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Abstract: To elucidate the impact mechanism of the interfacial characteristics of Calcium Silicate
Hydrate gel (CSH)–Montmorillonite (MMT) at the nanoscale on the strength of cement-stabilized
montmorillonite soil, this paper begins by examining the interfacial energy. Through Molecular Dy-
namics (MD) simulation methods, the energy at the MMT and CSH binding interface is quantitatively
calculated, and the correlation between the interfacial energy and macroscopic strength is determined
in conjunction with grey relational analysis. Finally, based on the characterization results from X-ray
diffraction (XRD), the accuracy and sources of deviation in the MD simulation results are discussed.
The study shows the CSH-MMT interfacial energy is composed of van der Waals forces, hydrogen
bond energy, and electrostatic interactions, which are influenced by the migration of cations; there
is a good consistency between the CSH-MMT interfacial energy and the unconfined compressive
strength (UCS) of cement-stabilized soil (cemented soil), with the interfacial energy decreasing as the
number of water molecules increases and first decreasing then increasing as the number of MMT
layers grows; by adjusting the mix proportions, the magnitude of the CSH-MMT interfacial energy
can be altered, thereby optimizing the strength of the cemented soil.

Keywords: cement-stabilized montmorillonite soil; molecular dynamics method; interfacial
characteristic; unconfined compressive strength; grey relational analysis

1. Introduction

The implementation of ecological dredging is a crucial approach for the protection
and management of the Yellow River basin, aimed at enhancing the quality and stability
of its water ecosystem [1–3]. One key technical limitation hindering progress in dredging
is the suboptimal utilization of mucky soil resources. Current research and practices are
based on cemented soil technology, which improves the performance of mucky soil [4,5].
This improvement primarily involves adjusting the water-to-cement ratio (initial water
content/cement content) and cement-to-soil ratio (cement content/soil content) to regulate
mechanical properties such as the compressive strength [5–7].

The regulation effect of cemented soil’s performance is influenced by foundational
properties like the soil’s liquid plastic limit [5,6], particle distribution [7], and organic
matter content [8]. Liu et al. [6] introduced soil plasticity indices, particle distribution,
and empirical parameters related to the reaction stages while coordinating with the water-
to-cement ratio and cement-to-soil ratio to develop a reliable control model for the time
evolution of cemented soil’s compressive strength. Although current control models for
cemented soil strength [6,7] consider soil properties, the introduced empirical parameters
lack physical meaning, making it difficult to reflect the interaction between cementitious
materials and soil minerals at different ages. Additionally, current research on the devel-
opment mechanism of cemented soil’s performance [9,10] primarily revolves around the
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hydration mechanism of cement and other cementitious materials, focusing on product and
microstructure characterization. However, there is still a lack of analysis on the nanoscale
interfacial binding mechanism of hydration products in cemented soil with clay minerals
and the energy source of the cemented soil interface [11].

Molecular simulation techniques can effectively interpret interactions and energy
changes between different phases on a nanoscale [12]. Scholars have successfully applied
the Monte Carlo (MC) and MD methods to study the performance of inorganic non-metallic
materials [13–17]. Nevertheless, considering the role of clay minerals, model construction
and validation become more complex. Current studies mainly emphasize mechanical and
structural evolution under varying conditions for single materials without thoroughly
explaining the dynamic mechanisms behind the interactions between cement hydration
products and soil minerals in cemented soil, leading to the mechanism behind the improved
performance of cemented soil not being thoroughly explained.

Based on the analysis of the current research state, this paper first investigates the
macro-mechanical performance mechanism of cement-stabilized montmorillonite soil in-
fluenced by a different water-to-cement ratio and cement-to-soil ratio through UCS tests.
Subsequently, representative mineral components from cement hydration products and
mucky soil, namely CSH and MMT, are selected to construct a composite nanoscale struc-
ture model. The evolution of non-bonded force fields between the nanoscale structure
interfaces is computed to explore the interaction mechanism between CSH and MMT at a
different water-to-cement ratio and cement-to-soil ratio, and how the characteristics of the
CSH-MMT interface influence the macro properties of cement-stabilized montmorillonite
soil. Later, the micro-phase is examined using XRD analysis. Combined with grey relational
analysis, the accuracy and sources of deviation in the model are discussed, further verifying
the MD model and the validity of its simulation results.

