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Abstract: An analytical model to find the temperature field that has been developed for friction systems
consists of a strip and semi-space. The strip is made of a two-component functionally graded material
(FGM) with an exponentially changing coefficient of thermal conductivity. In contrast, the material of the
semi-space is homogeneous. An appropriate boundary-value problem of heat conduction with constant
specific friction power was formulated and solved using the Laplace integral transform method. The
model takes into consideration the imperfect thermal friction contact between the strip and the semi-
space, and also the convective cooling on the exposed surface of the strip. The appropriate asymptotic
solutions to this problem for low and high values of Fourier number were obtained. It is shown how
the determined exact solution can be generalized using Duhamel’s formula for the case of a linearly
reduction in time-specific friction power (a braking process with constant deceleration). Numerical
analysis for selected materials of the friction pair was carried out in terms of examining the mutual
impact on the temperature of the two Biot numbers, characterizing the intensity of the thermal contact
conductivity and convective heat exchange on the exposed surface of the strip. The obtained results can
be used to predict the temperature of friction systems containing elements made of FGM. In particular,
such systems include modern disc braking systems.

Keywords: functionally graded material; frictional heating; temperature; thermal contact conductivity;
convective cooling

1. Introduction

In order to model the frictional heating process at the interface of elements in sliding
contact, the thermal problems of friction are formulated in the form of classical heat
conduction equations with the appropriate boundary and initial conditions. Solutions of
such problems result in temperature distributions in both components of the friction pair.
One of the various approaches used during the formulation of the heat conduction problems
is the separated bodies concept [1,2], which considers the sliding elements of the friction
pair to be uncoupled. Naturally, this simplification forces the introduction of a virtual
heat source in order to take into account relevant thermal effects associated with frictional
contact interactions. The heat flux absorbed on the friction surface by each component
is then established using a suitable heat partition ratio [3,4]. This coefficient is mostly
introduced to the models a priori, which might be determined based on experimental
studies or analytical solutions [4–6].

Unlike the separation approach, the formulation for the thermal friction problems
in accordance with the second variant assumes the presence of two bodies in contact. In
coupled problems, it is necessary to formulate the boundary conditions at the interface
between bodies [7]. Most often, it is assumed that the distribution of temperature and the
intensity of heat flux on the contact surface are continuous, which allow one to determine
the mean surface temperature and partition of generated frictional heat [8]. The assumption
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of these perfect thermal contact conditions is a classical approach, applied in most of the
models proposed to date for the frictional heating process in sliding systems [9]. However,
these conditions only describe the macroscopic geometry of coupled elements with ideally
smooth rubbing surfaces, which does not account well for the tribological phenomena
occurring at the sliding interface. This means that the perfect thermal contact conditions
at the nominal friction surface do not allow one to model the heating process adequately.
Considering the microscopic tribological effects from mechanical and thermal perspectives
more closely, contact between two sliding solids is not perfect. Since the friction surfaces
are rough rather than smooth, the real contact area is much smaller than the apparent
(nominal) contact area [10]. When heat flows across the non-ideal contact zone, tempera-
ture discontinuity occurs at the interface. So, precise predictions of temperature fields in a
friction zone require the consideration of imperfect thermal contact at the interface [11,12].
Experimental studies show a significant thermal gradient at the macroscopic level between
rubbing surfaces of the friction pair elements [13,14]. For instance, in disc braking systems,
typically, the values of temperature on the pad’s contact surface are higher than the corre-
sponding values related to the disc [1]. During braking, the pad surface is hotter, since it is
in constant friction contact with the disc and it is made of softer material, so it can be more
easily plastically deformed and worn than the harder disc [3,15]. Moreover, not only the
temperature distribution in a friction couple element but also the heat partition between
the sliding components is sensitive to the interfacial boundary conditions [16].

