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Abstract: In order to evaluate the feasibility of surface coatings in improving the performance of RCC
under salt spray conditions, sodium silicate (SS), isooctyl triethoxy silane (IOTS), and polyurea (PUA)
were used as surface coatings to prepare four types of roller-compacted concrete (RCC): reference
RCC, RCC-SS, RCC-IOTS, and RCC-PUA. A 5% sodium sulfate solution was used to simulate a
corrosive marine environment with high temperatures, high humidity, and high concentrations
of salt spray. This study focuses on investigating various properties, including water absorption,
abrasion loss, compressive strength, dynamic elastic modulus, and impact resistance. Compared
to the reference RCC, the 24 h water absorption of RCC-SS, RCC-IOTS, and RCC-PUA without
salt spray exposure decreased by 22.8%, 77.2%, and 89.8%, respectively. After 300 cycles of salt
spray, the abrasion loss of RCC-SS, RCC-IOTS, and RCC-PUA reduced by 0.3%, 4.4%, and 34.3%,
respectively. Additionally, their compressive strengths increased by 3.8%, 0.89%, and 0.22%, and the
total absorbed energy at fracture increased by 64.8%, 53.2%, and 50.1%, respectively. The results of
the study may provide a reference for the selection of coating materials under conditions similar to
those in this study.

Keywords: salt spray; wear resistance; impact resistance; surface coating; roller-compacted concrete
(RCC)

1. Introduction

The service life of marine concrete structures is contingent upon concrete durability,
often impacted by environmental factors, particularly in harsh conditions [1,2]. The salinity-
induced corrosion prevalent in marine environments poses a significant threat to critical
infrastructure [3–5]. To address durability issues arising from scouring and the multi-factor
coupling in marine concrete, researchers focus on two aspects: enhancing permeability
resistance through admixture additions [6] and bolstering durability via the application
of surface coatings [7]. These measures aim to extend the service life of marine concrete
structures.

Concrete surface coatings, essential for protecting structures in corrosive environ-
ments [7–9], fall into three main categories: organic coatings, inorganic coatings, and
organic–inorganic composite coatings, depending on their chemical composition [10,11].
Organic coatings primarily comprise polymers like polyacrylate, epoxy resin, polyurethane,
and fluorine resin [12,13]. Inorganic coatings include water-soluble silicates, silica sol,
phosphates, and more. The growing attention to organic–inorganic composite coatings
stems from their flexible composition and synergistic performance benefits. Polymer
cement-based coatings, representing this category, demonstrate commendable mechanical
properties, corrosion resistance, and weather resistance.

Mehdi et al. [14]. identified epoxy polyurethane and aliphatic acrylic as the most effec-
tive coatings for reducing chloride ion penetration and extending the service life of concrete
structures. Almusallam et al. [15] compared the durability of epoxy- and polyurethane-
coated concrete to that of acrylic, polymer, and chlorinated rubber coatings, finding the
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former to be superior. Elnaggar et al. [16] developed asphaltic polyurethane coatings with
varying NCO/OH ratios, demonstrating high performance in aggressive environments.
The Center for Innovative Grouting Materials and Technology devised tests and analytical
models to evaluate epoxy- and polyurethane-coated concrete performance [17].

Additionally, Shi et al. [18] observed that polymer coatings enhanced the resistance of
surface layer concrete to chloride ion diffusion. Maj and Ubysz [19] investigated the factors
contributing to the loss of adhesion of polyurea coatings to concrete substrates in chemically
aggressive water tanks. Santos et al. [20] proposed polyurea coatings as a retrofit option for
non-load-bearing concrete masonry walls. Arabzadeh et al. [21] assessed superhydrophobic
nanomaterial-based coatings on concrete surfaces for water repellency. Yin et al. [22]
developed superhydrophobic coatings based on bionic mineralization to enhance marine
concrete durability. Moon et al. [23] reported that calcium–silicate compound coatings
improved resistance to chloride penetration, freezing–thawing, and carbonation in concrete
specimens. Luo et al. [10] integrated kaolinite nanosheets into permeable epoxy resin,
resulting in a high-adhesion, barrier-performance organic–inorganic composite coating.
Li et al. [24] enhanced the waterproofing and chloride resistance of concrete by designing
a nano-polymer-modified cementitious coating, incorporating nano-SiO2 or nano-TiO2
suspensions into an acrylic emulsion.