2. Materials and Methods
2.1. Experimental Materials

The soil used for both macroscopic and microscopic tests is sodium-based montmoril-
lonite soil purchased from the market. Its specific gravity is 2.43. A peak-fitting method
was applied to the soil’s 29Si nuclear magnetic resonance (29Si NMR) spectrum to determine
its major mineral constituents and their concentrations [18], as shown in Figure 1. The
results indicate that the soil consists of 67% montmorillonite and 33% quartz. The water
used in the experiments is tap water from Nanjing, China. The cement used is Ordinary
Portland cement 42.5 R. The physical properties of the cement are shown in Table 1, and
CSH constitutes 60–70% of the hydration products of the cement.
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Figure 1. Deconvolution demonstration of 29Si NMR spectra for montmorillonite soil.
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Table 1. Physical properties of the cement.

Density/g cm−3 Specific Surface
Area/m2 kg−1

Water Requirement of
Normal Consistency/%

Initial Setting
Time/min

Final Setting
Time/min

3.03 397 27.5 195 305

2.2. Experimental Methods
2.2.1. Molecular Simulation Method

This paper employs MD methods, using the open-source software Lammps (https://
www.lammps.org/) to simulate the behavior of the CSH-MMT interface, with calculations
performed using the Clayff force field. The Clayff force field can be used to calculate
hydroxides and clay minerals and can simulate the properties of cement–clay systems and
their interface with aqueous solutions [13,15,19]. The Clayff force field divides the total
potential energy (Etotal) into bonded and non-bonded interactions [20]. Bonded interactions
include bond stretching energy (Ebond stretch) and bond angle bending energy (Eangle bond),
while non-bonded interactions include van der Waals forces (EVDW) and electrostatic
interactions (ECoul), represented as in Equation (1).

Etotal = Ebond stretch + Eangle bond + EVDW + ECoul (1)

Electrostatic interactions and van der Waals forces are defined as in Equations (2) and (3),
respectively, where (e) is the electronic charge; (ε) is the potential well depth; (σ) is the
atomic distance where the potential energy is at its minimum; (qi) and (qj) are the charges
of atoms (i) and (j); and (ε0) is the permittivity constant. The distance parameter (σij) is the
arithmetic mean of (σi) and (σj), and the energy parameter (εij) is the geometric mean of (εi)
and (εj).

ECoul =
e2qiqj

4πε0rij
(2)

EVDW = εij

(σij

rij

)12

− 2

(
σij

rij

)6
 (3)

2.2.2. UCS Testing and Sample Preparation

UCS testing is employed to assess the mechanical properties of the specimens. Ac-
cording to engineering experience, the content of cementitious materials in the cemented
soil should range from 7% to 25% of the soil’s weight. Within this range, variations in
the water-to-cement ratio and the cement-to-soil ratio are investigated to explore their
influence on the UCS of the cemented soil. Ultimately, the following mix proportions are
determined: when the water-to-cement ratio is 4, the cement-to-soil ratio is set at 7.5%, 15%,
20%, and 25%. Conversely, when the cement-to-soil ratio is 25%, the water-to-cement ratio
is adjusted to 1.33, 2, 3, and 4. Samples are named in the format of “water-to-cement ratio–
cement-to-soil ratio”, such as 4–25 for cemented soil with a water-to-cement ratio of 4 and
a cement-to-soil ratio of 25%.

Samples of cemented soil with a size of φ 50 mm × 50 mm and a porosity of 3%
are prepared using the absolute volume method. This ensures that, under the same mix
proportions, the likelihood of contact reactions between particles inside the samples is
consistent at the start of the reaction. UCS tests selected the samples with a reaction age of
90 d. The testing equipment employed is the HY-10080 electronic universal material testing
machine from Shanghai Hengyi, Shanghai, China, with a loading rate of 1 mm min−1. The
results are based on the average of three parallel samples.

