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Abstract: In recent years, the field of construction engineering has experienced a significant paradigm
shift, embracing the integration of machine learning (ML) methodologies, with a particular emphasis
on forecasting the characteristics of steel-fiber-reinforced concrete (SFRC). Despite the theoretical so-
phistication of existing models, persistent challenges remain—their opacity, lack of transparency, and
real-world relevance for practitioners. To address this gap and advance our current understanding,
this study employs the extra gradient (XG) boosting algorithm, crafting a comprehensive approach.
Grounded in a meticulously curated database drawn from 43 seminal publications, encompassing
420 distinct records, this research focuses predominantly on three primary fiber types: crimped,
hooked, and mil-cut. Complemented by hands-on experimentation involving 20 diverse SFRC mix-
tures, this empirical campaign is further illuminated through the strategic use of partial dependence
plots (PDPs), revealing intricate relationships between input parameters and consequent compressive
strength. A pivotal revelation of this research lies in the identification of optimal SFRC formulations,
offering tangible insights for real-world applications. The developed ML model stands out not only
for its sophistication but also its tangible accuracy, evidenced by exemplary performance against
independent datasets, boasting a commendable mean target-prediction ratio of 99%. To bridge the
theory–practice gap, we introduce a user-friendly digital interface, thoroughly designed to guide
professionals in optimizing and accurately predicting the compressive strength of SFRC. This research
thus contributes to the construction and civil engineering sectors by enhancing predictive capabilities
and refining mix designs, fostering innovation, and addressing the evolving needs of the industry.

Keywords: machine learning; steel-fiber-reinforced concrete (SFRC); feature importance; partial
dependence plots; prediction model; graphical user interface

1. Introduction

Today, the world consumes 14 billion cubic meters of concrete annually, equating
to approximately 4.4 tons per individual [1]. Despite its popularity, concrete has some
inherent difficulties that limit its use under harsh weather conditions and in modern
architectural designs. A major drawback of concrete is its relatively low tensile strength.
Reinforced concrete (RC) structures are traditionally designed without considering this
property, constituting approximately 6 to 12% of the normal concrete’s compressive strength
(CS) [2–4]. Using discrete, randomly distributed, and discontinuous steel fibers in concrete
reinforces the mix to mitigate problems [5–7]. This type of composite material is known
as steel-fiber-reinforced concrete (SFRC). Consequently, RC members can be enhanced in
crack resistance by using this easy-to-manufacture and highly effective technology [8].

Concrete stands out as the foremost building material employed extensively across the
global construction industry, thanks to its unparalleled attributes of durability, strength, and
sustainability [9–11]. In this framework, steel-fiber-reinforced concrete (SFRC), enhanced
with short discrete fibers as mass reinforcement, emerges as an exceptionally effective
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cement-based composite capable of substantially alleviating the inherent brittleness found
in plain concrete [12]. The incorporation of fibers into concrete represents a pivotal en-
hancement, notably augmenting its strength, toughness, crack resistance, and tension
performance. This transformative impact arises from the adept intervention of randomly
distributed fibers, skillfully restraining the unstable propagation of cracks, operating seam-
lessly at both the micro and macro levels [13]. Remarkably, SFRC exhibits a phenomenon
known as strain-softening behavior, persisting even after the emergence of macro-cracks—a
testament to the significant crack control offered by these fibers [14]. The introduction of
steel-fiber reinforcement into concrete goes a step further, markedly elevating its ductility
and toughness. The observed result can be chiefly ascribed to the incorporation of addi-
tional fracture mechanisms and the energy invested in overcoming the interlocking and
adhesive forces existing between the fibers and the cementitious matrix [15]. To evaluate the
improvement in ultimate properties, it is imperative to conduct mechanical tests, and the
determination can only be ascertained upon the completion of the loading phase. Recent
developments have underscored the utility of acoustic emission as a means to evaluate
the performance of SFRC beams [16]. Furthermore, it is noteworthy that the formation of
macro-cracks has the potential to induce the corrosion of steel reinforcement. Therefore,
the reduction in crack width, achieved through the presence of fibers, assumes paramount
importance in enhancing the durability of reinforced concrete (RC) structural elements [17].
Furthermore, compelling evidence suggests that the inclusion of steel fibers may reduce
the need for conventional steel shear reinforcement. This conclusion is drawn from a
comprehensive array of tests and analyses conducted by the authors and other esteemed
researchers in the field [18–20].

SFRC was patented by Bernard in 1874 for strengthening concrete in tension, using
steel splinters to achieve this purpose [21]. In the ensuing years, this exploration has led
to many studies being conducted on its microstructure [22,23], flowability, and SFRC’s
behavior under tension [24,25], durability [26–28], and strength under extreme and cyclic
loadings [28–30]. In recent years, several new types of fibers have been proposed as
reinforcements for SFRC, along with the use of magnetic fields to align the steel fibers during
casting [30,31], and micro-scale numerical analyses have been published to illustrate the
fundamental failure mechanism of SFRC under varying external loads [32,33]. According
to these studies, SFRC has substantially different strength and elasticity properties than
traditional concrete. For the post-cracking response, the SFRC is positively influenced by
the high tensile resistance and elasticity that results in a crack-bridging mechanism. Hence,
this composite material has excellent behavior under tension and shear loadings. A large
extent of mechanical property variability is, however, a result of material heterogeneity. A
steel-fiber reinforcement can prevent macrocrack propagation in concrete, but the resulting
SFRC may be less flowable than its conventional equivalent. The quality reduction is likely
caused by the interference between aggregates and fibers [33].