Non-ideal contact is more representative of the heat transfer phenomenon at the
interface of coupled bodies sliding against each other. The imperfect thermal contact
conditions state that the intensity of heat flux is continuous, according to the law of energy
conservation, and there is a gap between temperature values achieved on the contacting
surfaces of the sliding elements [9]. This temperature drop is said to be a result of thermal
contact resistance existing at the interface [5,17], which is defined as the ratio between
the temperature gradient at the contacting surfaces and the heat flux flowing across the
interface. Study [16] shows that the value of thermal resistance at the interface of the
coupled elements decreases with an increase in relative sliding velocity. The estimation of
the thermal contact resistance for a tribosystem made of a semi-infinite foundation (the disc)
sliding over the surface of a strip (the braking pad) has been performed in [18]. The inverse
of thermal contact resistance is termed heat contact conductance, and it is dependent on
numerous factors, such as load, sliding velocity, temperature, and the properties of friction
materials [3,19–21]. The effect of the thermal contact conductance on the temperature and
heat partition at the interface of the disc/pad system during braking has been investigated
in [22]. A numerical model has been proposed in [23] to simultaneously determine the heat
flux generated by friction, the thermal contact conductance, and the intrinsic heat partition
coefficient for the problem of sliding contacts. The experimental validation of the thermal
behavior of a system consisting of two hollow cylinders under imperfect thermal sliding
contact has been presented in [24]. Godet introduced the third body concept [25,26], i.e., the
presence of a third body between friction pair elements, as an explanation for the existence
of thermal contact resistance. The formation of a third body in disc/pad contact in a
material sense can be defined as an interface zone between contacting surfaces formed from
the accumulation of wear debris and contaminants from the surrounding environment,
e.g., dust or water [27,28]. A third body has been introduced to an FE model of a contact
interface as a thin layer with uniform volumetric heat generation in article [29]. Based on
this model, the temperature and the heat distributions in both components of a disc brake
system have been evaluated. It was established that the results were primarily sensitive to
the third body layer thickness and its conductivity. Another numerical simulation in [15]
demonstrated that due to the thermal resistance of a third body, the contact temperatures of
the pad were higher and that the increase in the third body’s thickness resulted in a greater
temperature gradient between the contacting surfaces of the disc and pad. In another
study [1], the temperature fields in the disc and pin have been modeled using a finite
element analysis. The authors developed three models using three different approaches,
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i.e., considering the heat partition ratio, the perfect thermal contact conditions between
the sliding surfaces, and the third body concept. The model assuming perfect contact with
thermal continuity at the interface was found to better fit the experimental temperature
measurements and to be in good agreement with the observed wear occurring at the pin–
disc interface. This pin-on-disc tribotest was performed under mild sliding conditions, so
the thermal resistance at the interface was low, which was similar to the perfect heat contact.
Likewise, by proceeding with the thermal contact conductance to the infinite value in the
condition of imperfect thermal contact related to the temperature drop between sliding
surfaces, the temperature continuity condition was obtained [9,25,30].

Most analytical studies dealing with thermal analysis during braking processes have
been proposed based on the perfect contact assumptions, which is a less realistic but an
easier development [9]. However, in some analytical models of transient temperature
distributions in the braking systems, the conditions of imperfect thermal contact have
been involved. Exact solutions to the non-stationary problems of heat conduction for
two homogeneous semi-spaces under non-ideal thermal contact conditions have been
obtained in papers [31,32]. A three-dimensional exact solution to determine the mean and
flash temperature and the thermal resistance have been proposed in [33]. Problems of
non-stationary heat conduction for two sliding semi-spaces under imperfect conditions
at the interface have been considered in [34,35] to determine the contact temperatures
and heat partition coefficient. The generalized thermal contact conditions have been
involved in the problem formulated in [36] to establish the effect of time-dependent thermal
contact heat conductance. The analytical solutions to a thermal problem of friction during
braking considering heat transfer through the disc/pad interface have been obtained for
a strip/semi-space system with the constant intensity of heat generation [37] for a three-
element tribosystem (disc/pad/caliper) with time-dependent specific power of friction [38]
and for a two-element system during braking with constant deceleration accounting for
the convective cooling on a free surface of the pad [39].

The above-mentioned studies concerned tribosystems with friction pair elements made
of homogeneous materials. Basically, modern friction systems are more likely to be made
of the nonhomogeneous composites, such as functionally graded materials (FGMs) [40].
These materials are characterized by a smooth change in their properties along certain
direction(s). The ability to design the continuous spatial distribution of material properties
is a great advantage, which makes FGMs widely used in many varied applications [41,42].
The imperfect thermal contact of friction systems with FGM has been studied in some
papers. Frictionally excited thermoelastic instability with consideration of the thermal
contact resistance at the interface has been considered for a functionally graded layer and
a homogeneous half-plane [43], for two sliding FGMs [44], and for a system consisting
of an FGM semi-infinite body sliding against a homogeneous half-space [45]. Analytical
solutions to the heating problems of thermoelastic semi-space with imperfectly bonded,
functionally graded coating have been proposed in [46,47].

A functionally graded strip heated on the friction surface and cooled by convection on
the free surface and sliding against the homogeneous semi-space under perfect thermal
contact conditions has been considered in our previous study [48]. It was assumed that the
strip was made of a two-component FGM with exponentially changing thermal conductivity
along its thickness. This paper presents the exact solution to the boundary-value problem
of heat conduction for the same friction system with consideration of the thermal contact
conductivity at the strip/semi-space interface. Furthermore, asymptotic solutions were also
identified for both low and high values of Fourier number. The developed mathematical
model allowed for the investigation of the thermal conductance on the contact surface and
convective heat exchange with the environment on the temperature distribution.

The results contained in this article are a continuation of our previous research on the
use of FGM to reduce the temperature of friction elements [48,49]. In these previous papers,
the relevance of this topic was justified, and a broad literature review was presented. In
this article, we focused on obtaining an accurate solution to the problem of a friction pair,
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in which one of the elements is made of FGM (strip) under conditions of imperfect thermal
contact of friction. The solutions known to date concern the contact of smooth friction
surfaces (perfect thermal contact of friction). Solutions to problems with imperfect thermal
contact of friction only concerned homogeneous materials [11,18]. In our work, we fill this
research gap.