2.2.3. XRD

XRD is used for the qualitative analysis of the mineral composition of cemented soil
and to validate and supplement the results obtained through molecular simulation. For

https://www.lammps.org/
https://www.lammps.org/
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samples aged to the predetermined age, hydration is terminated using freeze-drying [21],
and the samples are ground to a particle size not exceeding 75 µm for XRD testing. The
testing equipment used is the SmartLab-9Kw diffractometer from Rigaku, Tokyo, Japan,
employing Cu target Kα radiation, with a tube voltage of 40 kV, tube current of 30 mA, a
scanning rate of 2◦/min, a scanning range of 5◦ to 60◦, and a step size of 0.02◦.

2.3. Establishment and Rational Validation of MD Models
2.3.1. Construction and Verification of Typical CSH and MMT MD Models

CSH is a gel with an atomic structure resembling that of layered tobermorite. Gen-
erally, depending on the degree of hydration and interlayer spacing, CSH models can be
represented by Tobermorite—0.9 nm, Tobermorite—1.1 nm, and Tobermorite—1.4 nm,
as reported in references [22,23]. Among these, the Tobermorite—0.9 nm structure does
not contain water molecules, while the Tobermorite—1.1 nm and Tobermorite—1.4 nm
structures contain 5 and 7 water molecules, respectively. To reflect the nanoscale structural
interfacial performance of hydrated cement-stabilized montmorillonite soil pastes under
varying moisture contents, and considering MMT’s strong affinity for water molecules,
Ca2+, and CaOH+, a CSH model based on the Tobermorite—0.9 nm structure with low
Ca/Si and interlayer water content is constructed. The structure is shown in Figure 2a,
with lattice parameters: a = 1.116 nm, b = 0.73 nm, c = 0.96 nm, α = 101.08◦, β = 92.83◦,
γ = 89.98◦.
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MMT is a typical layered aluminosilicate mineral composed of two layers of silicon–
oxygen tetrahedra and a layer of aluminum–oxygen octahedra sandwiched in between.
The lattice parameters for the MMT model, as proposed by Skipper [24], are a = 0.523 nm,
b = 0.906 nm, c = 0.96 nm, α = γ = 90◦, β = 99◦. Figure 2b depicts the structure model of
MMT, where every 32 Si4+ are substituted by Al3+, and every 8 Al3+ are substituted by
Mg2+. Consequently, due to lattice substitutions, the MMT layers exhibit electroneg-
ativity, balanced by interlayer Na+. The formulated molecular formula for MMT is
Na3(Si31Al)(Al14Mg2)O80(OH)16.

To validate the correctness of the constructed MD models, the Young’s modulus (E)
of CSH and MMT is studied. The computed results are compared with experimental data
from other literature sources [25–27]. Prior to formal calculations, energy and geometry op-
timization of the structures is carried out to reach the lowest potential energy configuration.
Subsequently, to ensure both temperature and energy equilibrium in the structural system,
300 ps of dynamic optimization is performed successively under NVT and NVE ensembles.
Finally, to maintain structural elasticity during the calculation process, the constant-strain
method is utilized to compute the elastic constants with a maximum strain set at 0.003.
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Analysis of stiffness and compliance matrices in the computed results reveals that
although CSH and MMT are not isotropic materials, they are not highly anisotropic either.
For simplicity in calculations, these structures are approximated as isotropic materials, and
the Voigt–Reuss–Hill method is employed to compute the bulk and shear moduli. Ulti-
mately, Young’s moduli for CSH and MMT are determined to be 34.39 GPa and 50.05 GPa,
respectively, using Equation (4).

