure 7, employing the
Kim–Tuan models.

f (α) =
√
(G + H)− 2Hα + (F + H)α2 (18a)

f ′(α) =
[−H + (F + H)α]√

(G + H)− 2Hα + (F + H)α2
(18b)

β(α) =
(F + H)α− H
−Hα + (G + H)

(18c)

β′(α)
(F + H)(G + H)− H2

[−Hα + (G + H)]2
(18d)

g(α) =
√
(G + H)− 2Hα + (F + H)α2

−Hα + (G + H)
(18e)Materials 2023, 16, 7266 11 of 21 
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Subsequently,

A(α) =
−Hα + (G + H)√

(G + H)− 2Hα + (F + H)α2
(19a)

B(α) =
−H + (F + H)α

(G + H)− 2Hα + (F + H)α2 ×
[(F + H)α− H]× [−Hα + (G + H)]

(F + H)(G + H)− H2 (19b)

The graphical method, as demonstrated in Figure 7, reveals the intersection of equiva-
lent destructive deformation lines (U.T) and (B.T) with the curve constructed based on the
hardening model, utilizing corresponding values of ε = 0.415 and ε = 0.625. Subsequently,
the major and minor strains are determined using Equations (20a)–(20c). The forming limit
curve for the Al1050 aluminum alloy sheet can be obtained by plotting from these two
distinct deformation points, as outlined in Table 5 and depicted in Figure 8.

ε1 = ε/
rm + 1√
2rm + 1

√
1 +

2rm

rm + 1
β + β2 (20a)
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ε2 = βε1 (20b)

rm =
1
4
(r0 + 2r45 + r90) (20c)

Table 5. Major and minor strains with material models.

Coefficient U.T B.T

Kim–Tuan

ε 0.415 0.625

ε1 0.410 0.354

ε2 −0.205 0.354
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4. Experiment and Finite Element (FE) Simulation
4.1. Finite Element Simulation

For the finite element simulations, the Al1050 aluminum material was employed. The
material took the form of a square with a side length (L) of 320 mm and a thickness (t) of
0.5 mm. The forming tool used in these simulations had a spherical radius of 7.5 mm. The
desired forming profile was that of a truncated cone, with a base radius (R) of 100 mm.
The forming height was denoted as “h” (in millimeters), and the forming angle as “α” (in
degrees). These parameters are modeled in Figure 9.

The finite element model was established to replicate the single-point incremental
forming (SPIF) process, using the ABAQUS 6.13 software [33]. As illustrated in Figure 10,
the FE model incorporated the following components: an Al1050 aluminum alloy sheet,
the forming tool, a sheet support die plate, and a blank holder. The aluminum alloy sheet
was represented as a shell element with an integrated number of reduction points (S4R) at
a mesh size of approximately 1 mm in width and 1 mm in length. On the other hand, the
tool, support die plate, and blank holder were treated as entirely rigid. Fixed boundary
conditions were assigned to the support die and blank holder, while the aluminum alloy
sheet was clamped firmly and subjected to the vertical downward force applied by the
tool. The toolpath of the SPIF process, outlined in Figure 11a, matched the code employed
in the experimental setup. Friction within the system was defined using the classical
isotropic Coulomb friction model, governed by the contact surface coefficient friction force.
Specifically, the friction coefficient between the tool and the sheet blank was set to 0.05,
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while the friction coefficient between the die, stop plate, and the sheet blank was established
as 0.1 [31]. The material parameters are outlined in Table 1, and the anisotropy coefficients
of the material, along with the FLC, were determined using the graphical method during
the numerical simulation process. This information was then utilized to calculate the height
of the forming for the truncated cone part in the numerical simulation.
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4.2. SPIF Experiment

The SPIF experiments for the truncated cone samples were carried out on a Taiwanese
MC500 high-speed CNC machine (Fuhong Machinery Co., New Taipei, Taiwan). The ma-
chine’s table offered movement along the X × Y × Z axes of 500 mm × 400 mm × 300 mm,
with a spindle rotation speed ranging from 100 to 30,000 rpm, table movement speeds
during machining from 1 to 30,000 m/min, and a spindle power rated at 15 kW. The
numerical control (NC) toolpath was generated using the PowerMill 2021 software, based
on the computer-aided design (CAD) geometry of the machined sample, with the offset
code corresponding to Figure 11b. In these experiments, the spindle rotation speed was set
to S = 2984 rpm, the feed step (F) was 1000 mm/min, and the depth of cut (t) was 0.5 mm.