The cost-effectiveness and environmentally friendly nature of surface coatings have
led to widespread use in various protective engineering applications [25,26]. However, the
variety of surface coatings complicates the selection process. Even with similar generic
chemical compositions, these coatings offer varying levels of protection, making the right
choice challenging [27,28]. In addition, the environmental conditions in the island salt
spray zone are different from those in the tidal and submerged zones [29]. In the South
China Sea, the average annual temperature is as high as 28.6 ◦C, and the road surface
temperature is as high as 60 ◦C in summer. The salinity of surface seawater ranges from
33.0 to 33.5; thus, the islands are characterized by high temperatures, high humidity, and
high concentrations of salt spray.

In this study, sodium silicate (SS), isooctyl triethoxy silane (IOTS), and polyurea (PUA)
were used as the surface coatings. Roller-compacted concrete (RCC), commonly used for
airport runways, was prepared with and without a surface coating. Since the abrasion
resistance and impact resistance requirements of the airport runways are higher than
those of other ordinary building structures, these two properties of RCC, exposed to salt
spray, were tested in this study. The microstructures and pore size distribution were also
measured. The objective of this study was to evaluate the feasibility of surface coatings
in improving the performance of RCC used in island airport runways under salt spray
conditions.

2. Experimental Produce
2.1. Raw Materials

The chemical composition of 42.5-grade Portland cement was detailed in Table 1, with
river sand’s fineness modulus specified as 2.43 and coarse aggregate exhibiting a particle
size range of 5–15 mm. Workability enhancement utilized a water-reduction agent. RCC
mix proportions, computed following GJB 1578-1992 [30], are presented in Table 2. Surface
coatings encompassed sodium silicate (SS), isooctyl triethoxy silane (IOTS), and polyurea
(PUA) (see Table 3).

Table 1. Chemical compositions of cement (%).

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2

23.1 7.1 3.67 57.59 2.18 2.65 0.18 0.72 0.34
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Table 2. Mix proportions of RCC (kg/m3).

Cement Water Fine Aggregate Coarse Aggregate Water-Reducing Agent

315 109 895 1207 8.7

Table 3. Surface-coating materials.

Solution Concentration Surface Treatment Age

Sodium silicate (SS) 20% 7 day

Isooctyl triethoxy silane (IOTS) 99% 28 day

Polyurea (PUA) 80% 28 day

2.2. Samples Preparation

The size of the prismatic specimen was 100 mm × 100 mm × 400 mm, and the side
length of the cubic specimen was 150 mm. Concrete mixture was poured into the test molds
in three layers, and each layer was compacted with a vibrating hammer for 30 s. After 24 h,
the specimens were demolded and cured under the standard conditions.

The treatment process of the coating materials was carried out in accordance with the
manufacturer’s recommendations for use.

In the case of treating RCC with sodium silicate (RCC-SS), the process occurs at 7 days
of curing. After removing the specimens from the curing room, their surfaces were brushed
with a wire brush. Subsequently, sodium silicate, dissolved in warm water, was evenly
sprayed onto the specimen surfaces. This treatment was repeated every two hours for a
total of four applications. Finally, the treated specimens were returned to the standard
curing chamber and allowed to cure until reaching 28 days.

For RCC treated with isooctyl triethoxy silane (RCC-IOTS), the process was initiated
at 28 days of curing. After removing the specimens from the curing room, their surfaces
were brushed with a wire brush. Isooctyl triethoxy silane was sprayed onto the specimen
surfaces and left for 6 h before a second round of spraying was conducted.

In the case of RCC treated with polyurea materials (RCC-PUA), components A and
B were mixed in a ratio of 1:0.45, and a specified amount of butyl acetate was added
as a diluent. The treatment was also carried out at 28 days of curing. After removing
the specimens from the curing room and brushing their surfaces with a wire brush, the
polyurea mixture was uniformly sprayed onto the specimen surfaces. The specimens were
then left at room temperature until the polyurea mixture hardened.