E =
9G

3 + G/K
(4)

In the formula, (G) represents the shear modulus and (K) represents the bulk modulus.
Du et al. [25] experimentally determined the Young’s modulus of CSH to be in the range of
30 GPa to 50 GPa. The molecular simulation result obtained in this study, 38 GPa, aligns
well with these findings. Carrier et al. [26], through MD simulations, obtained an elastic
modulus of 34.2 GPa for sodium-based MMT at room temperature, which is lower than
the 50.05 GPa obtained in this study. This discrepancy can be attributed, in part, to the fact
that the Young’s modulus of MMT crystals decreases as the number of interlayer water
molecules increases. Additionally, differences in the simulation conditions, temperature,
pressure, and force fields can lead to variations in the simulation results. Wang et al. [27],
using elastic wave testing on MMT powder, reported a Young’s modulus slightly higher
than our computed values, ranging from 41.3 GPa to 60.6 GPa. This difference is mainly
due to the fact that elastic parameters measured through acoustic or elastic wave methods
generally tend to be higher than static measurements. Based on the above analysis, the
numerical values obtained through simulation align well with experimental data from the
literature, which to a certain extent, supports the correctness of our model and mechanical
processing methods.

2.3.2. Construction of the CSH-MMT Interfacial Model

Figure 3 is an illustration of CSH-MMT from the microscopic to molecular structure.
After thorough mixing of cement and montmorillonite soil, cement particles, montmo-
rillonite soil particles, and pores are uniformly distributed within the structure. With
the addition of water, montmorillonite soil particles aggregate into larger soil aggregates.
Cement hydrates on the surface of montmorillonite soil aggregates to form a cement slurry.
Due to the weak interlayer bonding of MMT, water molecules can penetrate the interlayers,
causing strong expansion. This process compresses and fills the partial pores within the
soil aggregates, resulting in a dense cement–montmorillonite soil structure, as depicted
in Figure 3a. Given the dispersed-layer structure of the cement–montmorillonite soil
microstructure, and considering possible configurations between CSH and MMT layers
(Figure 3b), the Build Layers method is employed to construct the CSH-MMT interfacial
structural model. The model is assembled in three layers, namely, the upper CSH chain
layer, the middle MMT crystal layer, and the lower CSH chain layer, as shown in Figure 3c.

To ensure consistency between the molecular model and the mix proportion, the model
construction controls the number of water molecules and the number of MMT layers. This
approach achieves an approximate equivalence between the masses of CSH, MMT, and
water in the molecular model and macroscopic experiments. Specifically, the molecular
model maintains a constant of 2 CSH layers and 160 water molecules, while varying the
number of MMT layers as 2, 3, 4, and 6. These correspond to macroscopic experiments
with a water-to-cement ratio of 4 and cement-to-soil ratio of 7.5%, 15%, 20%, and 25%. The
molecular model also maintains 2 CSH and MMT layers, while varying the number of
water molecules as 160, 120, 80, and 50. These correspond to macroscopic experiments with
a cement-to-soil ratio of 25% and water-to-cement ratio of 1.33, 2, 3, and 4.

The specific construction process involves first performing supercell operations on the
intermediate MMT unit cell to create supercell structures containing 2, 3, 4, and 6 layers
of MMT. Subsequently, the (001) surfaces of both CSH and MMT supercells are extracted,
and the structure is assembled in three layers using the Build Layers method. A structure
model with 3 layers of MMT is depicted in Figure 4, with a dashed line representing
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the interaction surface (001) between CSH and MMT. After establishing the CSH-MMT
interfacial structural models, the MC method is used to simulate the water absorption
process. A total of 160 water molecules are added to the structural models containing
2, 3, 4, and 6 layers of MMT, and 160, 120, 80, and 50 water molecules are added to the
structural model containing 2 layers of MMT, yielding molecular models of the CSH-MMT-
water system.
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3. Results
3.1. CSH-MMT Interfacial Energy
3.1.1. MD Calculation of the Interface between CSH and MMT

Upon obtaining the molecular model of the CSH-MMT-water system, energy and
geometric optimization are performed. Initially, the structures are optimized using the
steepest descent and conjugate gradient methods to find configurations near the energy
minimum on the potential energy surface. Subsequently, the Newton–Raphson method is
employed to further optimize the structures and locate the configurations at the minimum
of the potential energy surface, reducing unreasonable arrangements between molecules.
The charge distribution employs the QEq method, which assigns charges to each atom,
allowing for the fast computation of the electrostatics within the periodic framework.
The energy-minimized model resulting from relaxation is used as the initial model for



