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Abstract: Cutting problems consist of cutting a set of objects available in stock in order to produce
the desired items in specified quantities and sizes. The cutting process can generate leftovers (which
can be reused in the case of new demand) or losses (which are discarded). This paper presents a
tree-based heuristic method for minimizing the number of cut bars in the one-dimensional cutting
process, satisfying the item demand in an unlimited bar quantity of just one type. The results of
simulations are compared with the RGRL1 algorithm and with the limiting values for this considered
type of problem. The results show that the proposed heuristic reduces processing time and the
number of bars needed in the cutting process, while it provides a larger leftover (by grouping losses)
for the one-dimensional cutting stock problem. The heuristic contributes to reduction in raw materials
or manufacturing costs in industrial processes.

Keywords: heuristic procedures; usable leftovers; cutting problems; optimization

1. Introduction

The cutting stock problem (CSP) consists of cutting a set of objects available in stock to
produce the desired items in specified quantities and sizes in order to optimize (maximize
or minimize) a given objective function [1] such as production costs or losses from the
cutting process.

Many industry processes are using the CSP, such as the automotive, construction and
bicycle manufacturing industries. Considering 16, 16 and 14 m bars in stock and 3, 4 and
6 m items, with demands of 2, 3 and 2, respectively, as in Figure 1. In this process, the loss
and leftover are classified by size of the bar not used, i.e., a bar smaller than a smallest item
demanded is considered loss or is otherwise leftover.

Figure 1. Available bars and demands

Figure 2 shows two possible solutions: in Figure 2a, only the 16 m bars are used, with
2 m of loss. In Figure 2b, one 16 m bar and one 14 m bar are used, without loss. In both
patterns, leftovers are produced, but in Figure 2b, there is no loss.
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(a) (b)

Figure 2. Steel coin cutting patterns: (a) Cutting pattern with loss and leftover; (b) Cutting pattern
only with leftover.

The CSP belongs to an important area of operational research that assists in the
decision-making process. There are different types of mathematical models that can formu-
late the cutting stock problems. One of the possible models is linear programming, which
proposes to optimize the objective function, subject to a set of constraints, whose variables
are linearly related [1]. The one-dimensional cutting stock problem in turn involves only
one dimension in the cutting process, such as cutting steel bars, paper rolls and tubes [2,3].

Gilmore and Gomory were among the first to address the cutting stock problem [4,5]
and to define the problem as filling an order at minimum cost for specified lengths of
material to be cut from given stock lengths of given cost. Also, in [6], higher-dimensional
cutting stock problems are modeled as linear programming problems.

The usable leftover cutting stock problems [2] consist of a branch of the cutting stock
problem. Its purpose is to determine the cutting patterns and to analyze the leftovers
generated by the cutting process. This type of problem can be understood as a one-
dimensional cutting stock problem in which the unused material in the cutting process
may be used in the future, if large enough [7]. A review of published studies that consider
the solution of the one-dimensional cutting stock problem with the possibility of using
leftovers to meet future demands is presented by [3].

A heuristic algorithm for the one-dimensional cutting stock problem with usable
leftovers is proposed in [8], which consists of two procedures: linear programming that
fulfills the major portion of the item demand and a sequential heuristic that fulfills the
remaining portion of the item demand. In [2], it is assumed that leftovers should not
remain in stock for a long time. Thus, leftovers have priority-in-use compared to standard
objects (objects bought by the industry) in stock, and a heuristic procedure is proposed for
this problem.

Addressing more recent papers, Cui et al. [9] present an integer programming model
for the one-dimensional cutting stock problem with limited leftover types and describe
a heuristic algorithm based on a column-generation procedure to solve it. The column
generation technique is used in [10], and it is associated with a set of residual cutting
patterns. It recombines these residual cutting patterns in different ways and generates new
integer-feasible cutting patterns. In [11], a modification in the constructive greedy heuristic,
which builds a cutting pattern by sorting in descending order the paired items or items of
odd length, is presented. The only objective is to minimize the quantity of cut objects.

Considering the cutting stock problems and usable leftovers, the objective of this
paper is to propose a tree-based heuristic method, named OptimizationTREE, in order to
minimize the number of bars needed to cut known item demand, in the one-dimensional
cutting process with no stock. The problem presented in this paper considers an unlimited
quantity of one type of bar.