A significant consideration in civil engineering applications revolves around the ur-
gent requirement for vigilance and the implementation of cutting-edge state-of-health
identification techniques within current infrastructural frameworks [34]. An effective so-
lution to this challenge involves continuous, real-time surveillance conducted in-situ to
detect potential structural issues, including damage from cracking or yielding of steel rein-
forcements, and subsequently assess their severity levels [35]. The avant-garde technology
of structural health monitoring (SHM), utilizing intelligent materials and systems, has
become instrumental in assessing the internal state of reinforced concrete (RC) structures
under both normal operational conditions and during critical loads. Notably, piezoelectric
lead zirconate titanate (PZT) transducers have garnered widespread acclaim in electro-
mechanical-admittance-based (EMA-based) health monitoring, primarily due to their fa-
vorable attributes [36,37]. Recent studies have showcased the successful deployment of the
EMA technique, incorporating small-sized PZT transducers that are either surface-bonded
or embedded, to identify damage in RC structural components [34,38]. Incorporating piezo-
electric materials into SHM techniques presents a multitude of advantages, encompassing
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a high-frequency response, structural simplicity, cost-effectiveness, and the capability to
generate an electrical signal through the application of mechanical force. However, certain
limitations and uncertainties come to the forefront, particularly when applied to cracked,
damaged, or non-homogeneous construction materials like RC. Identifying the severity
and location of structural damages can prove challenging, as low-level damage occurring
near the piezoelectric transducer’s placement can yield similar results to more extensive
damage situated farther away [34].

A design-oriented formulation for the key mechanical properties of SFRC is necessary
for the calculation of their key performance characteristics to facilitate their successful
implementation in practical applications. However, the existing models tend to be either
insufficiently accurate or lack physical relevance. In the literature, there have been sev-
eral studies [39–41] proposing linear empirical formulas for predicting SFRC mechanical
properties. There is a general consensus that fiber dosage and water-binder ratio play the
greatest role in determining SFRC behavior. A composite material mixing theory indicates
that SFRC properties strongly correlate with matrix and steel-fiber elastic properties. This
theoretical background has been used as a foundation for the development of various
empirical models [42]. In spite of the fact that some of the currently available empirical
models are capable of accurately predicting the results of a small number of tests [7,43],
the development and implementation of comprehensive and robust models are still in the
early stages of development.

Machine learning (ML) and ML interpretability algorithms find extensive application
in various aspects of structural engineering. These applications encompass a wide range
of sectors within the realm of structural engineering, spanning structural analysis, design,
monitoring structural health, detecting damage, evaluating fire resistance in structures,
assessing the resistance of structural elements under various loads, and examining the
mechanical properties as well as the mix design of concrete [44]. As an illustration of the
capabilities of these techniques, Zheng et al. [45] successfully employed a YOLO-v5 model
to detect surface cracks on wind turbines. Similarly, Cardellicchio et al. [46] leveraged ML
to facilitate the recognition and interpretation of defects for the purpose of risk management
in heritage bridge preservation.

The use of machine learning (ML) to model SFRC’s mechanical properties has become
increasingly popular over the last few years. In this context, the back-propagation artificial
neural network (ANN) approach has been utilized to calculate SFRC’s CS by Açikgenç
et al. [43]. Their study used the aggregate size at maximum fiber dosage, length, and size, as
well as fiber length and size, as input variables. In a similar manner, Awolusi et al. [47] used
an ANN method to predict the flowability, CS, and splitting strength of SFRC. In addition,
Karahan [48] used multiple nonlinear regression techniques in conjunction with ANN to
predict the long-term strength of SFRC containing varying levels of fly ash. While these
closed-source databases may be able to provide accurate estimates of SFRC mechanical
properties, their limitations remain a concern. There have been criticisms of these models
for their deficiencies, which include a lack of a physical mechanism illustration and a
lack of an application tool. Recently, Pakzad et al. [7] have employed various data-driven
machine-learning algorithms to predict the CS of SFRC. Sensitivity and parametric analyses
were performed to demonstrate the capabilities of ML algorithms in their study.

In this study, we present solutions to the above-mentioned by focusing on the CS of
SFRC-containing mono-fibrous (crimped, hooked, and mil-cut) systems. The research has
been completed in several phases to achieve the goal. First, a comprehensive database
of 420 records collected from 43 published studies was compiled and refined to establish
a representative sample population. The second component of this research involves
constructing and evaluating a numerical model that uses a state-of-the-art ML technique
(XG Boost). A third aspect of the study involved narrowly focused experiments designed
to verify the developed model using 30 SFRC mixes. Fourth, the model parameters were
ranked according to their importance, and partial dependence plots were constructed
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to visualize their relationships. An intuitive graphical user interface was developed to
enhance the model’s applicability.

ML has seen increased application in modeling SFRC properties. However, many
current ML models for this purpose are “black boxes” that lack transparency and physical
relevance, and also present implementation challenges. Moreover, globally, there is sig-
nificant consumption of concrete, which, despite its popularity, has inherent limitations,
including its relatively low tensile strength. The necessity to improve the transparency, rele-
vance, and implement-ability of ML models for SFRC properties, combined with the global
demand for more durable and versatile concrete solutions, drives this research. Existing
models for predicting and optimizing SFRC properties using ML lack transparency, do not
have a clear physical basis and are challenging to implement in practical scenarios. This
study introduces an innovative approach that utilizes the extreme gradient (XG) boosting
algorithm for predicting and optimizing the CS of SFRC. The approach is grounded in a
comprehensive database, which is a compilation from 43 publications, and is validated
through extensive experimental studies. The ML model developed in this research not
only promises superior predictive capabilities against independent experimental data but
also introduces a user-friendly interface, paving the way for more accessible and efficient
predictions and optimizations in the realm of SFRC. This study represents a transformative
effort within the construction industry landscape. Although ML techniques have gained
prominence in predicting material properties, a significant challenge endures—the lack
of transparency and practical relevance in existing models. To address this challenge and
enhance real-world applicability, this research adopts a meticulous approach, leveraging
the XG boosting algorithm. Furthermore, the investigation gains clarity through the ap-
plication of partial dependence plots (PDPs), which reveal intricate connections between
input parameters and the CS of SFRC. Of utmost importance, the current study uncovers
optimal SFRC formulations, offering practical insights into the most effective combinations
of fibers for real-world applications.

2. Methodological Approach
2.1. Background

The extreme gradient boosting (XG Boost) algorithm is a collective ML method that
integrates a gradient boosting algorithm with decision trees to convert training data into
a regression model suitable for classifying new data [49]. Due to Friedman et al.’s [50]
introduction of the gradient boosting methodology, Chen et al. [51] developed an algorithm
designed to enhance the performance of the gradient boosting methodology. In comparison
to gradient boosting, the XG Boost algorithm can be distinguished from gradient boosting
with several advantages, such as efficient tree partitioning, shorter nodes, randomization
with Newton–Raphson boosting, and multi-objective optimization [52]. In recent years, it
has become a very popular programming language because of its inclusion in Python and its
use in several Kaggle [53] competitions. The model has demonstrated excellent predictive
capabilities in identifying a person’s medical condition [54], forecasting the effects of the
COVID-19 pandemic [55], and predicting a company’s probability of bankruptcy [56].