Materials 2023, 16, 7141 7 of 14

the MD simulations. The boundary conditions for the MD simulations are set to three-
dimensional periodic boundary conditions, using the NPT ensemble to maintain a constant
particle number, pressure, and temperature. The precision is set to “fine”. Additionally,
temperature and pressure control for the water-CSH-MMT system is implemented using the
Nose–Hoover thermostat and Berendsen barostat, with temperature and pressure constants
set to 0.5 fs. The system is then subjected to 300 ps of dynamic equilibrium to observe
energy and temperature convergence over time, reaching a state of equilibrium. Finally, the
total energy of the CSH-MMT-water system, the energy of CSH, and the energy of the MMT-
water system after removing CSH are calculated using the energy method. Specifically,
the energy of the equilibrium configuration is calculated to obtain the total energy (Etotal).
Then, CSH layers are removed from the equilibrium configuration, and the energy of the
MMT-water system without CSH (EMMT/water) is computed. Subsequently, calculations
are performed with only the CSH layers to obtain the energy of pure CSH (ECSH). Finally,
the interfacial energy is determined using Equation (5). The Ewald summation method is
employed to calculate the static electrostatic interactions within the structure, with a cutoff
radius of 0.6 nm, while the atom-based method is used to compute van der Waals forces,
with a cutoff radius of 1.25 nm. The choice of cutoff radius is based on being less than half
of the crystal parameters.

3.1.2. CSH-MMT Interfacial Energy

This study analyzes the interfacial properties of CSH-MMT from the perspective of
interfacial energy. The formula for calculating the interfacial energy (Einterface) is as shown
in Equation (5). Since all models have the same interfacial area (A), Equation (5) can be
simplified to Equation (6):

Einterface =
ECSH + EMMT/water − Etotal

2A
(5)

Einterface = ECSH + EMMT/water − Etotal (6)

Figure 5a,b depict the interfacial energies of CSH-MMT with varying numbers of
MMT layers and water molecules, respectively. A positive interfacial energy indicates a
repulsive force between adjacent surfaces, while a negative interfacial energy indicates an
attractive force.
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The interfacial energy is primarily composed of van der Waals forces, hydrogen bond
energies, and electrostatic interactions. Van der Waals forces can either be attractive or
repulsive, depending on the distance between atoms: they are attractive at greater distances
and repulsive at close distances. Hydrogen bond energy is a significant contributor to the
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attractive force at the CSH-MMT interface. The strength of the hydrogen bond network at
the CSH-MMT interface determines its magnitude. This network forms due to the following
reasons: as mentioned earlier, MMT exhibits significant electronegativity due to lattice
substitution, attracting Ca2+ from CSH into the interlayer space. These Ca2+ bond with
oxygen atoms (Os) on the surface of CSH and MMT, as well as diffusing to coordinate with
water molecules’ oxygen atoms (Ow) in the CSH-MMT interlayer space, forming Ca-Os and
Ca-Ow bonds. Simultaneously, water molecules bond via Hw with Os and Ow, forming
Os-Hw and Ow-Hw bonds, where Os is from the surfaces of CSH and MMT, and Ow is
from other water molecules. Through these series of interactions, a complex hydrogen
bond network is established at the CSH-MMT interface, as shown in Figure 6. Electrostatic
interactions follow the principle of like charges repelling and opposite charges attracting.
Cations migrate between layers, leading to electronegative MMT attracting free Ca2+ from
CSH. This causes CSH to develop a positive charge, and as MMT layers are negatively
charged, electrostatic forces result in mutual repulsion between the CSH and MMT layers.
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From Figure 5a, it can be observed that, when the number of water molecules decreases
while maintaining the same number of CSH layers and MMT layers, the interfacial energy
increases. The interfacial energy reaches its maximum of 482.8 kJ mol−1 when the number
of water molecules is reduced to 50. This situation occurs because, as the number of
water molecules decreases, Ca2+ begin to migrate toward the interface region due to the
attractive forces exerted by the MMT layers. This causes both the CSH and MMT layers
to become positively charged, leading to mutual electrostatic repulsion and an increase
in the interfacial energy. Notably, when the number of water molecules decreases from
80 to 50, the interfacial energy only increases by 77.4 kJ mol−1. This phenomenon can
be attributed to the fact that the adsorption of Na+ by the MMT layers reduces their zeta
potential, diminishing the significance of electrostatic interactions in the system, which is
why the increase in the interfacial energy is less pronounced than the preceding significant
decrease. When the number of water molecules increases from 50 to 160, the interfacial
energy transitions from repulsive to attractive. This change is due to the increased spacing
between the CSH and MMT layers at the interface as the number of water molecules rises,
resulting in van der Waals forces predominantly exhibiting attraction. Additionally, more
Ow-Hw bonds form in the CSH-MMT interface region, further increasing the attractive
forces. Moreover, the electronegativity of the MMT layers becomes balanced by water
molecules, reducing the electrostatic interactions. Figure 5b shows that, with a constant
number of water molecules, the interfacial energy initially decreases and then increases as
the number of MMT layers rises. As previously mentioned, this outcome is closely related
to the charged nature of the CSH layers in the system. With an increasing MMT content,
free Na+ migrate into the CSH, forming a new gel C-N-S-H [28]. This results in a positively
charged CSH layer. Due to the negatively charged MMT layers, electrostatic forces cause
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mutual attraction between the CSH and MMT layers. Additionally, Figure 5b demonstrates
that when the number of MMT layers continues to increase to six, the interfacial energy
significantly increases. The analysis reveals that, at this point, the number of interlayer
water molecules is relatively low, the hydrogen bond energy is a small fraction of the
total, and Ca2+ in the CSH are once again attracted by the MMT layers. As a result,
electrostatic interactions in this system lead to repulsion and, consequently, an increase in
the interfacial energy.