These methods are measured in terms of accuracy and runtime. The proposed heuristic
method is described in the next section. Its performance was analyzed and compared with a
well-known algorithm in the literature: the RGRL1 algorithm, proposed by [7]. The accuracy
was rated according to: (i) total number of used bars, (ii) the loss and leftover produced
in the process. The runtime shows that the algorithms present better computational
complexity. The proposed heuristics aim to reduce losses by grouping multiple losses in
the same bar (whenever possible), so that the losses (useless) become leftovers (useful), as
shown in Figure 2.
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The main contribution is to obtain optimized solutions, similar to those obtained in [7],
for the one-dimensional cutting stock problem, with relevant gains in computational com-
plexity (or runtime) and conversion of loss to leftovers whenever possible. The heuristics
can be used in commercial software solutions and provide a reduction in the raw materials
used (or manufacturing costs) and, consequently, environment preservation, as was the
case for the results obtained by [12,13], which address the green manufacturing study topic.

The novelties of this proposal, in relation to existing methods in the literature, are high-
lighted as follows: (i) the heuristic is based on a tree structure, which provides accessibility
and understanding for users, in addition to a reduction in processing time; (ii) multiple
losses are grouped on the same bar whenever possible, transforming losses into reusable
leftovers and providing loss reduction. The algorithm does not require extra raw material;
that is, it uses the same quantity of initial material for cutting.

The remainder of the paper is organized as follows. Section 2 presents the definition
of the problem under study in this paper. Section 3 describes the initial procedure used
in the first step of the proposed heuristic, whose algorithm, named OptimizationTREE, is
presented. The data set for the simulation is provided in Section 4, followed by analysis of
the simulation’s results (Section 5). Finally, in Section 6, the conclusions of the paper are
given, and aspects of future work are discussed.

2. Definition of the Problem under Study

The proposed heuristic methods aim to present solutions for the general problem
defined as follows. During the cutting process, unavoidable leftovers are produced and
often discarded. Industries have the possibility of using the leftover to cut future demanded
items, since their sizes are sufficiently large, that is, the minimum acceptable length to be
reused in the case of new demand, which is a choice of the decision maker [7]. In this
situation, the simple objective of minimizing the leftover may not be appropriate.

Problem: To minimize the number of bars needed to cut known item demand, in the
one-dimensional cutting process, the demand of items has to be met by cutting bars of the
same size:

P

∑
p=1

xipbarp ≥ di, ∀i ∈ 1, . . . , n, barp ≥ 0 and integers, (1)

The variables and parameters are described below.

• barp: number of cut bars in the cutting patterns p = 1, . . . , P (variable);
• di: demand of item i;
• xip: the number of items i = 1, . . . , n cut in the cutting pattern p. In the one-

dimensional case, any cutting pattern must satisfy [7].

n

∑
i=1

lixip ≤ L, ∀p ∈ 1, . . . , P; 0 ≤ xip ≤ di, (2)

where L is the size of the bar, and li is the length of item i. This expression guarantees that
the number of produced items is not larger than the size of the bar.

Thus, the cutting process can generate leftovers (which can be reused in the case of
new demand) or losses (which are discarded). The goal is to reduce losses by grouping
them in the same bar when possible. Thus, the losses become leftovers and can be used in
future demand.

3. The Proposed Heuristic: OptimizationTREE

In this section, the proposed heuristic method to solve the problem described in
Section 2 is presented. The heuristic was evaluated in terms of the total number of bars
used in the whole cutting process, the loss and leftover provided and also the computational
complexity of the solution method.
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First of all, a selection of ordered items (SOI) procedure, described in Algorithm 1, must
be presented, since this ordering procedure, which is based on the first fit algorithm [14], is
used in the first step of the proposed heuristics.

This procedure uses as input the set of items demanded (l and d), sorted in descending
order of size. Then, the items are selected to be cut, starting with the largest one; if this
is not possible, the next item is tested and so on. Other inputs are the size of the bar (L)
and the total number of items (n). The outputs are the number of each item i in the cutting
pattern or bar (x), the size of the bar not used (L̂) and the updated demand of items (d).