The experimental setup for the SPIF process is shown in Figure 12. The blank was
securely clamped between the fixed support die plate and the blank holder, using a 10 mm
diameter bolt. The fixed support die plate was crafted from High-Carbon High-Chromium
alloy steel (SKD11) material, while other fixture components were made from medium
carbon steel (C45) material. Viscosity grade-68 (VG68) hydraulic oil was employed as the
lubricant during the experiment to minimize surface friction between the tool and the
blank. The forming tool had a spherical tip with a diameter of 15 mm and was constructed
from the SKD11 material, hardened to a hardness of 55HRC. The smoothness of the tool at
the spherical tip position was measured at Ra = 0.25 µm. The Al1050 aluminum alloy plate
utilized in the experiment had a thickness of 0.5 mm.
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5. Results and Discussion
5.1. Comparison of Fracture Height in SPIF Simulation and Experiment

In the simulations, the damage evolution criterion is a crucial component used to
model material failure and fracture. It is defined as the point at which the forming limit
curve ductile fracture (FLDCRT) value reaches 1.0, which indicates a fracture condition.
When this criterion is met, certain mesh elements within the simulation are deleted, and the
maximum fracture height is recorded for the corresponding wall corners. The comparison
between the detailed fracture height in the SPIF simulation and the experimental results is
presented in Figure 13. The deviation between these values is calculated as a percentage
difference using Equation (21). The results are summarized in Table 6.

The finite element simulation, employing the Kim–Tuan hardening law in the RD,
along with the anisotropic Hill’48R model and the FLC constructed through graphical
methods, aimed to predict the increase in fracture height during forming processes. As
shown in Figure 13a,b, both the simulated and experimental images of truncated cone
details are compared. The fracture heights and deviations between the two are detailed in
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Table 6, showing a deviation of 15.97%. This considerable deviation emphasizes the need
for a new approach to predict the FLC in SPIF under varying tool radii.

∆h(%) = (|hs − he|)/he (21)
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Table 6. Fracture heights and deviations between SPIF simulation and experiment.

Fracture Height Experiment Simulation Deviation

Wall angle (o) he
(mm)

hs
(mm)

∆hs
(%)

62 57.6 48.4 15.97%

5.2. Proposed Forming Limit Curves at Fracture (FLCF) in SPIF

In SPIF, forming limit curves (FLCs) serve as useful tools for simulating forming and
bending processes, especially when material formability is limited under increased forming
conditions. Previous studies have demonstrated that when bending and forming loads are
applied simultaneously, the formability of materials can exceed the strain values expected
from typical FLC predictions. Notably, the FLCs in progressive sheet forming (FLCN for
necking and FLCF for fracture) exhibit a near convergence at isotropic strain. Consequently,
this research leveraged Clift’s criterion [34] to propose a new point on the FLCF, using
the major/minor strains derived from Equation (20b) and the equivalent strain function
of plane stress from Equation (20a). The constant value for this FLCF, represented as the
equivalent strain at fracture (ε f ), is determined using Equations (22) and (23).

∫ ε

0
σdε = C (22)

ε f = C1 (23)

where C and C1 are material parameters.
To calculate C1, data from the strain ratio and the principal strain at the isoaxial point

were utilized. The calculations for C1 were performed using an algorithm developed by
Shi et al. [35] and Son et al. [36]. In biaxial equilibrium conditions, the deformation
coefficient (β) was set at 1.0. Additionally, the principal fracture strain for a tool radius (R)
of 7.5 mm was found to be 0.452, yielding a constant value (C1) of 0.798. Consequently,
multiple points on the FLCF were derived using various strain values, and the values were
computed with the help of MATLAB programming.