3.2. UCS and Its Correlation with CSH-MMT Interfacial Energy

The UCS test results are presented in Figure 7. From Figure 7, it can be observed that
the UCS of cemented soil decreases with the increase in the water-to-cement ratio when
the cement content is kept at 25%. When the water-to-cement ratio remains unchanged
at 4, with the increase in the cement content from 7.5% to 20%, the UCS of cemented soil
decreases from 4.51 MPa to 2.01 MPa. However, as the cement content further increases to
25%, the UCS of the cemented soil increases by 115%.
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One of the aims of this study is to investigate whether the CSH-MMT interfacial
characteristics affect the strength of cement-stabilized montmorillonite soil. Therefore, the
present section uses grey relational analysis to determine the degree of importance of the
CSH-MMT interfacial energy on the development of macroscopic properties in cement-
stabilized montmorillonite soil. If the degree of importance is high, it indicates that the
energy in the interface binding region between CSH and MMT is a crucial factor influencing
macroscopic performance, and we can further explore the mechanism by which the CSH-
MMT interfacial energy affects the strength of cement-stabilized montmorillonite soil.

We can use the calculated CSH-MMT interfacial energy from the MD simulations as a
reference sequence and the UCS of cement-stabilized montmorillonite soil as a comparative
sequence, which are recorded as Equation (7) and Equation (8), respectively, where (n) is
the length of the sequence.

x′i = (x′i(1), x′i(2), · · · x′i(n)) (7)

x′0 = (x′0(1), x′0(2), · · · x′0(n)) (8)

Grey relational analysis is calculated according to the method described in refer-
ence [17], and the specific steps are as follows: Firstly, the reference sequence and the com-
parison sequence are dimensionless processed according to Equation (9) and Equation (10),
respectively. Then, according to Equation (11), the absolute difference between the cor-
responding elements of the comparison sequence and the reference sequence of each
evaluated object is calculated one by one. The minimum value is recorded as ∆(min), and
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the maximum difference is recorded as ∆(max). Finally, the data in the absolute difference
are transformed by Equation (12) to obtain the correlation coefficient (ξ0i(k)). In the formula,
(ρ) is the resolution coefficient, which is often set to 0.5.

xi(k) =
x′i(k)−min

k
x′i(k)

max
k

x′i(k)−min
k

x′i(k)
(9)

x0(k) =
x′0(k)−min

k
x′0(k)

max
k

x′0(k)−min
k

x′0(k)
(10)

∆0i(k) = | x0(k)− xi(k)| (11)

ξ0i(k) =
∆(min) + ρ∆(max)
∆0i(k) + ρ∆(max)

(12)

The correlation coefficients and grey relational degree are shown in Tables 2 and 3.
(ξ0) represents the correlation coefficient, and the grey relational degree is the average
value of the (ξ0).