Algorithm 1: Selection of ordered items (SOI)
input : l, d, L, n
output :x, L̂, d

1 L̂ = L
2 for i = 1 to n do

3 xi = b
L̂
li
c

4 if xi > di then
5 xi = di
6 end
7 L̂ = L̂− (xi ∗ li)
8 di = di − xi
9 end

A tree-based heuristic (OptimizationTREE) is described in Algorithm 2. It has two
phases: (i) selection of the items to be cut and (ii) loss reduction. First, the set of demanded
items is sorted in descending order of size (l). In the first phase, a set of items is selected
according to Algorithm 1. This first set is then used in the second phase to reduce losses as
follows: for each selected item, the number of items to be cut is reduced by one unit in an
attempt to fill the rest of the bar with larger elements and then with smaller elements. After
the next smaller item to be cut is selected, the algorithm verifies whether a larger item can
be used; if not, the next smaller item is processed. The inputs, outputs and main variables
of Algorithm 2 are described as follows.

The inputs of Algorithm 2 are:

• The item size l = {l1, . . . , ln};
• The item demand d = {d1, . . . , dn};
• The size of bar L;
• The number of items to be cut n.

The outputs of Algorithm 2 are:

• The le f tover of all cutting processes;
• The loss, the sum of loss in each bar used;
• The bar with the sum of used bars.

The variables used in Algorithm 2 are described as follows:

• L̂: size of the bar not used during the execution of the algorithm;
• xi: the number of items i to be cut in the bar, for i = 1, . . . , n.

In this proposed heuristic, the losses of the cutting process are concentrated on the
smallest number of bars possible, using a tree structure [15], in order to convert losses
(unusable) into leftovers (usable) and reduce the number of bars needed in the process.
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Algorithm 2: Tree-based heuristic (OptimizationTREE)
input : l, d, L, n
output :bar, leftover, loss

1 bar = 1
2 Sort items in descending order of width (l)
3 smallest-item = ln // smallest item size

4 while
n

∑
i=1

di > 0 do

5 x,L̂,d = SOI(l,d,L,n) // start 1st phase – call Algorithm 1)
6 i = 1
7 while ((L̂ 6= 0) and (i 6= n)) do // start 2nd phase (new tree branch)
8 xi = xi − 1 // remove one unit of item i
9 L̄ = L̂− (li ∗ xi)

10 for k = i + 1 to n do
11 xk =

⌊ L̄
lk

⌋
// try to use item k

12 L̄ = L̄− (xk ∗ lk)
13 for m = 1 to i− 1 do // seeking for an item to complete the

bar
14 if L̄ == lm then
15 xm = 1
16 L̄ = 0
17 Break
18 end
19 end
20 m = i + 1
21 while ((L̄ > 0) and (m ≤ n)) do // bar not completely used,

seeking for an item to reduce the not used part of the bar
22 if ((L̄− lm) ≥ 0) and (L̄− lm < L̂) then
23 L̄ = L̄− lm
24 xm = 1
25 end
26 m = m + 1
27 end
28 end
29 if L̄ < L̂ then
30 L̂ = L̄
31 end
32 i = i + 1
33 end
34 if L̂ < smallest-item then // classifying the not used segment
35 loss = loss + L̂ // loss
36 end
37 else
38 leftover = leftover + L̂ // leftover
39 end

/* update the number of items remain to be cut (di) */
40 bar = bar + 1
41 end

A hypothetical optimal solution can be determined as a parameter to obtain the
minimum number of bars required to produce the demanded items. This theoretical
minimum number of bars needed to produce the demanded items is defined in Equation (3).
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The lower bound of bars (Bbar) is used to evaluate the performance of the proposed heuristics,
i.e., better solutions use bars close to Bbar. If any of the heuristics provide as a solution a
minimum number of cutting bars smaller than Bbar, it means that the algorithm has an
error, and the solution is impossible.

Bbar =


n

∑
i=1

lidi

L

 (3)

When this theoretical limit is achieved, the unused material remaining is defined in
Equation (4).