In this study, there was one group of reference specimens (without surface treat-
ment) and three groups of surface-treated specimens, which were RCC-SS, RCC-IOTS, and
RCC-PUA. The above four groups of specimens were subjected to the performance tests
mentioned below, and each group of specimens contained three specimens. The average of
the test results of the three specimens was used for comparative analysis.

Cubic specimens are used in the water-absorption tests, mass change, and abrasion
tests. Prismatic specimens are used in the dynamic elastic modulus and impact tests. The
compressive strength of the specimen is determined by using the prisms that break in the
impact test, and a 100 mm × 100 mm × 10 mm steel plate is placed on the upper and lower
surfaces, respectively, along the length of the specimen, so that the area of the compression
surface of the specimen is 100 mm × 100 mm.

2.3. Salt Spray Cycles

Salt spray conditions in the South China Sea were simulated via indoor salt spray
tests. RCC underwent corrosion tests in an automatic machine (see Figure 1) following
GB10125-1997 [31] for cyclic exposure to salt spray conditions. A 5% Na2SO4 (w/w) was
used for salt spray, and the deposition rate was 1.2 mL/(80 cm2·h). After the specimen
reached the age of maintenance, the specimen was uniformly arranged in the specimen
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holder to ensure that the upper surface of the specimen was horizontal and the interval
between the specimens was more than 100 mm. Each cycle started with 4 h of salt spray
at 26.5 ◦C with 96% humidity, followed by 2 h of drying conditions without salt spray at
50 ◦C. In order to minimize the effect of salt spray inhomogeneity on the results, the left,
right, front, and rear specimens were repositioned every 5 salt spray cycles.
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Figure 1. Automatic machine for cyclic exposure to salt spray conditions.

2.4. Abrasion Resistance

Abrasion resistance, assessed using JTG E30-2020 [32], was measured with a 200 N
load on the pressure head. The horizontal pallet rotated at a speed of 17.5 r/min, with
a transmission ratio of 35:1 between the pallet and the spindle (see Figure 2). Abrasion
resistance was evaluated based on mass loss per unit area.
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2.5. Impact Resistance

For impact resistance testing, the study employed a drop hammer impact tester
(INSTRON 9350 HV, Norwood, MA, USA; see Figure 3). The tester, featuring a square
shape with a 75 mm diameter circular area at the center and a double-layer pneumatic
clamp, was used. During the impact test, the crosshead, holding the drop hammer, was
released, allowing it to fall vertically along two guide frames and impact the specimen
within the circular area. A sensor automatically recorded load, displacement, and time
data to monitor changes. Simultaneously, a computer data acquisition system integrated
the force–displacement curve to determine variations in impact energy absorbed by the
specimen. The test utilized a hemispherical indenter measuring 12.6 mm in diameter and
weighing 12.250 kg, adjusting the indenter’s height to achieve initial impact energies.
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Figure 3. Drop hammer impact tester.

3. Results and Discussion
3.1. Water Absorption of RCC without Salt Spray Cycles

Water absorption stands as a crucial transport property of concrete, as it serves as the
primary avenue for the infiltration of aggressive ions. This penetration through water ab-
sorption is a key contributor to durability-related damage and the subsequent degradation
of performance. While diffusion does contribute to ionic transport, studies indicate that in-
dividual diffusion is a notably slow process. Consequently, water absorption emerges as the
dominant mechanism. Theoretically, considering its prevalence, water absorption can be
viewed as a representative descriptor that effectively mirrors the durability of concrete [33].

The water absorption of RCC at 24 h is presented in Figure 4. The water absorption
of RCC-SS, RCC-IOTS, and RCC-PUA surface coatings decreased by 22.8%, 77.2%, and
89.8%, respectively. RCC with surface coatings had significantly reduced water absorption
compared to RCC without surface coatings. This indicates that the three coating materials
effectively act as barriers, thereby significantly reducing the water permeability of RCC. In
particular, the PUA surface coating forms a complete, smooth, and dense isolation layer on
the surface of RCC (see Figure 5). Therefore, among the three surface coating materials,
RCC with PUA surface coating exhibits the lowest water-absorption rate.
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Franzoni et al. [34] noted that concrete treated with SS demonstrated approximately
half the 7-day water absorption compared to untreated samples. Almusallam et al. [15] and
Zhu et al. [35] also highlighted that surface treatment enhanced resistance to capillary water
absorption. The findings of this study are consistent with the above results. Moreover,
the water absorption of concrete is directly linked to its impermeability, with lower water
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absorption typically indicating excellent impermeability. These outcomes are consistent
with Mehdi et al.’s [14] discovery that PUA surface coating reduced chloride ion diffusion.
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3.2. Mass Change of Specimen