2.2. XG Boost Algorithm Development

In Figure 1, a conceptual diagram illustrates the steps involved in the preparation of
an XG Boost algorithm, while the following equations provide a detailed formulation of
the algorithm. It is noteworthy that Python (version 3.12.0) [57] was used for coding.
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Figure 1. XG Boost methodology.

In this study, the database of the SFRC involves N variables with x ∈ RM×N and the
model’s output, y ∈ RM×1, where M and N equal 420 and 12, respectively. Here, the first
step involves the creation of a model’s output constant (initial) value [ f̂(0)] using Equation
(1). In the following step, the scores (ĝm) and canvases (ĥm) are evaluated by employing
Equations (2) and (3), respectively. This step involves all nodes (m = 1 − M) having weak
responses. As a result, the multi-objective condition [Equation (4)] can be solved using
the training set {xi,−(ĝm(xi))/(ĥm(xi))}, as a basis for fitting the base learner (tree). The
model is then iteratively enhanced in accordance with Equation (5), following a process
of optimization. The final results are then evaluated using Equation (6), following the
calibration of the model. In Equations (1)–(6), L[y, f (x)] is a loss function that behaves
differently depending on differentiability, and α is the learner’s rate of progress. It is
important to note that, as part of the XG Boost single-tree analysis, L[y, f (x)] is continually
evaluated during the modeling process of each node to determine the node that will result
in the highest gain over time. When features in f̂m(x) are split into subsets, it is possible to
create an additional regression tree. The accuracy of the model is calculated after adding
up each predictor’s score to determine the total score for the model.

f̂(0)(x) = argθmin
N

∑
i=1

L(yi, θ) (1)

ĝm(xi) =

[
∂L〈yi, f (xi)〉

∂ f (xi)

]
f (x)= f̂(m−1)(x)

(2)

ĥm(xi) =

[
∂L〈yi, f (xi)〉

∂ f (xi)
2

]
f (x)= f̂(m−1)(x)

(3)

φ̂m = argφ∈Φmin
N
∑

i=1

1
2 ĥm(xi)

[
− ĝm(xi)

ĥm(xi)
− φ(xi)

]2

f̂m (x) = αφ̂m(x)

(4)

f̂m (x) = f̂(m−1)(x) + f̂m (x) (5)

f̂ (x) = f̂M(x) =
M

∑
m=0

f̂m (x) (6)
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2.3. Indicators of Prediction Performance

As a means of testing the accuracy of the developed models with respect to the test
observations of the characteristic CS of SFRC, four performance metrics (Equations (7)–(10))
were calculated in this study. In these formulas, ai, âi, and ai are the tested, calculated, and
mean of tested CS of SFRC’s, respectively.

R2 = 1− ∑n
i=1(ai − âi)

2

∑n
i=1 âi

2 (7)

RMSE =

√
∑n

i=1(ai − âi)
2

n
(8)

MAPE =
100
n

n

∑
i=1

|ai − âi|
|âi|

(9)

MSE =
1
n

n

∑
i=1

(ai − âi)
2 (10)

3. Data Collection, Characteristics, and Handling
3.1. Data Compilation

In this study, the primary focus was on the 28d CS of SFRC with three types of mono-
fibrous systems (crimped, hooked, and mil-cut) as a response to the SFRC ingredients
and their characteristics. In total, the unprocessed population of the study consists of 422
datasets collected from 43 independent reports that were published between the period of
1994–2021. The careful selection of these reports was guided by a comprehensive evaluation
of accessibility, data richness, and alignment with research objectives in order to ensure the
robustness and relevance of the datasets. As listed in Tables 1 and 2, the variables in the
study are coded according to the database’s inputs (X) and output (y). Moreover, Table 3
provides a summary of the collected datasets that were used in the study.

Table 1. The coding system for the dummy variables.

Fiber Type Hooked Mil-Cut Crimped

X1 1 0 0

X2 0 1 0

Table 2. The coding system for the non-dummy variables.

Variable Unit Description Variable Unit Description

X3 kg/m3 Water content X9 kg/m3 HRWR content

X4 Cement content X10 MPa Tensile strength of the fiber

X5 –– Water–binder ratio X11 mm Diameter of the fiber

X6 kg/m3 Fine aggregate content X12 %, vol. Dosage of the fiber

X7 Coarse aggregate content X13 mm Length of the fiber

X8 mm Maximum aggregate size y MPa 28d CS of the SFRC

Note. HRWR: high-range water reduction superplasticizer.
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Table 3. Summary of the collected CS database of SFRC.

Ref. Data-
Sets X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 y

[58] 17 1 0 180–192.5 280–400 0.5|0.6|0.7 713.8–762.6 1027.2–1097.4 31.5 3.4–6.6 –– 0.19–0.64 0.55–0.9 30–60 29.7–46.7

[59] 12 1 0 162–177 354–450 0.4|0.5 893–920 858–887 19 2.3–6.5 1050 0–1 0.75 60 31.5–53.3

[60] 4 1 0 181.2 453 0.4 624 1242 22 1 1100 0–0.8 0.75 60 21.7–25.3

[61] 5 1 0 230.2 338 0.7 1049.2 760 10 0.7 –– 0–1.25 0.75 60 25.6–28.1

[62] 40 1 0 175 350 0.5 952.2 1321.2–1398.8 20 4.5 1100–1250 0–1.5 0–1.5 50–60 17.9–40.8

[63] 14 1 0 178–179 325–396 0.4|0.6 842–891 913–965 19 0.9–1.4 1050–2000 0–1 0.71–0.75 60 47.2–61.1

[64] 2 1 0 175.6 351 0.5 914.8 994.7 22 2.7 –– 0.26–0.45 1 50 33.3–33.4

[65] 5 1 0 205–398 311–458 0.6|0.7 408–665 1156–1407 20 3.1–7.3 1700 0–1 0.4 25 31.2–88.0