The proposed research methodology for developing a mathematical model of heat
generation due to friction in the strip/semi-space system with imperfect thermal contact of
friction consisted of the following stages:

(1) Formulating and obtaining an exact solution to the appropriate boundary-value ther-
mal conductivity problem.

(2) Verification of the received solution.
(3) Obtaining asymptotic solutions for small and large values of the Fourier number.
(4) Numerical analysis for selected materials of the friction pair.
(5) Summary and conclusions.

2. Materials and Methods

Let us consider the strip/semi-space system heated as a result of the friction on their
sliding contact surfaces. The strip 0 ≤ z ≤ d is made of a two-component functionally
graded material (FGM) and the semi-space z ≤ 0 of a homogeneous material (Figure 1).
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The coefficient of thermal conductivity of FGM increases exponentially with the
distance from the sliding surface of the body:

K1(z) = K1,1eγ∗z/d, γ∗ = ln(K1,2K−1
1,1 ), 0 ≤ z ≤ d, (1)

where K1,1, K1,2, and K2—coefficients of thermal conductivity, respectively, of two compo-
nents of the FGM layer and the half-plane. The thermal friction contact of the strip with the
semi-space is imperfect, and the specific friction power remains constant and equal q0 dur-
ing the entire heating process. Also, the coefficients of contact heat conductivity hr through
the surfaces z = 0 and convective heat exchange hc on the free surface of the strip z = d
are constant. At the initial moment t = 0, the temperature of the strip and the semi-space
is the same and equal T0. Other simplifying assumptions can be found in article [50]. It
should be emphasized that the transient temperature field T(z, t), −∞ < z ≤ d, t > 0 of
the system will be found from the following boundary-value problem of heat conduction:

∂2Θ∗(ζ, τ)

∂ζ2 + γ∗
∂Θ∗(ζ, τ)

∂ζ
− e−γ∗ζ ∂Θ∗(ζ, τ)

∂τ
= 0, 0 < ζ < 1, τ > 0, (2)

∂2Θ∗(ζ, τ)

∂ζ2 − 1
k∗

∂Θ∗(ζ, τ)

∂τ
= 0, ζ < 0, τ > 0, (3)
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K∗
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0−

− ∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

= 1, τ > 0, (4)

K∗
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0−

+
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

+ Bir[Θ∗(0−, τ)−Θ∗(0+, τ)] = 0, τ > 0, (5)

eγ∗ ∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=1

+ Bic Θ∗(1, τ) = 0, τ > 0, (6)

Θ∗(ζ, τ)→ 0 , ζ → −∞ , τ > 0, (7)

Θ∗(ζ, 0) = 0, |ζ| < ∞, (8)

where

ζ =
z
d

, τ =
k1t
d2 , K∗ =

K2

K1,1
, k∗ =

k2

k1
, Θ∗ =

Θ
Θ0

, Bir =
hrd
K1,1

, Bic =
hcd
K1,1

, (9)

k1 =
K1,1

c1ρ1
, k2 =

K2

c2ρ2
, Θ0 =

q0d
K1,1

, (10)

Θ(z, t) = T(z, t)− T0—temperature rise; ρl , cl—the density and specific heat of materials
of the strip (l = 1) and the semi-space (l = 2).

Exact solution. By applying into the initial-boundary problem (2)–(8), the integral
Laplace transform [51]:

Θ∗(ζ, p) ≡ L[Θ∗(ζ, τ); p] =
∞∫

0

Θ∗(ζ, τ)e−pτdτ, Rep ≥ 0, (11)

the following boundary problem was received for a system of two ordinary differential
equations:

d2Θ∗(ζ, p)
dζ2 + γ∗

dΘ∗(ζ, τ)

dζ
− pe−γ∗ζ Θ∗(ζ, p) = 0, 0 < ζ < 1, (12)

d2Θ∗(ζ, p)
dζ2 − p

k∗
Θ∗(ζ, p) = 0, ζ < 0, (13)

K∗
dΘ∗(ζ, p)

dζ

∣∣∣∣∣
ζ=0−

− dΘ∗(ζ, p)
dζ

∣∣∣∣∣
ζ=0+

=
1
p

, (14)

K∗
dΘ∗(ζ, p)

dζ

∣∣∣∣∣
ζ=0−

+
dΘ∗(ζ, p)

dζ

∣∣∣∣∣
ζ=0+

+ Bir[Θ
∗
(0−, τ)−Θ∗(0+, τ)] = 0, (15)

eγ∗ dΘ∗(ζ, p)
dζ

∣∣∣∣∣
ζ=1

+ Bic Θ∗(1, p) = 0, (16)

Θ∗(ζ, p)→ 0 , ζ → −∞ . (17)
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Using the methodology described in article [50], the solutions to the problem (12)–(17)
have the following form:

Θ∗(ζ, p) =
e−

1
2 γ∗ζ

p
√

p

(
ε +

Bir√
p

)
∆1(ζ, p)

∆(p)
, 0 ≤ ζ ≤ 1, (18)