Minimum Theoretical
limit o f

Unused Material
=

Bbar −

n

∑
i=1

lidi

L

L (4)

The minimum theoretical limit of unused material (Equation (4)) can be classified
as follows:

• Loss (Bloss): if the unused material is smaller than the smallest demanded item;
• Leftover (Ble f t): if the unused material is greater than or equal to the smallest de-

manded item.

4. Data Set for Simulations

The numerical values used in simulations of the proposed heuristics are based on [16],
considering a one-dimensional cutting stock problem for steel roll. In this paper, a category
is a set of di (i = 1, . . . , n) and n (the number of items). In the simulations of this study,
10 categories, as shown in Table 1, with 100 instances for each category, were considered.

Table 1. Data categories.

1. n ∈ [5, 100] and di ∈ [1, 3] 6. n ∈ [201, 500] and di ∈ [4, 15]

2. n ∈ [5, 100] and di ∈ [4, 15] 7. n ∈ [501, 1000] and di ∈ [1, 3]

3. n ∈ [101, 200] and di ∈ [1, 3] 8. n ∈ [501, 1000] and di ∈ [4, 15]

4. n ∈ [101, 200] and di ∈ [4, 15] 9. n ∈ [1001, 5000] and di ∈ [1, 3]

5. n ∈ [201, 500] and di ∈ [1, 3] 10. n ∈ [1001, 5000] and di ∈ [4, 15]

The data used in the heuristic methods are described below:

• L (the size of the bar): 1188 mm;
• li (length of item i): belongs to the range [20, 444] with uniform distribution;
• di (demand of item i): according to [16], there are two cases: (i) low demand of items,

(di ∈ [1, 3]) and (ii) high demand of items, (di ∈ [4, 15]) with uniform distribution.

As mentioned above, di is based on [16], and n is generated uniformly in order to
verify the heuristics performance, since in practice no example of this magnitude is known
in the literature.

The Python language was used for all the heuristics implementation. The heuristic
RGRL1 [7] was used as the base to analyze the results, and the scipy library was used for
the linear relaxation solution. The heuristic RGRL1 was also adapted for the case considered
in this study, in which there is no reuse of leftovers with stock; that is, the reuse parameter
is defined as the smallest item to be produced in each instance. Still, in the heuristic RGRL1,
the initial cutting patterns (homogeneous), ci, are generated from Equation (5).

ci = L−
[

min
(⌊

L
li

⌋
, di

)]
li (5)
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In OptimizationTREE and RGRL1 heuristics, the sorting method used is quick sort. The
hardware used for the simulations consists of an Intel processor® InsideTM Core i7 920
@2.67 Ghz with 16 Gb of RAM. For the heuristic simulations, the Linux operating system
Ubuntu 18.04 × 64 is used. The runtime of the presented instances is also considered in
this paper and shows that the results are acceptable in practice.

5. Results and Discussion

The execution of the instances on each category provides results that allow the perfor-
mance of the proposed heuristic to be analyzed in detail in comparison with the RGRL1
heuristic, proposed by [7] and well known in the literature. The RGRL1 heuristic considers a
one-dimensional cutting stock problem in which the unused material in the cutting patterns
may be used in the future if large enough. The authors of [7] modified some heuristics
of the literature that minimize the trim loss and included the possibility of retails (large
leftovers) that are not computed as losses.

It is important to highlight that the model proposed by [7] is the closest to the problem
addressed in this paper. The main purpose of RGRL1 is to solve the cutting stock problem
with usable leftovers. The RGRL1 algorithm was adapted to the restrictions considered in
this study: only one type of bar in unlimited quantity and no stocks. It is also important
to mention that other works in the literature that approach mathematical models with the
use of leftovers have different objectives and would have to undergo more substantial
adaptations, which would cause a mischaracterization of the problem.

Table 2 shows the mean of bars (bar) used in the cutting process and its standard
deviation σ(bar) as well as the mean of le f tover (le f t) and its standard deviation σ(le f t) of
the OptimizationTREE and RGRL1 heuristics.

Table 2. Results of OptimizationTREE and RGRL1 heuristics considering the mean of bars and the
mean of leftover.