In a sodium sulfate environment, excessive crystal formation during subsequent salt
spray cycles imposes expansive stress on the cement matrix. This stress, in turn, induces
the development of micro-cracks and a decline in compressive strength [36]. Beyond
osmotic and crystallization pressures, Na2SO4 exhibits a reversible transformation between
its dehydrated and anhydrous states. Studies indicate that Na2SO4 can generate pore
pressures ranging from 400 to 5000 psi, whereas Na2SO4·10H2O can induce pore pressures
of 1000–1200 psi [37].

Furthermore, sulfate ions react with the hydration products of cement to produce new
products that expand in volume, such as gypsum and ettringite (see Equations (1) and (2)).
The volume expansion of ettringite leads to the expansion of existing cracks and the creation
of new cracks in the concrete, ultimately reducing the strength of the concrete under sulfate
attack [36,38].

Na2SO4 + Ca(OH)2 + 2H2O→ CaSO4·2H2O + 2NaOH (1)

C-A-H + 3CaSO4·2H2O + 2H2O→ C3A·3CaSO4·32H2O (2)

The initial physical sulfate attacks tend to augment the weight of concrete. However,
subsequent physical and chemical assaults typically lead to concrete cracking and mass loss.

The mass change rate of RCC under salt spray cycles is given in Figure 6. For both
the reference RCC and RCC-SS, the mass change rate initially increases and then decreases
as the number of salt spray cycles increases. Zhang et al. [2] also found a similar pattern
of mass change. The maximum rate of mass increase occurs after 200 cycles of salt spray.
The initial increase in the change rate is primarily attributed to increased salt permeation
and crystallization. The crystals fill and cover the pores, resulting in an increase in concrete
mass [2,39]. As the cycles progress, the decrease in the change rate is mainly caused by
the intensified corrosive effect of salt in the salt spray, leading to localized delamination
of the surface layer [2]. However, the extent of delamination at this stage is still smaller
than the mass increase resulting from salt filling and crystallization in the concrete pores.
Consequently, the mass change rate remains positive but exhibits a decreasing trend.

For RCC treated with IOTS, the mass loss rate of the specimens subjected to 50 cycles
of salt spray is 0.03%. After 100 cycles of salt spray, the rate of mass change of the specimens
first approaches zero and then increases with the number of salt spray cycles. At 300 cycles
of salt spray, the mass increase rate is 0.15%, which is only about 50% of the control RCC
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subjected to the same number of salt spray cycles. For RCC-PUA, the rate of mass loss of
the specimens remains at approximately 0.04% as the number of salt spray cycles increases.

Materials 2023, 16, 7134 7 of 16 
 

 

pores. Consequently, the mass change rate remains positive but exhibits a decreasing 
trend. 

0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

a)

M
as

s c
ha

ng
e 

ra
te

 (%
)

0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

M
as

s c
ha

ng
e 

ra
te

 (%
)

b)

0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

c)

M
as

s c
ha

ng
e 

ra
te

 (%
)

Number of salt spray cycles (times)

0 50 100 150 200 250 300

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

 

 
M

as
s c

ha
ng

e 
ra

te
 (%

)

Number of salt spray cycles (times) Number of salt spray cycles (times)

Number of salt spray cycles (times)

 d)

 
Figure 6. Change rate of mass; (a) Control RCC; (b) RCC−SS; (c) RCC−IOTS; (d) RCC−PUA. 