Θ∗(ζ, p) =
∆2(ζ, p)

p
√

p ∆(p)
, ζ ≤ 0, (19)

where
∆(p) = A1(p)

[(
2ε + Bir√

p

)
I0

(
2

γ∗
√

p
)
+ ε Bir√

p I1

(
2

γ∗
√

p
)]
−

−B1(p)
[(

2ε + Bir√
p

)
K0

(
2

γ∗
√

p
)
− ε Bir√

p K1

(
2

γ∗
√

p
)]

,
(20)

∆1(ζ, p) = A1(p)I1

(
2

γ∗ e−
1
2 γ∗ζ√p

)
+ B1(p)K1

(
2

γ∗ e−
1
2 γ∗ζ√p

)
,

∆2(ζ, p) = A2(p)e
√

p
k∗ ζ ,

(21)

A1(p) = K0

(
2

γ∗
e−

1
2 γ∗√p

)
+ Bic

e−
1
2 γ∗

√
p

K1

(
2

γ∗
e−

1
2 γ∗√p

)
, (22)

B1(p) = I0

(
2

γ∗
e−

1
2 γ∗√p

)
− Bic

e−
1
2 γ∗

√
p

I1

(
2

γ∗
e−

1
2 γ∗√p

)
, (23)

A2(p) = A1(p)
[
I0

(
2

γ∗
√

p
)
+ Bir√

p I1

(
2

γ∗
√

p
)]
−

−B1(p)
[
K0

(
2

γ∗
√

p
)
− ε Bir√

p K1

(
2

γ∗
√

p
)]

,
(24)

ε =
K∗√

k∗
, (25)

In(x), Kn(x)—modified Bessel functions of the nth order n = 0, 1, respectively, of the first
and the second kind [52].

Applying to the transformed solution (18)–(25) the inverse Laplace transform [51]:

Θ∗(ζ, τ) ≡ L−1[Θ∗(ζ, p); τ] =
1

2πi

ω+i ∞∫
ω−i ∞

Θ∗(ζ, p)epτdp, ω ≡ Rep > 0, i ≡
√
−1, (26)

and performing the integration on the plane of the complex variable p in line with the
methodology presented in the study [49] using the relations [52]:

I0(±ix) = J0(x), K0(±ix) = −0.5π[Y0(x)± iJ0(x)], (27)

I1(±ix) = ±iJ1(ix), K1(±ix) = 0.5π[J1(x)± iY1(x)], (28)

(Jn(x) and Yn(x)—Bessel functions of the nth order n = 0, 1, respectively, of the first and
the second kind), dimensionless temperature rises in the strip and semi-space were found
in the following form:

Θ∗(ζ, τ) = ϑ1(ζ)−
2
π

ε e−
1
2 γ∗ζ

∞∫
0

F(x)G1(ζ, x)e−x2τdx, 0 ≤ ζ ≤ 1, τ ≥ 0, (29)

Θ∗(ζ, τ) = ϑ2 −
2
π

∞∫
0

F(x)G2(ζ, x)e−x2τdx, ζ ≤ 0, τ ≥ 0, (30)
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where
ϑ1(ζ) =

1
Bic

+
1

γ∗
(e−γ∗ζ − e−γ∗), ϑ2 =

1
Bir

+
1

Bic
+

1
γ∗

(1− e−γ∗), (31)

F(x) =
[Ψ(x)− x Bi−1

r Φ(x)]

x2
{
[Φ(x)]2 + [ε Ψ(x)]2

} , (32)

G1(ζ, x) = J(x)Y1

(
2

γ∗
e−

1
2 γ∗ζ x

)
− Y(x)J1

(
2

γ∗
e−

1
2 γ∗ζ x

)
, (33)

G2(ζ, x) = ε Ψ(x) cos
(

ζ√
k∗

x
)
−Φ(x) sin

(
ζ√
k∗

x
)

, (34)

Φ(x) = J(x)Y0

(
2

γ∗
x
)
− Y(x)J0

(
2

γ∗
x
)

, (35)

Ψ(x) = J(x)
[

Y1

(
2

γ∗
x
)
+

2x
Bir

Y0

(
2

γ∗
x
)]
− Y(x)

[
J1

(
2

γ∗
x
)
+

2x
Bir

J0

(
2

γ∗
x
)]

, (36)

J(x) = J0

(
2

γ∗
e−

1
2 γ∗x

)
− Bic

e−
1
2 γ∗

x
J1

(
2

γ∗
e−

1
2 γ∗x

)
, (37)

Y(x) = Y0

(
2

γ∗
e−

1
2 γ∗x

)
− Bic

e−
1
2 γ∗

x
Y1

(
2

γ∗
e−

1
2 γ∗x

)
. (38)

Substituting ζ = 0 in the solutions (29)–(38), the following expressions were used to
estimate temperature on the sliding surfaces of the strip (z = 0+) and of the semi-space
(z = 0−) for imperfect thermal contact of friction:

Θ∗(0+, τ) = ϑ0 −
2
π

ε

∞∫
0

F(x)Ψ0(x)e−x2τdx, τ ≥ 0, (39)