Category
OptimizationTREE RGRL1

bar σ(bar) le f t σ(le f t) bar σ(bar) le f t σ(le f t)

1 20.99 11.78 799.56 574.7 21.88 11.66 599.61 332

2 107.82 48.59 2302.19 1788.5 107.72 48.09 693.39 420.94

3 59.87 12.13 851.16 699.83 60.7 12.14 525.83 333.6

4 277.13 55.97 3398.03 2737.4 276.11 55.63 637.62 373.86

5 140.73 34.19 859.94 674.7 141.68 34.34 625.08 318.15

6 651.67 158.08 5232.73 4258.91 649.22 158.71 699.69 342.34

7 298.98 57.25 727.03 502.05 300.02 57.32 570.61 315.35

8 1394.23 268.19 3773 4314.32 1393.22 269.28 676.49 347.14

9 1194.02 443.73 709.71 479.27 1195.36 443.85 628.24 346.26

10 5628.47 2035.61 862.02 931.35 5631.52 2036.55 1022.91 388.67

Similarly, Table 3 shows the mean of loss (loss) and its standard deviation σ(loss), the
runtime for each category (in seconds) and its standard deviation for the OptimizationTREE
and RGRL1 heuristics.

In order to illustrate the performances of the heuristics, Figure 3 represents: (a) the
means of cutting bars resulting from the OptimizationTREE and RGRL1 heuristics, referring
to the minimum number of bars (“B_bar”) and (b) the standard deviation of cutting bars.
Figure 4 represents: (a) the means of leftovers, also calculated for the two heuristics, and
mean of the leftover of the hypothetical cutting pattern and (b) the standard deviation of
the leftover. Figure 5 shows the same for the losses, and Figure 6 presents the runtime for
the heuristics under study.
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Table 3. Results of OptimizationTREE and RGRL1 heuristics considering the mean of loss and runtime.

Category
OptimizationTREE RGRL1

loss σ(loss) time σ(time) loss σ(loss) time σ(time)

1 38.1 25.007 0.007 0.006 135.81 60.32 0.07 0.055

2 276.57 127.631 0.041 0.036 646.43 228.03 0.087 0.051

3 34.8 23.909 0.044 0.018 196.73 44.69 0.311 0.1

4 413.35 136.797 0.277 0.121 864.38 158.6 0.297 0.097

5 24.45 22.85 0.143 0.053 232.15 46.19 1.55 0.682

6 513.59 206.945 1.25 0.455 1010.63 153.5 1.46 0.674

7 42.66 39.605 0.27 0.104 294.67 49.8 8.27 3.6

8 528.87 235.843 2.39 0.589 1260.82 185.04 7.8 3.4

9 289.26 209.275 0.968 0.482 814.75 295.14 9.635 5.687

10 1281.6 758.561 4.52 1.86 3286.27 1129.68 5.247 2.574
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Figure 3. Statistical measures for the number of cut bars: (a) Mean of cut bars; (b) Standard deviation
of cut bars.
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Figure 4. Statistical measures for the leftovers: (a) Mean of total leftover; (b) Standard deviation of
total leftover.
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Figure 5. Statistical measures for the loss: (a) Mean of total loss; (b) Standard deviation of total loss.
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Figure 6. Statistical Measures for the runtime: (a) Mean of total runtime; (b) Standard deviation for
the runtime.

These statistical measures indicate the performance across categories, considering
the number of cutting bars, the leftover, the loss and the runtime of the OptimizationTREE
heuristic and the heuristic proposed by [7]. Observing the results of Tables 2 and 3, it can
be observed that:

• The OptimizationTREE heuristic uses fewer bars than RGRL1, presenting more leftovers
and fewer losses.

• The OptimizationTREE heuristic has more leftovers and fewer losses when compared
to the RGRL1 heuristic.

• The RGRL1 heuristic provides more losses, that is, small parts spread over the bars
used in the cutting process. The OptimizationTREE heuristic provides fewer losses,
which are concentrated in leftovers. Thus, this leftover can be used to address the
next demand.

• Figure 6 shows that the runtime of the RGRL1 heuristic is higher than that of the
OptimizationTREE heuristic, especially for larger examples.

• Thus, although both heuristics provide a similar number of cutting bars, the RGRL1
heuristic generates fewer leftovers and more losses than the heuristic proposed in this
work, indicating worse performance.