For RCC treated with IOTS, the mass loss rate of the specimens subjected to 50 cycles 
of salt spray is 0.03%. After 100 cycles of salt spray, the rate of mass change of the speci-
mens first approaches zero and then increases with the number of salt spray cycles. At 300 
cycles of salt spray, the mass increase rate is 0.15%, which is only about 50% of the control 
RCC subjected to the same number of salt spray cycles. For RCC−PUA, the rate of mass 
loss of the specimens remains at approximately 0.04% as the number of salt spray cycles 
increases. 

Therefore, both RCC−IOTS and RCC−PUA surface coatings exhibit favorable re-
sistance to salt spray corrosion when considering the criterion of mass change in a speci-
men under salt spray cycles. 

3.3. Abrasion Resistance 
The use of concrete in runway construction exposes it to rubbing, scraping, skidding, 

and sliding due to the impact loads from surface movement. These actions contribute to 
the deterioration of concrete surfaces. Surface fractures lead to a reduction in concrete 
thickness, resulting in a smoother surface and an increase in dust accumulation. These 
factors collectively weaken the concrete, posing a threat to flight safety. Therefore, it is 
imperative for concrete runways to possess adequate abrasion resistance—a property that 
shields the hardened concrete surface from wear caused by abrasive forces. Ensuring the 
abrasion resistance of concrete runways and pavements is crucial in preventing surfaces 
from becoming overly polished, thus maintaining optimal skid resistance. 

The surface changes of the reference RCC with 300 cycles of salt spray are shown in 
Figure 7. It can be observed that with an increasing number of rotations of the grinding 
head, the surface wear of the hardened cement paste becomes more evident, and the area 
of exposed coarse aggregates in the specimen increases. The surface changes of the other 
RCC with surface coatings are found to be similar to those of the control RCC with 300 
cycles of salt spray. Exposed aggregates are visible on the sample surfaces, signaling a 

Figure 6. Change rate of mass; (a) Control RCC; (b) RCC-SS; (c) RCC-IOTS; (d) RCC-PUA.

Therefore, both RCC-IOTS and RCC-PUA surface coatings exhibit favorable resistance
to salt spray corrosion when considering the criterion of mass change in a specimen under
salt spray cycles.

3.3. Abrasion Resistance

The use of concrete in runway construction exposes it to rubbing, scraping, skidding,
and sliding due to the impact loads from surface movement. These actions contribute to
the deterioration of concrete surfaces. Surface fractures lead to a reduction in concrete
thickness, resulting in a smoother surface and an increase in dust accumulation. These
factors collectively weaken the concrete, posing a threat to flight safety. Therefore, it is
imperative for concrete runways to possess adequate abrasion resistance—a property that
shields the hardened concrete surface from wear caused by abrasive forces. Ensuring the
abrasion resistance of concrete runways and pavements is crucial in preventing surfaces
from becoming overly polished, thus maintaining optimal skid resistance.

The surface changes of the reference RCC with 300 cycles of salt spray are shown in
Figure 7. It can be observed that with an increasing number of rotations of the grinding
head, the surface wear of the hardened cement paste becomes more evident, and the area of
exposed coarse aggregates in the specimen increases. The surface changes of the other RCC
with surface coatings are found to be similar to those of the control RCC with 300 cycles
of salt spray. Exposed aggregates are visible on the sample surfaces, signaling a decline
in the efficacy of the surface treatment layers. Eventually, these layers are fully removed,
indicating a complete loss of their protective effect [40].
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Both RCC−IOTS and RCC−PUA exhibit significantly lower abrasion losses per unit 
area. After 90 cycles of grinding head rotation, RCC−IOTS and RCC−PUA experienced 
abrasion losses of 3.29 kg/m² and 2.26 kg/m², respectively—indicating reductions of 4.4% 
and 34.3% compared to the control RCC. Wu et al. [40] also noted that PUA surface treat-
ments led to a notable decrease in concrete mass loss, signifying enhanced resistance to 
debris flow abrasion. Baltazar et al. [41] observed that as long as the PUA protective layer 
remained intact on the concrete surface, it imparted excellent abrasion resistance. The 
findings in this study underscore that PUA treatment excels in both abrasion resistance 
and salt spray resistance. 