Θ∗(0−, τ) = (Bi−1
r + ϑ0)−

2
π

ε

∞∫
0

F(x)Ψ(x)e−x2τdx, τ ≥ 0, (40)

where
ϑ0 ≡ ϑ1(0) =

1
Bic

+
1

γ∗
(1− e−γ∗), (41)

Ψ0(x) ≡ G1(0, x) = J(x)Y1

(
2

γ∗
x
)
− Y(x)J1

(
2

γ∗
x
)

. (42)

In the case of ideal heat contact of the strip and the semi-space ( Bir → ∞ ), Equations
(36) and (42) give Ψ(x) = Ψ0(x), and from solutions (39) and (40), it follows that the
temperature of the friction surfaces is the same and equal [50]:

Θ∗(0+, τ) = Θ∗(0−, τ) ≡ Θ∗(τ) = ϑ0 −
2
π

ε

∞∫
0

F0(x)Ψ0(x)e−x2τdx, τ ≥ 0, (43)

where

F0(x) =
Ψ0(x)

x2
{
[Φ(x)]2 + [ε Ψ0(x)]2

} . (44)
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Solutions (29)–(38) have been obtained for constant-value q0 of the specific friction
power. The form of these expressions allows for the usage of Duhamel’s theorem in order
to obtain corresponding solutions to this problem for time-dependent specific friction
power. In this way, for the case of the specific friction power linearly decreasing from the
nominal value q̂0 = 2q0 at the initial moment t = 0 to zero at the final moment t = ts, the
dimensionless temperature rise Θ̂∗(ζ, τ), based on Duhamel’s formula, was sought as [53]:

Θ̂∗(ζ, τ) =
∂

∂τ

τ∫
0

q∗(τ − s)Θ∗(ζ, s)ds, ζ ≥ 0, 0 ≤ τ ≤ τs, (45)

where
q∗(τ) = 1− τ τ−1

s ,0 ≤ τ ≤ τs, τs = k1tsd−2, (46)

and Θ∗(ζ, τ) is the dimensionless temperature rise (29)–(38) achieved for q∗(τ) = q0, τ ≥ 0.
After substituting under the integral sign in the right side of Formula (45) functions

Θ∗(ζ, τ) (29), (30) and q∗(τ) (53), the following was found:

Θ̂∗(ζ, τ) = ϑ1(ζ)q∗(τ)− 2
π ε e−

1
2 γ∗ζ

∞∫
0

F(x)G1(ζ, x)P(τ, x)dx,

0 ≤ ζ ≤ 1, 0 ≤ τ ≤ τs,

(47)

Θ̂∗(ζ, τ) = ϑ2q∗(τ)− 2
π

∞∫
0

F(x)G2(ζ, x)P(τ, x)dx, ζ ≤ 0, 0 ≤ τ ≤ τs
′ (48)

where
P(τ, x) = e−x2τ − 1

x2τs
(1− e−x2τ), (49)

and the rest of the functions have been determined in Equations (31)–(28).
Verification of the solution. Validation of the obtained exact solution (29)–(38) was carried

out by checking the fulfillment of boundary conditions (4)–(6). For this purpose, on account
of the derivatives [52]:

J′1(x) = J0(x)− x−1J1(x), Y′1(x) = Y0(x)− x−1Y1(x), (50)

and from solutions (29) and (30), the dimensionless intensities of heat fluxes in the strip
and in the semi-space were found:

∂Θ∗(ζ, τ)

∂ζ
= −e−γ∗ζ +

2
π

ε e−γ∗ζ
∞∫

0

xF(x)Ĝ1(ζ, x)e−x2τdx, 0 ≤ ζ ≤ 1, τ ≥ 0, (51)

K∗
∂Θ∗(ζ, τ)

∂ζ
=

2
π

ε

∞∫
0

xF(x)Ĝ2(ζ, x)e−x2τdx, ζ ≤ 0, τ ≥ 0, (52)

where

Ĝ1(ζ, x) = J(x)Y0

(
2

γ∗
e−

1
2 γ∗ζ x

)
− Y(x)J0

(
2

γ∗
e−

1
2 γ∗ζ x

)
, (53)

Ĝ2(ζ, x) = ε Ψ(x) sin
(

ζ√
k∗

x
)
+ Φ(x) cos

(
ζ√
k∗

x
)

. (54)

On the sliding surfaces ζ = 0±, Equations (51)–(54) yield:

q∗1(τ) ≡ −
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

= 1− 2
π

ε

∞∫
0

xF(x)Φ(x)e−x2τdx, τ ≥ 0, (55)
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q∗2(τ) ≡ K∗
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0−

=
2
π

ε

∞∫
0

xF(x)Φ(x)e−x2τdx, τ ≥ 0, (56)

where functions F(x) and Φ(x) have the forms, respectively, of (32) and (35). The addition
of Formulas (55) and (56) confirms the fulfillment of boundary condition (4). However,
after subtracting them, it was found that