[66] 2 1 0 169.8–177.6 283–296 0.6 705–838 968–1071 10 2.8–3.3 –– 1–1.5 0.62 30 23.3–30.0

[67] 7 1 0 220 440 0.5 1193–1225 356–366 10 3–4 –– 0–1.5 0.75 25–31 35.1–43.8

[68] 8 1 0 191.2–191.6 324 0.6 1052.8–1064.2 750.0–758.3 22 3.2 1200 0.19–0.76 0.5–0.75 30–60 34.0–48.0

[69] 2 1 0 185 410 0.5 915 866 20 2–4 1100 0.5–1.0 1 50 50.0–52.0

[70] 10 0|1 0 150–168 341–429 0.3|0.4|0.5 800 975 14 2.8–11 –– 0.51 1 54–60 40.9–67.6

[71] 18 1 0 123–167 325–439 0.6 741–885 846–998 14 0.5–11.4 –– 0.48–0.75 1 54–60 38.2–69.6

[41] 6 1 0 195 342 0.3|0.5|0.6 701 1143 20 10.3 –– 0–1.5 0.75 30 24.6–30.6

[72] 23 1 0 164–185 308.3–529.1 0.3|0.6 639.3–763.9 928.6–1232.7 20 0–5.8 600–1000 0-2 0.55–0.75 35 26.7–65.4

[73] 32 1 0 172–195 336–521 0.6 652–750 1080–1145 10–40 0–5.2 1100 0-1 0.75 30–60 25.8–67.4

[74] 21 0|1 0 166 286 0.4 739 1170–1259 20 0–0.6 600 0–2 0.75 30–40 28.0–33.0

[40] 5 0 0 165 367 0.3|0.4|0.5 702–765 1053–1146 16 2.2 380 0–2 0.5 30 26.8–31.0

[75] 12 1 0 195–200 415–651 0.4|0.7 527–610 1022–1182 20 0 1000 0–1.5 0.75 32 30.9–58.5

[76] 6 1 0 185 268–524 0.4|0.5|0.6 488–725 1056–1185 31.5 0 1000 0–0.63 1 50 16.0–34.4

[77] 22 0|1 0|1 172–196 321–475 0.4|0.5 622.8–886.0 960–1171 20 0–4.5 –– 0–2 0.75–0.94 32.3–62 26.6–43.6

[78] 6 1 0 156–165 312–381 0.6 817–1200 700–1214 20 2.2–5.3 1000 0.38–0.77 1 50 63.9–67.5

[79] 13 0|1 0 264 480 0.4 716.5–769.1 895.1–989.5 20 0 380–500 0–2 0.9–1.2 30.2–32.3 27.7–34.3

[80] 4 1 0 175 461 0.4 512 1252 10 0 600 0–1.5 1.0 35 28.5–31.4



Materials 2023, 16, 7178 8 of 28

Table 3. Cont.

Ref. Data-
Sets X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 y

[81] 2 1 0 160 400 0.4|0.6 750 1140 20 8 1700 0–0.5 0.5 30 42.7–45.1

[82] 2 1 0 230 535 0.5 556 1079 16 0 1345 0–1.0 0.6 30 36.5–41.1

[42] 2 0 0 165 300–471 0.4 690–760 1038–1140 20 1.8–2.8 380 1 0.5 30 23.8–39.0

[83] 18 0 1 195–228 361–475 0.4 630–875 715–1180 20 0 380 0–2 0.94 32.2 28.1–34.1

[84] 2 1 0 166 415 0.4 838.6 1024.9 20 0 1345 0–1 0.55 35 40.8–42.6

[85] 5 0 1 161 460 0.4 1150 1048.8 20 18.4 808.6 0–1 0.8 32 30.0–40.6

[86] 4 0 1 215.5 480 0.4 825 880 25 8 –– 0–0.51 0.5 38 40.6–49.3

[87] 16 0|1 0|1 160–200 258–513 0.4|0.5|0.6 540–868 1012–1283 20 0 500–1325 0–0.7 0.55–1.15 32–50 27.0–47.0

[88] 5 1 0 172 400 0.4 730 1046–1100 15 0 –– 0 0.8 32 27.7–37.0

[89] 10 0 0 161.0–167.7 453.3–460.0 0.4 699.2 1594.2 20 18.1–18.4 808.6 0–1.6 0.8 32–40 43.5–56.0

[90] 28 1 0 161.7 437 0.4 756 1210 20 1.3–6.1 –– 0–1.5 0.7 35–50 31.8–50.3

[91] 3 1 0 168.1 410 0.4 1073 645 16 4.1–5.7 1100 0–1 0.8 50 32.1–38.7

[92] 3 1 0 167.7 390 0.4 1075 758 16 2.3–3.1 1100 0–1.45 0.8 50 36.9–40.5

[93] 9 1 0 198–205 440–460 0.4|0.5 924–985 721–846 12 11.1–12.8 1225 0.76 0.62 40 52.4–70.0

[94] 5 1 0 165 300 0.6 1128.8 806.3 16 2.5 1050–1100 0–0.5 0.55–0.75 35–60 17.6–29.2

[95] 6 1 0 190 380 0.6 1082.0 742.0 12 0.0–2.4 2200 0–0.63 0.35 30 21.6–43.92

[96] 3 1 0 169.1 412.4 0.4 927.8 890.7 12 0.0 1100 0–0.63 1 50 40.1–41.6

[97] 3 1 0 188.0 400.0 0.5 610.0 1132.0 10 3.3 1270 0–1 0.62 30 36.4–40.5

Tot. 422 0|1 0|1 123–398 258–651 0.3–0.7 408–1225 356.0–1594.2 10–40 0.0–18.4 380–2200 0–2 0.1–1.2 25–62 16–88

Note. In this table, X5 is rounded to one decimal place.
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The datasets for the current study were derived from the comprehensive database
compiled by Wang et al. [8], which served as a basis for the present study. Their study
focused on the mechanical characteristics of normal- and high-strength SFRC mixtures that
only contained Portland cement (type I), natural aggregate, and a single type of steel fiber.
A further aspect of ensuring the integrity of the compressive data has been achieved by
considering the test specimen cylindrical with a diameter of 150 and a height of 300 mm.
As a result, the conversion factors in Table 4 were applied to ensure consistency in the
test results.