Table 2. Correlation coefficient under the same cement-to-soil ratio and different water-to-cement ratio.

Water-to-Cement Ratio 1.33 2 3 4 Grey Relational Degree

ξ0 1 0.85 0.33 1 0.80

Table 3. Correlation coefficient under the same water-to-cement ratio and different cement-to-soil ratio.

Cement-to-Soil
Ratio/% 7.5 15 20 25 Grey Relational Degree

ξ0 0.61 0.33 1 0.79 0.69

Analysis of the results in Tables 2 and 3 reveals that the grey relational degree between
the UCS and the corresponding CSH-MMT micro-interfacial energy is 0.8 for a varying
water-to-cement ratio at a constant cement-to-soil ratio and is 0.69 for a varying cement-to-
soil ratio at a constant water-to-cement ratio. The closer the grey relational degree is to 1,
the better the correlation between the comparative sequence and the reference sequence is.
Therefore, the results in Tables 2 and 3 demonstrate that the energy in the interface binding
region between CSH and MMT is an important factor influencing macroscopic performance.
At the same time, it can be seen that adjusting the cement-to-soil ratio and water-to-
cement ratio to maximize repulsion or minimize attraction at the CSH-MMT interface can
enhance the stability of cement-stabilized montmorillonite soil and subsequently improve
its mechanical performance. This is primarily due to the high repulsion energy at the
interface effectively suppressing the dispersion of MMT. MMT, due to lattice substitution,
attracts cations to its surface, which then diffuses into the solution in a specific sequence,
creating a diffusion double layer [29,30] around it. When there are many cations in the
system, the thickness of the double electric layer between the MMT layers increases,
causing MMT to disperse. Greater repulsion at the CSH-MMT interface leads to a stronger
inhibitory effect on the dispersion of MMT, resulting in greater system stability. Conversely,
high attractive forces at the interface promote the dispersion of MMT. This increases the
interlayer spacing of MMT and expands the lattice, leading to reduced system stability.

4. Discussion

Although grey relational analysis demonstrates a good correlation between the CSH-
MMT interfacial energy and UCS of cement-stabilized montmorillonite soil, they are not
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entirely consistent. One reason for this disparity is that it is impossible to match the mass
ratio of CSH, MMT, and water in macroscopic experiments with the model used in the
MD simulations. Another reason is that the MD model only considers CSH and does
not account for the influence of other hydration products of cement on interfacial energy.
For example, as cement is an alkaline additive, its hydration results in the generation of
a small amount of OH−. The H+ in the hydroxyl group on the edges of MMT tend to
dissociate under alkaline conditions, and the higher the OH− concentration, the greater the
effect. This leads to a larger effective negative charge on the MMT layers, thus having a
greater impact on the interfacial energy. Additionally, from a microscopic perspective, the
pozzolanic reaction of MMT also influences the UCS of cemented soil.