K∗
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0−

+
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

= −1 +
4
π

ε

∞∫
0

xF(x)Φ(x)e−x2τdx, τ ≥ 0. (57)

On the other hand, subtracting Equations (39) and (40) results in

Θ∗(0−, τ)−Θ∗(0+, τ) =
1

Bir
− 2

π

∞∫
0

F(x)[Ψ(x)− ε Ψ0(x)]e−x2τdx, τ ≥ 0. (58)

Considering the form of the functions Φ(x) (35), Ψ(x) (36), and Ψ0(x) (42), it was
established that

Ψ(x)− ε Ψ0(x) = 2ε Bi−1
r xΦ(x). (59)

Then, based on the expression (58) and (59), the following was received:

Bir[Θ∗(0+, τ)−Θ∗(0−, τ)] = 1− 4
π

ε

∞∫
0

xF(x)Φ(x)e−x2τdx, τ ≥ 0. (60)

The result of the addition of Formulas (57) and (60) confirms that boundary condition (5)
is met.

The dimensionless intensity of heat flux on the free surface of the strip ζ = 1, from
Equations (52) and (54), was determined:

∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=1

= −e−γ∗ − ε e−γ∗ 2
π

∞∫
0

xF(x)Ĝ1(1, x)e−x2τdx, τ ≥ 0, (61)

where

Ĝ1(1, x) = J(x)Y0

(
2

γ∗
e−

1
2 γ∗x

)
− Y(x)J0

(
2

γ∗
e−

1
2 γ∗x

)
. (62)

Then, from solution (29), a suitable dimensionless temperature rise was found:

Θ∗(1, τ) =
1

Bic
− ε e−

1
2 γ∗ 2

π

∞∫
0

F(x)G1(1, x)e−x2τdx, τ ≥ 0, (63)

where, based on Equation (33), the following was obtained:

G1(1, x) = J(x)Y1

(
2

γ∗
e−

1
2 γ∗x

)
− Y(x)J1

(
2

γ∗
e−

1
2 γ∗x

)
. (64)

From relations (61) and (63), it follows that

eγ∗ ∂Θ∗(ζ,τ)
∂ζ

∣∣∣
ζ=1

+ BicΘ∗(1, τ) = 2
π ε

∞∫
0

F(x)[xĜ1(1, x)− Bice−
1
2 γ∗G1(1, x)]e−x2τdx,

τ ≥ 0.

(65)
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Taking into account forms of functions Ĝ1(1, x) (62) and G1(1, x) (64), the following
was achieved:

xĜ1(1, x)− Bice−
1
2 γ∗G1(1, x) = J(x)

[
xY0

(
2

γ∗ e−
1
2 γ∗x

)
− Bice−

1
2 γ∗Y1

(
2

γ∗ e−
1
2 γ∗x

)]
−

−Y(x)
[

xJ0

(
2

γ∗ e−
1
2 γ∗x

)
− Bice−

1
2 γ∗ J1

(
2

γ∗ e−
1
2 γ∗x

)]
=

= x[J(x)Y(x)− Y(x)J(x)] = 0,

(66)

which confirms the fulfillment of boundary condition (6).
The fulfillment of the boundary condition (7) and the initial condition (8) were taken

into account when obtaining the solution (18)–(25) in the space of the Laplace integral
transform.

Asymptotic solutions. Small values of the Fourier number τ (large values of the Laplace
transform parameter p). Bearing in mind Formulas (18)–(24) and the asymptotes of the
modified Bessel functions for large values of the argument [52]:

In(x) ∼=
ex
√

2πx
, Kn(x) ∼=

√
π

2x
e−x, n = 0, 1, (67)

it was established that the solution in the Laplace transform space has the following form:

Θ∗(ζ, p) ∼=
1
2

e−
1
4 γ∗ζ

[
e−ζ1

√
p

p(α +
√

p)
+

Bir
ε

e−ζ1
√

p

p
√

p(α +
√

p)

]
, 0 ≤ ζ < 1, (68)

Θ∗(ζ, p) ∼=
1
2ε

[
e−ζ2

√
p

p(α +
√

p)
+ Bir

e−ζ2
√

p

p
√

p(α +
√

p)

]
, ζ ≤ 0, (69)

where

α =
(1 + ε)

2ε
Bir, ζ1 =

2
γ∗

(1− e−
1
2 γ∗ζ),ζ2 =

|ζ|√
k∗

. (70)

Using relations [54]:

L−1

[
αe−ζl

√
p

p(α +
√

p)
; τ

]
= erfc

(
ζl

2
√

τ

)
− eα2τ+αζl erfc

(
ζl

2
√

τ
+ α
√

τ

)
, l = 1, 2, (71)

L−1
[

αe−ζl
√

p

p
√

p(α+
√

p) ; τ
]
= 2

√
τ
π e−(

ζl
2
√

τ
)

2

−
(

ζl +
1
α

)
erfc

(
ζl

2
√

τ

)
+

+ 1
α eα2τ+αζl erfc

(
ζl

2
√

τ
+ α
√

τ
)