Table 4. Data consistency conversion factors.

Specimen Type Conversion Factor Source Note

Cubic 0.80 ACI 318 [98] Below 60 MPa strength

Cubic 0.90 ACI 318 [98] Above 60 MPa strength

Prismatic 0.96 Wu et al. [99] —-

3.2. Data Wrangling and Statistical Analysis
3.2.1. Treatment of Outliers

Statistically significant outliers are data points that deviate from the norm, which
indicates there could be an anomaly in the data [100]. It is common practice in regression
analysis to deal with outliers as the first factor, which can significantly impact the out-
come [101]. Several factors can contribute to detecting an outlier in a given data set; these
include errors in measurement, mistakes made in capturing data, and signals detected in
newly acquired data. In statistical models and analyses, outliers pose a challenge, partic-
ularly when the data involved in the analysis are excessive [102,103]. However, outliers
present an exciting opportunity for exploring new possibilities. It is possible to identify
outliers using various methods based on the type of data being analyzed and the type
of outlier being sought. Furthermore, these methods can detect emerging phenomena or
anomalous behavior. Some methods, such as Chauvenet’s criteria and Grubb’s test, are
available for identifying outliers that use averages and standard deviations and assume a
normal data distribution [53].

The variables included in the study were analyzed using descriptive statistics accord-
ing to the method described in [104] to identify any outliers. Here, Grubb’s test was used
during preprocessing to detect outliers, errors, and even distributions in the data by check-
ing them for outliers, errors, and odd distributions. To achieve this objective, we employed
the p-test for hypothesis testing, employing a significance level of 5%. The null hypothesis
posits that all data values originate from the same normal population, while the alternative
hypothesis contends that the largest or smallest data value is an outlier It is noteworthy that
further critical analysis of the data is an essential measure for determining the weaknesses
of the approach to enhance its effectiveness. This analysis has been carried out via bivariate
boxplots, confirming the datasets’ regularity. An evaluation of the rationality of the datasets
has been conducted using bivariate boxplots (Figure 2), which indicated the rationality of
the datasets for further regression analysis. This figure provides an informative summary
of the distribution characteristics (e.g., median, interquartile range, outlier, and skewness)
of model variables, making them valuable tools for data exploration.
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3.2.2. Data Descriptive Statistics and Visualization

After cleaning up the database, two outliers were removed ((i) y = 88 MPa, and
(ii) x7 = 40 mm), thus leaving 420 observations available for developing the AI model. A
summary of the statistical information obtained from the refined database after removing
outliers is presented in Table 5, while Figure 3 displays their graphical visualization. The
figure demonstrates that the distribution of the majority of these variables is well-suited for
applications in machine learning.

Table 5. Descriptive statistics of the processed datasets.

Variable Mean StDev Minimum Q1 Median Q3 Maximum

X1 0.8012 0.3997 0.0000 1.0000 1.0000 1.0000 1.0000

X2 0.0865 0.2814 0.0000 0.0000 0.0000 0.0000 1.0000

X3 181.19 23.62 123.00 165.00 175.00 192.50 264.00

X4 394.97 74.01 258.00 342.00 392.00 450.00 651.00

X5 0.472 9.23 0.285 0.390 0.4800 0.550 0.690

X6 804.05 152.58 488.00 713.00 756.00 911.00 1225.00

X7 1067.6 210.6 356.0 945.0 1088.6 1206.3 1594.2

X8 19.542 5.218 10.000 19.000 20.000 20.000 40.000

X9 3.451 4.131 0.000 0.000 2.750 4.963 18.400

X10 989.4 378.5 380.0 600.0 1050.0 1200.0 2200.0

X11 0.7246 0.5377 0.0000 0.3840 0.5780 1.0000 2.0000

X12 0.7553 0.1970 0.1000 0.7000 0.7500 0.9000 1.2150

X13 44.015 12.178 25.000 32.300 40.000 60.000 62.000

y 39.677 11.034 16.000 31.800 37.418 45.358 70.000
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4. Results and Discussion
4.1. Features and Label Relations

In the current study, a Pearson correlation constant (rxy, Equation (11)) was calculated
during data preprocessing to assess the linear correlation between the model variables.
A constant with a value between −1 and 1 is always present in this equation [105]. In
this equation, n is the number of records, (xi , yi) is the number i feature–label set having
an average value of x, y. In a linear relationship between two random variables, the
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constant represents the average degree of variability of the linear relationship. The resulting
correlation constant coefficients for the features–label relations are presented in Figure 4.
As shown in the figure, cement, HRWR contents, and fiber tensile strength (i.e., X4, X8, and
X9) had the largest positive impact on SFRC CS. The results obtained here are consistent
with those of Ayan et al. [106]. The study demonstrated that the type and quantity of binder,
along with the volume fraction of steel fiber, exerted the most pronounced influence on
the compressive strength of SFRC. In contrast, increasing the proportions of water–binder
ratio, water, and coarse aggregates (i.e., X5, X3, and X6) would likely reduce CS. This
finding can be explained by poor microstructural properties and packing densities resulting
from increased water–binder ratio and coarse aggregate contents [107]. Furthermore, a
comprehensive examination of the data depicted in Figure 4 explains that variables X6 (fine
aggregate content) and X11 (diameter of fiber) will likely exert minimal influence on the
CS of SFRC. Given their negligible impact, these specific variables have been thoughtfully
excluded from subsequent analyses and modeling.

rxy =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)
√

∑n
i=1(yi − y)

(11)
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4.2. Development and Performance of the Initial Model

The default hyperparameters (Table 6) were used as a starting point for the develop-
ment of the model (Model-0). It is worth noting that only the fine-tuned hyperparameters
are included in this table. The prediction performance measures for this benchmark model
are listed in Table 6. The initial model’s performance indicators for the test data were lower
than those for the training data. Based on this finding, it appears that the initial model
was prone to overfitting. Therefore, a multi-objective optimization process was used to
fine-tune the default hyperparameters to maximize the model’s performance.

Table 6. XG Boost hyperparameters for the initial and fine-tuned models.