In this regard, this section uses the XRD characterization method to further explore
the reasons why the UCS of cemented soils and CSH-MMT interfacial energy are not
completely consistent, and further validate the simulation results, ensuring the correctness
of the MD model construction. Figure 8 presents the XRD spectra for cement-stabilized
montmorillonite soil under different mix proportions.
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Figure 8a demonstrates the influence of the varying water-to-cement ratio on the
XRD reflection characteristics of cement-stabilized montmorillonite soil. The chemical
reaction types in the cemented soil system mainly consist of cement hydration reactions
and pozzolanic reactions with clay minerals, which are reflected in the XRD spectra as the
diffraction peaks of cement hydration products and pozzolanic reaction products. The XRD
spectra have diffraction peaks between 23 and 25◦ and 27 and 29◦. After excluding the
main crystalline reaction products, portlandite, etc., produced by cement hydration, it is
determined that the diffraction peak in this range is generated from the common reaction
products in clay minerals stimulated by alkalis—gismondine and faujasite [31,32]. The
presence of these minerals is a part that cannot be reflected in molecular simulations, and
these reaction products may have solid solubility with CSH, making it difficult to introduce
them into the MD model, leading to differences between the simulation results and the
evolution trend of strength. Nevertheless, the XRD reflection intensity of gismondine in
the XRD spectra of samples 1.33–25 is higher than that of other samples. This reflects that,
under low moisture content conditions, CSH undergoes a decalcification process, which is
consistent with the conclusion in the molecular simulation process that calcium ions in the
CSH layer migrate toward the MMT layer as water molecules decrease.

Figure 8b illustrates the influence of the cement-to-soil ratio on the XRD reflection
characteristics of cement-stabilized montmorillonite soil under a water-to-cement ratio of 4.
The test results show that the types of reaction products in cemented soil are generally
consistent across samples with a different water-to-cement ratio. The impact mode of the
cement-to-soil ratio on the reflection characteristics of cemented soil is relatively simple. As
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the cement-to-soil ratio increases from 7.5% to 25%, the intensity of the continuous reflection
caused by reaction products such as gismondine and faujasite gradually decreases. This
indicates that when there is a higher content of MMT, more Ca2+ and Na+ are involved in the
chemical reaction process, which aligns with the observation in the molecular simulation
process that the migration of Ca2+ and Na+ intensifies with an increasing number of
MMT layers.

Therefore, although the MD method cannot fully simulate the physicochemical mech-
anisms of cemented soil, the XRD analysis results suggest that the ionic and molecular
properties in the interface binding region between CSH and MMT correspond to actual
conditions. This further validates the correctness of the MD model construction.

5. Conclusions

The current research on the kinetics of cemented soil performance development lacks
an analysis of the binding mechanism at the nanoscale interface between cement hydration
products and clay minerals, as well as an analysis of the energy source at the cemented
soil interface. To address this, the present paper first reveals the interaction mechanism
in the binding interface region between CSH and MMT layers from the perspective of
the interfacial energy, using MD simulation technology. The interfacial energy of the
CSH-MMT is composed of van der Waals forces, hydrogen bonding energy, and electrostatic
interactions. The migration of cations and the content of water molecules at the interface
are key factors affecting the strength of the hydrogen bonding network and the electrostatic
interactions at the interface.

Subsequently, the role mechanism of the CSH-MMT interfacial energy on the macro-
scopic properties of cement-stabilized montmorillonite soil is discussed, and the feasibility
of using MD simulation technology to decipher the mechanical effects of cemented soil is
determined through grey relational analysis. This provides a new theoretical approach for
effectively regulating the performance of cemented soil. According to the results of the grey
relational analysis, the mechanism of the CSH-MMT interfacial energy changes, as revealed
through the MD simulations at the atomic level, is highly consistent with the mechanical
action mechanisms obtained through macroscopic experiments. Therefore, it is possible to
optimize the mechanical properties of cemented soil by adjusting the water-to-cement ratio
and cement-to-soil ratio to maximize repulsion or minimize attraction at the CSH-MMT
interface. The specific reason for this is that when the interfacial energy exhibits high
repulsion, the CSH-MMT interface inhibits the dispersion of MMT, resulting in a higher
system stability and, consequently, improved mechanical performance.

Finally, the correctness and sources of deviation in the MD model construction were
explored through XRD analysis. Changes in the content of reaction products such as
gismondine and faujasite indirectly reflect the migration characteristics of Ca2+ and Na+

under the influence of a varying water-to-cement ratio and cement-to-soil ratio. In molec-
ular simulations, these changes are represented by variations in the interfacial energy,
subsequently impacting the macroscopic properties of cemented soil. Furthermore, these
reaction products may be mutually soluble with CSH, which complicates their incorpo-
ration into the MD model, leading to discrepancies between the simulation results and
strength evolution trends.
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