Data from the MATLAB calculations (Figure 14) were exported into two columns corre-
sponding to major (ε1) and minor (ε2) strains. These columns were subsequently integrated
into the FLC damage table within the material properties module of ABAQUS/Explicit to
simulate the fracture occurrence in incremental sheet metal forming processes. The finite
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element (FE) simulation results of the SPIF process with the proposed FLCF are visualized
in Figure 15a. The strain paths at different fracture points of the deformed shape are also
illustrated, and a comparison of the forming limit curve for fracture (FLCF) is presented
in Figure 15b, demonstrating a high level of agreement between the simulation and the
proposed FLCF.
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5.3. Verification of the Proposed FLCF with Varying Forming Angles

The reliability of the proposed FLCF was verified by the predicting failure occurrences and
fracture heights for samples with varying forming angles. The finite element (FE) simulation
results for these experimental samples are displayed in Figure 16 and summarized in Table 7.
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Table 7. Deviation in fracture height between simulation and experiment for different wall angles.

Wall Angle (o) 60 70 80 85 90

Simulation, hs
(mm) 131.2

(No failure)

19.8 18.2 16.9 15.7

Experiment, he
(mm) 19.5 17.4 16.3 15.2

Deviation, ∆hs 1.54% 4.60% 3.68% 3.29%

FLDCRT value 0.6292 1 1 1 1

The value of the forming limit curve for ductile fracture (FLDCRT) approaches 1.0
(indicating a damage condition), after which the mesh elements are removed. The corre-
sponding maximum deformation height for each forming angle is provided in Table 7. The
deviation between the simulated and experimental forming heights for varying forming
angles is presented in Figure 17. Excellent agreement is observed, with the largest deviation
at 4.6% for a forming tilt angle of 80 degrees.
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This demonstrates the effectiveness of the proposed forming limit curve model, show-
ing similarity in the forming height of the truncated cone samples during both simulation
and experimentation. The results validate the reliability of the new FLCF model when
predicting incremental sheet metal forming processes under different shaping angles.

6. Conclusions

This study delves into the critical role of the forming limit curve (FLC) in the numer-
ical simulation of the single-point incremental forming (SPIF) process for Al1050 sheet
material, followed by experimental validation. The investigation yields the following
significant findings:

• Graphical method for FLC construction: a FLC is methodically constructed using the
graphical approach and employed in numerical simulations to predict the variation
in fracture height during SPIF. The results show a notable deviation between the
simulated and experimental outcomes, particularly when forming the truncated cone
with a 62◦ wall angle. The deviation, amounting to 15.97%, underscores the challenge
in accurately modeling the SPIF process.

• Proposed forming limit curve at fracture in SPIF (FLCF): To enhance accuracy, a
new FLCF is introduced based on the relationship between major and minor strains,
drawing on the simulation results for truncated cone shaping with varying tool radii.
The FLCF aligns remarkably well with experimental observations, especially for a
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62◦ forming tilt angle, where the deviation is significantly reduced to 3.13%. This
highlights the potential of the proposed FLCF in improving SPIF simulations.

• Validation across varied forming wall angles: To assess the reliability of the newly
proposed FLCF, this study explores its effectiveness in predicting failure and forming
fracture heights across a range of forming wall angles, spanning from 60◦ to 90◦. The
results are promising: for a 60◦ wall angle, the samples reach their maximum height
without encountering fractures, with an FLDCRT value of 0.6292. With increasing
forming wall angles (70◦, 80◦, 85◦, 90◦), the forming fracture height of the truncated
cone tends to decrease, aligning closely with FLDCRT values approaching 1.0. The
deviation in the forming fracture height between the simulations and experiments
remains within acceptable limits, with the largest discrepancy observed at 4.6% in
most cases.

In conclusion, this study not only highlights the necessity of an accurate FLC in SPIF
simulations, but also introduces a novel FLCF model, which displays promising alignment
with experimental results across various forming wall angles. This research contributes
to the ongoing efforts to enhance the precision and reliability of the SPIF process, with
potential applications in diverse industries requiring intricate sheet metal forming.
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