Hyperparameter Role Range Default Value
(Model-0)

Optimized Value
(Model-1)

max_depth
Tree maximum depth: modifying this parameter to

higher values results in a more intricate model,
increasing the risk of overfitting.

0–∞ 6 52

n_estimators
This hyperparameter dictates the quantity of

boosting iterations or trees incorporated within
the ensemble.

1–∞ 100 325

learning_rate Step-size shrinkage employed during updates is
intended to mitigate overfitting. 0–1 0 0.2

colsample_bytree
The subsample ratio of columns determines the
proportion of features used when constructing

each tree.
0–1 1 0.1

subsample Subsample ratio of training instance (e.g., 0.5
indicates 50% of data used prior to growing trees). >0–1 1 0.5

reg_alpha L1 regularization: increasing its value makes the
model more conservative. –– 0 0.01

reg_lambda L2 regularization: increasing its value makes the
model more conservative. –– 1 10

gamma
Regularization parameter for tree pruning that

specifies the minimum loss reduction required to
make a split.

0–∞ 0 0.1

4.3. Fine-Tuned Model

In the present study, the hyperparameters (Table 6) most affecting the model’s per-
formance were optimized by trial and error to achieve the best accuracy. In the pursuit of
refining the model’s default hyperparameters, we adopted a multi-objective optimization
strategy that combines aspects of both random search and grid search. At each iteration
of the approach, we methodically documented the model’s performance, facilitating the
identification of an optimal configuration that effectively balances diverse performance
objectives, encompassing the R2 scores for both training and testing data. A favorable result
was achieved using a multitarget optimization technique based on Pareto’s [108] frontier
approach. Figure 5 depicts the results of this multi-objective optimization process. The
optimized model exhibited adequate prediction performance with scores of 0.966 and 0.879
(Table 7) for training and testing data. As presented in Figure 6, the model-target results
were close to the ±95% and ±85% accuracy ranges for both training and testing results,
respectively. Additionally, the error of the predictions by the constructed model rarely
exceeds ±30%. The model seems to be able to make accurate predictions for the database
used during the modeling process. The next stage of the study involved a narrowly focused
experimental campaign to verify the accuracy of the proposed ML model. The following
section provides details of the experimental programs.
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Table 7. Performance metrics of the initial and fine-tuned models.

Performance Indicator
Model-0 Model-1

Training Set Testing Set Training Set Testing Set

MAPE 0.742 3.541 1.239 2.797

NMBE 2.576 28.413 4.008 16.997

RMSE 1.605 5.330 2.002 3.933

R2 0.978 0.776 0.966 0.879
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4.4. Experimental Verification
4.4.1. Materials

In this investigation, we utilized ordinary Portland cement (OPC) type I, in accordance
with ASTM C 150 [109], to formulate the SF-HSC, procured from a local manufacturing
facility. The estimated median particle size of this cement is 13 microns. A comprehensive
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analysis of the physicochemical attributes of the OPC employed is detailed in Table 8,
while Figure 7 depicts the grain size distribution. Additionally, Figure 7 presents a scan-
ning electron microscopy (SEM) image of the OPC, revealing distinctive features such as
polyangular shapes, an asymmetrical distribution, and particle sizes ranging from 1 to
20 µm.

Table 8. The physicochemical properties of the used OPC.

Oxide Composition (%)
L.O.I. (%)

Specific
Gravity

Fineness
(m2/kg)SiO2 Al2O3 Fe2O3 CaO MgO Na2Oeq SO3

20.20 5.49 4.12 65.43 0.71 0.26 2.61 1.38 3.14 373
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The targeted workability for the concrete blends was successfully attained through the
utilization of a modified polycarboxylic ether polymer, recognized as a high-range water-
reducing agent (HRWR) and commercially known as MasterGlenium 51. This HRWR
comprises 36% dry powder and possesses a relative density of 1.1, as specified by the
manufacturer. To determine the appropriate quantity of HRWR to incorporate into the
concrete mix, we divided the dry extract (D.E.) by the weight of the cement. Optimizing
this ratio has resulted in achieving the optimal workability for this specific mix.

Furthermore, all concrete blends were crafted with coarse aggregates (Ag) featuring a
maximum aggregate size of 10 mm. The particle-size curves of the aggregates employed in
this study are depicted in Figure 8.
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The production of SFRC involved the incorporation of three distinct hook-ended steel
fibers, each varying in both length and diameter. The steel fibers utilized encompassed a
range of dimensions. A comprehensive overview of the physicomechanical characteristics
of the employed steel fibers is provided in Table 9.

Table 9. Properties of the used steel fibers.

Fiber Length
(mm)

Diameter
(mm)

Aspect
Ratio

Young’s Modulus
(GPa)

Tensile Strength
(MPa)Shape ID
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F1 40 0.62 65
210 1250F2 50 0.62 80

F3 60 0.75 80

This investigation encompassed the formulation and assessment of 20 concrete blends,
integrating three distinct water-cement ratios (0.25, 0.35, and 0.45), three varieties of fibers
(as detailed in Table 9), and four levels of fiber dosage (0.0, 0.5, 1.0, and 1.5). The proportions
of these mixes, along with the quantity of steel fibers incorporated in each, are outlined in
Table 10. In this context, the labels U, H, and N signify concrete compositions featuring
water–cement ratios of 0.25, 0.35, and 0.45, respectively. For instance, the designation
“U-F1-0.5” indicates a mix prepared with a water–cement ratio of 0.25, utilizing steel fiber
type “F1” at a dosage of 0.5 percent (volume). An important characteristic of the control
blends is that the slump, serving as a measure of workability, was set at 100 ± 25 mm and
assessed in accordance with ASTM C143 standards [110].
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Table 10. Test features and response.