• As expected, as shown in Figure 5, the OptimizationTREE heuristic generates the
smallest number of loss, showing the more desirable performance.

• Figure 4 shows that the OptimizationTREE heuristic generates more leftovers. Gen-
erating leftovers is desirable when the number of cutting bars is close to Bbar, since
leftovers are used to meet next demands. In the proposed heuristics, the leftovers are
concentrated in the last bars. It is important to note that the peaks presented by the
OptimizationTREE heuristic in Figure 4 are due to the use of the smallest items. In
addition, the smallest item for each instance is fixed according to the smallest value of
li. During the execution of the algorithm, the demand for the items is met, and then
these items are no longer considered for cutting. The remaining items are larger items
since the algorithm removes a unit from the largest item in each iteration. Therefore,
from a given bar, more leftovers and very few losses are generated, since the higher
demand causes these last cutting patterns to be repeated more often, causing the
visible peaks.

Another analysis can be carried out between the hypothetical cutting pattern that presents
the minimum number of bars, the leftover and the loss resulting from this hypothetical pattern.
The distance of these values and the results of heuristics are presented in the following
equations. The GAPbar, defined in Equation (6), presents the mean value of the distance
(absolute error) between the lower bound of bars (Bbarp), shown in Equation (3), and the
results of the OptimizationTREE (OptT) and RGRL1 heuristics. The “H” in the equation
represents the chosen heuristic.

GAPbar =

P

∑
p=1

∣∣∣Bbarp − Hbarp

∣∣∣
P

(6)
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Similarly, the GAPle f t (Equation (7)) and the GAPloss (Equation (8)) show the main
value of the distance (absolute error) between lower bound of leftovers (Ble f tp ) and of loss
(Blossp ), and the heuristic result of the leftover (Hle f tp ) and of loss (Hlossp ), respectively, for
each category.

GAPle f t =

P

∑
p=1

∣∣∣Ble f tp − Hle f tp

∣∣∣
P

(7)

GAPloss =

P

∑
p=1

∣∣∣Blossp − Hlossp

∣∣∣
P

(8)

Tables 4 and 5 show the values of the GAP obtained by the OptimizationTREE and RGRL1
heuristics, respectively, considering the number of cutting bars, the leftover and the loss for
each category. The columns present the numeric values provided by Equations (6), (7) and (8),
respectively, followed by their respective standard deviations.

Table 4. GAP values obtained by OptimizationTREE heuristic.

Categories
OptimizationTREE

GAPbar (±σ(GAPbar)) GAPle f t (±σ(GAPle f t)) GAPloss (±σ(GAPloss))

1 0.23 (±0.48) 301.95 (±537.00) 37.59 (±25.24)

2 1.68 (±1.56) 1748.09 (±1743.92) 276.27 (±127.06)

3 0.31 (±0.61) 382.13 (±678.21) 34.69 (±23.83)

4 2.82 (±2.29) 2857.63 (±2725.46) 413.35 (±136.79)

5 0.24 (±0.56) 294.21 (±631.27) 24.37 (±22.82)

6 4.37 (±3.60) 4577.59 (±4306.75) 513.51 (±206.93)

7 0.14 (±0.42) 161.09 (±415.47) 42.66 (±39.60)

8 3.23 (±3.66) 3327.42 (±4220.75) 528.53 (±236.17)

9 0.35 (±0.53) 413.78 (±417.49) 289.26 (±209.27)

10 1.37 (±1.02) 581.53 (±817.98) 1281.6 (±758.56)

Table 5. GAP values obtained by RGRL1 heuristic.