, l = 1, 2,
(72)

where erfc(x) = 1− erf(x), erf(x)—Gauss error function [52], from Equations (68)–(70), yields:

Θ∗(ζ, τ) = e−
1
4 γ∗ζ

(1+ε)

[
2
√

τ
π e−(

ζ1
2
√

τ
)2 −

(
ζ1 +

1
α −

ε
Bir

)
erfc

(
ζ1

2
√

τ

)
+

+
(

1
α −

ε
Bir

)
eα2τ+αζ1erfc

(
ζ1

2
√

τ
+ α
√

τ
)]

, 0 ≤ ζ ≤ 1, 0 ≤ τ << 1,
(73)

Θ∗(ζ, τ) = 1
(1+ε)

[
2
√

τ
π e−(

ζ2
2
√

τ
)2 −

(
ζ2 +

1
α −

1
Bir

)
erfc

(
ζ2

2
√

τ

)
+

+
(

1
α −

1
Bir

)
eα2τ+αζ2erfc

(
ζ2

2
√

τ
+ α
√

τ
)]

, ζ ≤ 0, 0 ≤ τ << 1.
(74)

Proceeding with Equations (73) and (74) to the limit Bir → ∞ , the known asymptotic
solution was obtained, related to the perfect thermal contact between the FGM strip and
homogeneous semi-space [53]:

Θ∗(ζ, τ) ∼=
2
√

τ

(1 + ε)
e−

1
4 γ∗ζ ierfc

(
ζ1

2
√

τ

)
, 0 ≤ ζ ≤ 1, 0 ≤ τ << 1, (75)



Materials 2023, 16, 7126 11 of 25

Θ∗(ζ, τ) ∼=
2
√

τ

(1 + ε)
ierfc

(
ζ2

2
√

τ

)
, ζ ≤ 0, 0 ≤ τ << 1, (76)

where ierfc(x) = π−0.5e−x2 − x erfc(x). From Equations (75) and (76), it follows that the
temperature of the friction surfaces ζ = 0± (ζ1 = ζ2 = 0) in this case is the same:

Θ∗(0+, τ) = Θ∗(0−, τ) = Θ∗(τ) ∼=
2

(1 + ε)

√
τ

π
. (77)

For the homogeneous material of the strip ( γ∗ → 0) from the second formula from
Equation (70), it follows that ζ1 → ζ and solution (80) has the known form [37]:

Θ∗(ζ, τ) = 1
(1+ε)

[
2
√

τ
π e−(

ζ
2
√

τ
)2 −

(
ζ + 1

α −
ε

Bir

)
erfc

(
ζ

2
√

τ

)
+

+
(

1
α −

ε
Bir

)
eα2τ+αζerfc

(
ζ

2
√

τ
+ α
√

τ
)]

, 0 ≤ ζ ≤ 1, 0 ≤ τ << 1,
(78)

and solution (74) for semi-space remains without changes, as it is independent on parameter γ∗.
It should be noted that the form of asymptotic solutions (73) and (74) shows that at the

beginning of the friction heating process, the effect of convection cooling of the exposed
surface of the strip on the temperature of both bodies is negligible, and the gradient nature
of the material only affects the temperature of the strip.

High values of Fourier number τ (small values of the Laplace parameter p). Consider-
ing the behavior of modified Bessel functions at small argument values [52]:

I0(x) ∼= 1, I1(x) ∼= 0.5x, K0(x) ∼= − ln(x), K1(x) ∼= x−1, (79)

in Equations (18)–(25), the following was found:

Θ∗(ζ, p) ∼= φ∗(ζ)

[
1

p(a +
√

p)
+

ε

Bir
1

√
p(a +

√
p)

]
, 0 ≤ ζ ≤ 1, (80)

Θ∗(ζ, p) ∼=
(

1
ε
− a

Bir

)
e−ζ2

√
p

p(a +
√

p)
, ζ ≤ 0, (81)

where

a =
γ∗BirBic

ε(φ0Bir + 2γ∗Bic)
, φ∗(ζ) =

φ(ζ)Bir
ε(φ0Bir + 2γ∗Bic)

, (82)

φ(ζ) = γ∗ + Bic(e−γ∗ζ − e−γ∗), φ0 ≡ φ(0) = γ∗ + Bic(1− e−γ∗), (83)

and parameter ζ2 is defined in the last formula of Equation (70). Taking into account
relation (71) and the following [54]:

L−1
[

1
√

p(a +
√

p)
; τ

]
= ea2τerfc(a

√
τ), L−1

[
a

p(a +
√

p)
; τ

]
= 1− ea2τerfc(a

√
τ), (84)

asymptotes of dimensionless temperature rise for high values of Fourier number τ were
found in the following form:

Θ∗(ζ, τ) ∼= φ∗(ζ)

[
1
a
−
(

1
a
− ε

Bir

)]
ea2τerfc(a

√
τ), 0 ≤ ζ ≤ 1, τ >> 1, (85)