Model’s Input Variables Strength
(MPa), y

y1/y2

No. ID X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
Test,
y1

Model,
y2

1 H-F1-0.5 1 0 157.5 450 0.35 716 1053 10 0.68 1250 0.62 0.5 65 69.4 74.1 0.937

2 N-F1-0.5 1 0 157.5 350 0.45 798 1078 10 0.42 1250 0.62 0.5 65 60.7 56.3 1.078

3 H-F1-1.0 1 0 157.5 450 0.35 716 1053 10 0.68 1250 0.62 1.0 65 72.3 65.8 1.099

4 N-F1-1.0 1 0 157.5 350 0.45 798 1078 10 0.42 1250 0.62 1.0 65 64.1 61.8 1.037

5 H-F1-1.5 1 0 157.5 450 0.35 716 1053 10 0.68 1250 0.62 1.5 65 75.9 79.7 0.952

6 N-F1-1.5 1 0 157.5 350 0.45 798 1078 10 0.42 1250 0.62 1.5 65 62.3 59.1 1.054

7 H-F2-0.5 1 0 157.5 450 0.35 716 1053 10 0.68 1250 0.62 0.5 80 73.8 71.7 1.029

8 N-F2-0.5 1 0 157.5 350 0.45 798 1078 10 0.42 1250 0.62 0.5 80 55.8 60.4 0.924

9 H-F2-1.0 1 0 157.5 450 0.35 716 1053 10 0.68 1250 0.62 1.0 80 76.4 81.2 0.941

10 N-F2-1.0 1 0 157.5 350 0.45 798 1078 10 0.42 1250 0.62 1.0 80 62.3 61.1 1.020

11 H-F2-1.5 1 0 157.5 450 0.35 716 1053 10 0.68 1250 0.62 1.5 80 77.3 80.3 0.963

12 N-F2-1.5 1 0 157.5 350 0.45 798 1078 10 0.42 1250 0.62 1.5 80 64.2 69.6 0.922

13 H-F3-0.5 1 0 157.5 450 0.35 716 1053 10 0.68 1250 0.75 0.5 80 68.0 63.2 1.076

14 N-F3-0.5 1 0 157.5 350 0.45 798 1078 10 0.42 1250 0.75 0.5 80 58.9 60.7 0.970

15 H-F3-1.0 1 0 157.5 450 0.35 716 1053 10 0.68 1250 0.75 1.0 80 70.6 68.9 1.025

16 N-F3-1.0 1 0 157.5 350 0.45 798 1078 10 0.42 1250 0.75 1.0 80 59.7 61.8 0.966

17 H-F3-1.5 1 0 157.5 450 0.35 716 1053 10 0.68 1250 0.75 1.5 80 78.6 83.4 0.942

18 N-F3-1.5 1 0 157.5 350 0.45 798 1078 10 0.42 1250 0.75 1.5 80 66.2 68.6 0.965

19 H-CTRL 1 0 157.5 450 0.35 716 1053 10 0.68 –– –– –– –– 61.7 59.8 1.032

20 N-CTRL 1 0 157.5 350 0.45 798 1078 10 0.42 –– –– –– –– 52.4 57.2 0.916

µ 0.992

σ 0.058

CV 0.059

4.4.2. Methods
Mixing, Casting, and Curing

Execution of this investigation involved blending various aggregates in a standard
concrete mixer for several minutes, accompanied by the simultaneous introduction of
absorption water. Subsequently, cement was dry-mixed for a brief duration. The high-range
water-reducing (HRWR) agent was blended with water for two minutes, then re-mixed
with the aggregates for three minutes, followed by an additional three minutes without
mixing before the final two-minute blending phase. The resulting concrete mixture was
poured into distinct molds, aligning with specimen size requirements, and the mixer was
subsequently turned off. In the case of steel-fiber-reinforced concrete (SFRC) mixes, fibers
were incorporated into the concrete mixture after a thorough initial mixing of five minutes
to ensure optimal dispersion within the mixture.

Rigid plastic molds were utilized to cast a series of concrete cylinder specimens mea-
suring 100 (dia.) × 200 (ht.) mm, assessing the compressive strength (CS) of the concrete.
To maintain a conducive moisture environment, plastic sheets covered the specimens post-
removal of excess material from the mold’s surface. Specimens were demolded after 24 h,
and subjected to curing at 22 ± 2 ◦C with a relative humidity of 100%. The test specimens
remained in this condition until the testing phase. Each type of test and mix underwent
the casting of three specimens. For CS specimens, tests were conducted at both seven and
28 days. The study’s outcomes were then calculated, and average strength results for the
three specimens were presented.
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Method of Testing

Before subjecting the cylindrical specimens to the uniaxial compression test, a sulfur
mortar coating is applied to ensure an even distribution of load across the top and bottom
surfaces. This study assessed the compressive strengths (CSs) of cement-based materials
at 7 and 28 days, adhering to ASTM C39 [111] specifications. Employing a ToniTech
universal testing machine with a 3000 kN load capacity (depicted in Figure 9), the tests were
conducted. The specimens were affixed with two linear variable displacement transducers
(LVDTs) and a compressometer ring at a height of approximately 100 mm, corresponding to
the center of the samples, to measure in-plane and transverse strains. Under displacement-
controlled conditions, with a rate of 2.5 × 10−3 mm/s, the tests were executed. Each
compressed test involved two or three duplicate samples, and the mean result was reported
to ensure the reliability of the findings.
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4.4.3. Test and Model Results

The observed and calculated CS of the studied SFRC mixes are listed in Table 10. The
developed ML model yielded reasonable predictions. The mean and COV of the tested-to-
predicted results were about 0.99 and 9%, respectively. A demonstration of this superior
predictive capability is shown in Figure 10. In this figure, the predicted and tested data
points show a low error rate of less than 10% in most cases.
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5. Model Implementation
5.1. Feature Ranking

The analysis of influential variables in predicting the CS of SFRC plays a pivotal role
in optimizing concrete mix designs for enhanced performance and durability. In this study,
we employed two distinct approaches (Gini index [112] and Shapley additive explanations
(SHAP)), to unveil the key factors that impact the CS of SFRC. These approaches provide
valuable insights into the relative importance of different variables, shedding light on
the interplay between various components within the concrete mixture. The practice of
analyzing features based on Gini coefficients has proven to be more effective in detecting
the significance of features with unique values [113]. The results of this analysis are shown
in Figure 11.
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Figure 11. Variable significance by: (a) SHAP value, and (b) Gini index methods.