3.4. Dynamic Elastic Modulus and Compressive Strength 
The percentage change in dynamic elastic modulus of RCC with 300 cycles of salt 

spray is shown in Figure 9a. It can be observed that all RCC samples experience varying 

Figure 7. Surface change of control RCC.

The abrasion loss per unit area of RCC with 30 and 90 rotations of the grinding head
are presented in Figure 8a,b, respectively. It is clear that the abrasion loss per unit area of
reference RCC and RCC-SS is very close. However, Franzoni et al. [34] discovered that
treatment with sodium silicate (SS) yielded the most effective performance in enhancing
concrete’s surface abrasion resistance, attributed to the substantial thickness of the resulting
external layer. The difference between the results of this study and those of Franzoni
et al. [34] is mainly due to the thickness of the SS coating; a larger coating thickness tends
to increase the wear resistance of the specimen, whereas in, this study, only 20% SS solution
was sprayed on the specimen four times at 2 h intervals, which produced a thinner SS
coating; therefore, the determination of the coating thickness is as critical as the selection of
the coating material.
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Both RCC-IOTS and RCC-PUA exhibit significantly lower abrasion losses per unit area.
After 90 cycles of grinding head rotation, RCC-IOTS and RCC-PUA experienced abrasion
losses of 3.29 kg/m2 and 2.26 kg/m2, respectively—indicating reductions of 4.4% and 34.3%
compared to the control RCC. Wu et al. [40] also noted that PUA surface treatments led
to a notable decrease in concrete mass loss, signifying enhanced resistance to debris flow
abrasion. Baltazar et al. [41] observed that as long as the PUA protective layer remained
intact on the concrete surface, it imparted excellent abrasion resistance. The findings in
this study underscore that PUA treatment excels in both abrasion resistance and salt spray
resistance.

3.4. Dynamic Elastic Modulus and Compressive Strength

The percentage change in dynamic elastic modulus of RCC with 300 cycles of salt
spray is shown in Figure 9a. It can be observed that all RCC samples experience varying
degrees of increase in dynamic elastic modulus after the salt spray cycles. Zhang et al. [2]
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also reported similar findings when concrete specimens were subjected to salt spray cycles.
RCC-IOTS showed the highest increase, reaching 9.1%, while RCC-PUA showed the lowest
increase, at 0.6%. There are two possible reasons for the increase in the dynamic elastic
modulus. Firstly, during the 300 salt spray cycles, the specimens undergo a 60-day period,
enabling continued cement hydration and subsequent increase in the dynamic elastic
modulus. Secondly, a large amount of salt penetrates into RCC specimens during the salt
spray cycles. The salt crystallizes within the pores and fills some of them during the drying
process, thereby increasing the compactness and reducing the porosity of RCC to some
extent. Both factors contribute to the increase in the dynamic elastic modulus of RCC.
The relatively minimal increase in the elastic modulus of RCC-PUA is attributed to the
formation of a complete, smooth, and dense sealing layer on the specimen’s surface. Under
such conditions, only the first mechanism mentioned above, related to cement hydration,
significantly impacts the increase, while the second mechanism has minimal influence.
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The relative change in the compressive strength of RCC with surface coatings after
300 cycles of salt spray is depicted in Figure 9b. It clearly shows that RCC-SS exhibits the
highest compressive strength, followed by RCC-IOTS, while RCC-PUA shows the least
improvement. The compressive strength of RCC-SS, RCC-IOTS, and RCC-PUA is 3.8%,
0.89%, and 0.22% higher than that of control RCC after 300 cycles of salt spray. These results
demonstrate that all three surface coatings have enhanced the resistance of RCC to salt
spray corrosion to varying degrees.

3.5. Impact Resistance

In the drop hammer impact test, each impact’s energy is controlled at 13 J, and
continuous impact loads are applied until the fracture of the specimen occurs. Figure 10
illustrates the relationship between the impact force and time during the first impact after
the specimens are subject to 300 cycles of salt spray. It is evident that different groups of
RCC exhibit varying peak impact forces under approximately the same impact energy. RCC-
PUA displays the highest peak force at 21.9 kN, indicating the highest surface hardness
after the salt spray cycles. Wu et al. [40] observed that concrete treated with PUA exhibited
a harder surface compared to non-coated concrete.