Categories
RGRL1

GAPbar (±σ(GAPbar)) GAPle f t (±σ(GAPle f t)) GAPloss (±σ(GAPloss))

1 1.12 (±0.32) 239.26 (±296.93) 135.3 (±60.06)

2 1.58 (±0.53) 525.71 (±245.00) 646.13 (±227.29)

3 1.14 (±0.34) 303.62 (±274.92) 196.62 (±44.67)

4 1.8 (±0.44) 431.62 (±288.11) 864.38 (±288.11)

5 1.19 (±0.39) 365.57 (±284.52) 232.07 (±46.27)

6 1.92 (±0.30) 226.49 (±239.94) 1010.55 (±153.50)

7 1.18 (±0.38) 393.75 (±227.98) 294.67 (±49.80)

8 2.22 (±0.43) 354.45 (±342.52) 1260.48 (±184.99)

9 1.69 (±0.48) 389.49 (±267.79) 814.75 (±293.66)

10 4.42 (±1.27) 523.2 (±342.21) 3286.27 (±1124.01)
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Analyzing Tables 4 and 5, the OptimizationTREE heuristic presents the smallest GAP
in relation to the number of cutting bars (Bbar). OptimizationTREE is closer to Bbar and
generates even larger leftovers.

The computational complexity of the proposed algorithms is shown in Table 6, con-
sidering the worst case of the two heuristics proposed and the heuristic RGRL1 from the
literature. The second column presents the number of sorts performed by each algorithm
during its execution, and the last column shows the complexity order of the algorithms,
considering the worst case.

Table 6. Computational complexity.

Algorithm Sorts Order

OptimizationTREE 1 O(n2)

RGRL1 2 O(nk), k ∈ N

Table 6 shows that the OptimizationTREE algorithm presents, in the worst case, a
quadratic order computational complexity (O(n2)) but provides more leftovers to be reused,
which is desirable, since OptimizationTREE aims to convert losses into leftovers, providing
reuse. The computational complexity of the RGRL1 heuristic is a polynomial order. The
main runtime for all the 10 categories (in seconds) is as follows: OptimizationTREE = 0.991
and RGRL1 = 3.4727. Then, for the case that considers unlimited quantity of one type of
bar, OptimizationTREE is more appropriate than RGRL1.

6. Conclusions

In this study, one-dimensional cutting stock problems were considered. These prob-
lems minimize the number of cutting bars in the cutting process, satisfying the demand,
considering cutting rolls with known demand and using the leftovers provided from the
previous roll’s cutting process. In order to accomplish this goal, the OptimizationTREE
heuristic is proposed. It presents a tree-based structure and groups losses in the same bar
to transform them into usable leftovers. The performance of the proposed heuristic was
compared with the RGRL1 heuristic, proposed by [7], to solve the problem considered in
this paper (unlimited quantity of one type of bar and no stocks).

Analyzing Tables 4 and 5, which show the values of the GAP obtained by Optimiza-
tionTREE and RGRL1 heuristics, respectively, we can conclude that the OptimizationTREE
heuristic presents the smallest GAP in relation to the number of cutting bars (Bbar). There-
fore, OptimizationTREE is closer to the theoretical minimum limit, representing the funda-
mental contribution of this paper. In addition, the results show that the proposed heuristic
reduces the processing time and the number of bars needed in the cutting process, while it
provides a larger leftover for the one-dimensional cutting stock problem.

Using the OptimizationTREE heuristic proposed in this paper, the leftovers from pre-
vious cutting process can be used in the next item’s demands. The number of bars is
minimized. Then, fewer losses are produced, and the losses are converted into leftovers. In
this paper, a loss is an unused bar smaller than the size of the smallest item demanded. The
loss can also be defined by the producer, for example as a fixed value or a minimum accept-
able percentage. Therefore, the results offer a possible use for leftovers, reducing the use of
raw materials in industrial processes and providing more commercially viable solutions.

Material loss is an important factor for the industry. In the production phase, the cut-
ting process is present in several segments, such as in the production of tubes, profiles and
door frames. The best use of materials provides a reduction in investments in production,
for example, in actions such as the acquisition and transportation of raw materials and cost
reduction for the end consumer, since the better use of materials in production makes it
possible to reduce the final value for the consumer.

Finally, the proposed heuristics were implemented as open source (Python language),
and the code is freely available in the GitHub package resource (OptimizationTREE:
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github.com/omatheuspimenta/heuristictree, accessed on 8 November 2023), which enables
the use of the proposed heuristic in future works.

Inclusion of a third phase in the algorithms, i.e., after defining the all cutting patterns,
changing the item distribution with the aim of converting losses in leftovers, is a prospect
for continuing this research. This new phase must be carefully designed since it can increase
the processing time.
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