The SHAP approach, a novel and robust tool for interpreting machine learning models,
identified X9 (high-range water-reducer content), X4 (cement content), X5 (water–binder
ratio), X7 (gravel content), and X8 as the most influential variables in predicting CS. The
Gini index, another well-established technique for evaluating variable importance, identi-
fied a slightly different set of influential factors, namely X7, X5, X3, X4, X9, and X13. This
divergence highlights the complementary nature of these two methods, as they provide
unique perspectives on the significance of each variable. However, it is particularly note-
worthy that both approaches unequivocally agree on four primary parameters significantly
influencing the CS of SFRC: X9, X4, X5, and X7. Here, X9, representing the high-range
water-reducer content, plays a crucial role in optimizing the workability and strength of
the concrete mixture. Additionally, the cement content (X4) stands as a pivotal factor, as
confirmed by Figure 11a, which visually depicts how higher cement content positively
correlates with increased strength, while lower content results in reduced strength. The
water–binder ratio (X5) and gravel content (X7) are also integral components, with their
appropriate proportions contributing to the desired CS in SFRC.

It is noteworthy that the consistency in the rankings of other variables, such as coarse
aggregate content (X6) and fiber type (X1 and X2), between the two methods, adds fur-
ther credibility to our findings. These results not only underscore the robustness of our
analysis but also provide valuable insights for optimizing SFRC mix designs. Importantly,
these findings align with the results reported in Section 4.1 of this study, where the Pearson
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correlation analysis also highlighted the significance of X5, X4, and X9 in predicting the CS
of SFRC. This collective evidence strengthens the confidence in the identified key parame-
ters and their impact on the compressive strength of SFRC, offering a valuable foundation
for future concrete mix design optimization efforts.

5.2. Partial Dependence Plots

This study conducted a partial dependence analysis for each independent variable
employed in the ML model. Figure 9 shows the PDPs of the CS of SFRC in response
to different predictors, except the dummy ones. The figure suggests the optimum water
content (X3) and HRWR (X8) are in the range of 100–150 kg/m3 and more than 10–20 kg/m3

to maximize the CS, and strength notably decreases as the content increases. Further, the
strength will likely increase as the cement content (X4) increases. Additionally, the ideal
content for coarse aggregate (X7) content is perhaps 900–1100 kg/m3. Moreover, the results
in the figure suggest that the best fibrous combination has a tensile strength (X10) of about
1000 MPa, dosage (X12) of around 1.0%, and length (X13) of 40–50 mm. As expected,
Figure 12 also illustrates that the CS decreases as the water–binder ratio (X5) increases.

5.3. Graphical User Interface Development

In this study, we provide an intuitive graphical user interface (GUI) for interacting
with the developed XG Boost model. Python and Gradio [114] have been used to implement
sliding control systems that allow input values to be limited to minimums and maximums
(Table 5). Figure 13 shows three main components: input features with slider controls,
output results, and SHAP-based explanations. The model produces the SFRC’s strength
and the concrete class (“normal strength” if it has a strength lower than 60 MPa, otherwise
“high-strength concrete”).
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6. Conclusions, Implications, and Future Research

This study involved the compilation and refinement of an extensive database, com-
prising 420 entries sourced from 43 scholarly publications. We conducted experimental
analyses on 20 different SFRC mixtures to assess the predictive accuracy of the constructed
model. Furthermore, we employed PDPs to elucidate the relationships between the model’s
input variables and its outcomes. The significance of these input variables within the model
was also explored. To enhance the model’s usability, we developed a user-friendly graphical
interface. It is worth noting that the research specifically focused on three distinct fiber
types: crimped, hooked, and mil-cut. Therefore, the findings may not be directly applicable
to SFRC with alternative fiber types or mixtures. Additionally, while the model consis-
tently performed well with experimental data, its effectiveness may vary under different
conditions or when using different raw materials. Regarding the research findings:

1. The analysis, including Pearson correlations, Gini indices, and SHAP analyses, high-
lighted that the most significant factors influencing the CS of SFRC were the cement
and HRWR contents, as well as the fiber tensile strength and water–binder ratio.
Notably, increasing the proportion of water and coarse aggregates is likely to reduce
the compressive strength of the concrete.

2. We utilized the Pareto frontier multi-criterion method to develop an optimized version
of the standard XG Boost model. Based on training and testing datasets, the optimized
model demonstrated satisfactory predictive performance, achieving scores of 0.97 and
0.88, respectively.

3. The developed ML model consistently exhibited superior predictive capability when
tested against independent experimental data conducted by the authors, with average
and COV values of the tested-predicted results at 0.99 and 6%, respectively.

4. Through the application of PDPs, we determined that the optimal water and HRWR con-
tents for achieving maximum CS are in the range of 100–150 kg/m3 and 10–20 kg/m3,
respectively. Similarly, for coarse aggregates, ideal contents fall in the ranges of
900–1100 kg/m3. Additionally, the most effective fibrous combination exhibited a ten-
sile strength of 1000 MPa, a diameter length of 40–50 mm, and a dosage of about 1.0%.

The adoption of ML techniques, particularly the XG boosting methodology, offers the
construction and civil engineering sectors an enhanced predictive toolset for determining
the CS of SFRC. This research not only elucidates optimal SFRC formulations, pinpointing
effective fiber combinations but also facilitates the development of concrete with superior
strength and durability. In future investigations, it would be valuable to compare the
predictive competence of the current numerical model against existing empirical and ana-
lytical frameworks. Additionally, the inclusion of data on ultra-high-performance concrete
could enhance the model’s universality. Addressing the size effect might benefit from the
incorporation of a conversion factor as an input variable for various types of test samples,
effectively contributing to handling this aspect of the study. While our present research
offers a robust database, there is a compelling case for expanding this repository by in-
corporating newer studies and a wider array of SFRC mix variations, ensuring it remains
at the forefront of technological progress. Despite the current study’s reliance on the XG
boosting technique, exploring alternative ML schemes (e.g., neural networks or stacked
ensemble algorithms) may reveal novel perspectives and enhance predictive accuracy.
Beyond immediate CS predictions, there is a growing need to investigate the enduring
resilience of SFRC in diverse scenarios. In an era emphasizing ecological responsibility,
future research should critically assess the environmental implications of various SFRC for-
mulations, including aspects such as lifecycle assessments, carbon emissions, and potential
for recycling. Furthermore, forthcoming research endeavors could explore the impact of
fiber orientation on the post-cracking behavior of SFRC under compressive loading.
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