The reference RCC followed with a peak impact force of 20.7 kN, while RCC-SS and
RCC-IOTS show similar peak impact forces at around 19.2 kN, with two peaks observed.
The second peak is likely attributed to the loosening of the surface layer of the specimens
due to corrosion. When the impact force is applied, the loose surface concrete becomes
compacted and comes into contact with the non-corroded and harder concrete in the interior.
In addition, some of the following factors may also cause a second wave peak [42,43]: (1) the
presence of eccentricity or an overly sharp head of the hammer may result in multiple peaks
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during impact; (2) non-homogeneous concrete may experience multiple peaks of strain
under impact, resulting in corresponding peaks of impact force (which is the case with the
results of the present study); (3) the flatness of the impact surface affects the absorption and
transfer of energy, which results in multiple peaks of impact force; (4) multiple peaks of
impact force may also occur when only a portion of the hammer head contacts the concrete.
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Table 4 presents the impact energy per impact, loss rate of the dynamic elastic modulus,
and number of impacts until specimen fracture. It can be observed that the reference RCC
fractures at the second impact, while other RCCs with different surface coatings fracture at
the third impact. The impact energy before fracture is approximately 13 J for all specimens
but decreases at the point of fracture. The total absorbed energy at fracture increases by
64.8%, 53.2%, and 50.1% for the different surface-coated RCC specimens. During the first
impact, the control RCC exhibits the highest loss rate of the dynamic elastic modulus
at 10.3%, followed by RCC-PUA at 2.6%. RCC-SS and RCC-IOTS show very low loss
rates of dynamic elastic modulus at 0.4% and 0.2%, respectively. Overall, the surface
coatings significantly improve the impact resistance of RCC under salt spray conditions.
Wu et al. [40] used a drop-weight impact test to assess the impact resistance of concrete,
noting no apparent failure and only changes in color on the PUA surface. The ductile
behavior of PUA material contributed significantly to the impact resistance of concrete
treated with PUA.

Table 4. Impact resistance.

RCC RCC-SS RCC-IOTS RCC-PUA

Impact number (times) 1 2 1 2 3 1 2 3 1 2 3

Impact energy (J) 12.9 9.1 12.9 13.0 10.4 13.0 12.9 7.8 13.0 13.1 6.9

Loss rate DEM * (%) 10.3 / 0.4 3.2 / 0.2 61.5 / 2.6 51.3 /

* DEM is dynamic modulus of elasticity.
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3.6. Microstructure and Pore Structures

Figure 11 presents the microstructures of RCC subjected to 300 cycles of salt spray.
After the salt spray cycles, crystalline fillers are present in the surface pores of the control
RCC, as well as in RCC-SS and RCC-IOTS. Although a thin protective film may form
only on the pore wall, salt can still enter the pores of RCC-SS and RCC-IOTS, similar to
the uncoated RCC, and crystallize during the drying process. Nonetheless, due to the
presence of the protective coating, the direct contact between the salt and concrete layer
is prevented until the protective coating is damaged. However, the PUA surface coating
forms a complete and dense protective layer on the surface, effectively isolating the internal
pores from salt penetration.
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Figure 11. Microstructure of RCC.

Elemental analysis of the fillers in the internal pores shows sodium (Na) contents
of 4.6%, 3.4%, 2.8%, and 0.5% for the control RCC, RCC-SS, RCC-IOTS, and RCC-PUA,
respectively. Furthermore, this study revealed that surface coatings, particularly PUA, can
effectively deter the infiltration of sodium sulfate into concrete. After 300 salt spray cycles,
concrete treated with PUA exhibited the lowest sodium (Na) content.

In addition, clear microcracks are observed in the internal and edge regions of the
pores in the uncoated RCC, which indicates that the internal pores have suffered damage
after 300 cycles of salt spray. Although the pores of RCC-SS and RCC-IOTS are filled
with crystals and no significant microcracks are found, the changing trend of the pore size
distribution (see Figure 12) indicates a movement towards larger pore sizes, suggesting
some degree of damage after 300 cycles of salt spray for all three surface-coated RCCs.
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3.7. Discussion

There are three main types of hydrophobic surface treatments: (1) surface coatings,
which form a continuous film of varying thickness on the surface; (2) pore filling, which
acts as a localized pore barrier; and (3) impregnation or pore lining, which involves lining
the pores along the entire surface of the concrete.

The SS coating undergoes hydrolysis at room temperature, forming an interconnected
network structure, as shown in the following reaction:

Na2O·nSiO2 + (2n + 1)H2O→ 2NaOH + nSi(OH)4 (3)

nSi(OH)4 → [Si (OH)4]n
−2nH2O−−−−−→ [−Si−O− Si−]n (4)
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The resulting thin film material adheres to the concrete surface, creating a separation
between the concrete and its surrounding environment. However, due to the solubility
of Na+ in water, the water glass-formed film generally exhibits moderate impermeability.
Nevertheless, when the surface water glass penetrates into the interior of the concrete, it
reacts with the cement hydration product Ca(OH)2, generating hydrated calcium silicate
gel that fills the concrete pores, making it more compact and enhancing the durability of
concrete [44,45]. Therefore, several properties of RCC-SS in this study were also improved,
with a 22.8% reduction in water absorption, a 3.8% increase in compressive strength, and a
64.8% increase in impact energy absorption.

The chemical molecular structure of IOTS is shown in Figure 13. IOTS can impart
excellent hydrophobicity to concrete surfaces without altering their surface microstructures.
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This phenomenon is consistent with Wenzel’s theory, which suggests that rough mortar
samples can be changed to hydrophobic surfaces after modification with low surface energy
materials. This process involves the hydration of IOTS to form silanols (Si-OH), followed by
the reaction of silanol with C-S-H, Ca(OH)2, ettringite, and quartz sand through -OH group
reactions. Subsequently, the two -OH groups of IOTS form Si-O-Si bonds via condensation
and release water in the process. As a result, a continuous self-assembled molecular film of
IOTS is formed on the surface of the hydrated products. The presence of -CH3 and -CH2
groups in IOTS effectively reduces the surface energy of the cement matrix and significantly
improves its hydrophobicity [46]. Similarly, several properties of RCC-IOTS in this study
were significantly improved, with a 77.2% reduction in water absorption, a 4.4% reduction
in the abrasion loss per unit area, and a 53.2% increase in impact energy absorption.

PUA is a block polymer material, as given in Figure 14 [47]. It consists of hard segments
and soft segments. The hard segments are uniformly distributed in the soft segment matrix
at room temperature to form an interconnected network microstructure.
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The strength of PUA primarily relies on its hard segments, while the elongation is
determined by the soft segments. Due to its unique properties, PUA forms a seamless,
leak-free membrane, making it highly suitable for enduring continuous ponding water
conditions. Moreover, PUA coatings are renowned for their exceptional durability, offering
remarkable elongation and tensile strength, making them an excellent choice for various
surface coating applications [48,49]. Several properties of RCC-PUA in this study were
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significantly improved, with an 89.8% reduction in water absorption, a 34.3% reduction in
the abrasion loss per unit area, and a 50.1% increase in impact energy absorption.

4. Conclusions

This study presented the deterioration of RCC both with and without surface coatings
during salt spray cycles. The following conclusions can be drawn from the test results:

1. Prior to salt spray exposure, RCC-SS, RCC-IOTS, and RCC-PUA exhibited 24 h wa-
ter absorption rates 22.8%, 77.2%, and 89.8% lower than those of the control RCC,
respectively.

2. After 300 cycles of salt spray, the abrasion loss per unit area of RCC-SS, RCC-IOTS,
and RCC-PUA is reduced by 0.3%, 4.4%, and 34.3%, respectively, compared to the
control RCC.

3. The compressive strength of RCC-SS, RCC-IOTS, and RCC-PUA is higher by 3.8%,
0.89%, and 0.22%, and the total absorbed energy at fracture is 64.8%, 53.2%, and 50.1%
higher than that of control RCC, respectively.

4. Crystalline fillers are found in the pores of control RCC, RCC-SS, and RCC-IOTS,
excluding RCC-PUA. However, the volume percentage of small pores in all RCCs
decreases, while the volume percentage of large pores increases.
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