Θ∗(ζ, τ) ∼=
(

1
aε
− 1

Bir

)[
erfc

(
ζ2

2
√

τ

)
− ea2τ+aζ2 erfc

(
ζ2

2
√

τ
+ a
√

τ

)]
, ζ ≤ 0, τ >> 1. (86)



Materials 2023, 16, 7126 12 of 25

In the case of perfect thermal contact of friction ( Bir → ∞ ) from Formula (82), it
follows that

a =
γ∗Bic

εφ0
, φ∗(ζ) =

φ(ζ)

εφ0
, (87)

and solutions (85), (86) will take the form [50]

Θ∗(ζ, τ) ∼=
φ(ζ)

γ∗Bic
[1− ea2τerfc(a

√
τ)], 0 ≤ ζ ≤ 1, τ >> 1, (88)

Θ∗(ζ, τ) ∼=
1
aε

[
erfc

(
ζ2

2
√

τ

)
− ea2τ+aζ2erfc

(
ζ2

2
√

τ
+ a
√

τ

)]
, ζ ≤ 0, τ >> 1. (89)

Considering the limit

lim
γ∗→0

γ∗

φ0
=

Bic
ε(1 + Bic)

, lim
γ∗→0

φ(ζ)

γ∗
= 1 + Bic(1− ζ), (90)

from Equation (88), the dimensionless temperature rises for ideal heat contact between the
layer and the half-plane were obtained:

Θ∗(ζ, τ) ∼=
[

1 + Bic(1− ζ)

Bic

]
[1− ea2τerfc(a

√
τ)], 0 ≤ ζ ≤ 1, τ >> 1, (91)

Θ∗(ζ, τ) ∼=
(1 + Bic)

Bic

[
erfc

(
ζ2

2
√

τ

)
− ea2τ+aζ2erfc

(
ζ2

2
√

τ
+ a
√

τ

)]
, ζ ≤ 0, τ >> 1, (92)

where
a =

Bic
ε(1 + Bic)

. (93)

On the other hand, proceeding with Formulas (82) and (83) to the limit γ∗ → 0 , the
following was found:

a =
BirBic

ε[(1 + Bic)Bir + 2Bic]
, φ∗(ζ) =

[1 + (1− ζ)Bic]Bir
ε[(1 + Bic)Bir + 2Bic]

, (94)

and from solutions (85) and (86), the following was obtained:

Θ∗(ζ, τ) ∼=
[

1+Bic(1−ζ)
Bic

]{
1−

[
(1+Bic)Bir+Bic
(1+Bic)Bir+2Bic

]
ea2τerfc(a

√
τ)
}

,

0 ≤ ζ ≤ 1, τ >> 1,
(95)

Θ∗(ζ, τ) ∼= [(1+Bic)Bir+Bic ]
Bir Bic

[
erfc

(
ζ2

2
√

τ

)
− ea2τ+aζ2erfc

(
ζ2

2
√

τ
+ a
√

τ
)]

,

ζ ≤ 0, τ >> 1.
(96)

Additionally, accepting Bir → ∞ , solutions (94)–(96) become equal to solutions (90)–(92).
It should be noted that asymptotic solutions (91)–(93) for homogeneous materials of

the layer and half-space, taking into account convective cooling on the free surface of the
layer, are also new. So far, a suitable solution for maintaining the initial temperature on
this surface has been known [37]. This solution is easy to obtain from Formulas (91)–(93),
proceeding with them to the limit Bic → ∞ . Then,

Θ∗(ζ, τ) ∼= (1− ζ)[1− eε−2τerfc(ε−1√τ)], 0 ≤ ζ ≤ 1, τ >> 1, (97)

Θ∗(ζ, τ) ∼= erfc
(

ζ2

2
√

τ

)
− eε−2τ+ε−1ζ2 erfc

(
ζ2

2
√

τ
+ ε−1√τ

)
, ζ ≤ 0, τ >> 1. (98)
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3. Results and Discussion

Numerical analysis was carried out in the case of a two-component FGM strip, in
which the friction surface was zirconium dioxide ZrO2 and the titanium alloy Ti− 6Al− 4V
was chosen as the core. The gray cast iron ChNMKh served as the material of a homoge-
neous semi-space. The properties of these materials at the initial temperature T0 = 20 ◦C,
necessary to perform the calculations, were taken from article [47]. The value γ∗ = 1.26 of
the dimensionless gradient of the selected FGM was determined from Formula (1). The re-
maining dimensionless input parameters were defined by Formulas (9): the spatial variable
ζ, the Fourier number τ, and the Biot numbers Bir and Bic. Numerical integration in the
obtained exact solutions was carried out using the QAGI procedure from the QUADPACK
package [55]. QAGI is the standard Fortran subroutine for integration over infinite intervals.
To launch this procedure, it was necessary to write the real function subprogram definiting
the integrand function. Another input parameter was the relative accuracy requested. For
our calculations, this parameter was equal to 10−4.

The aim of the numerical analysis was to Investigate the mutual impact of dimension-
less parameters Bir and Bic on the temperature of the friction system. It should be noted
that with a fixed value of the Biot number Bir in the limit case Bic → 0 , the free surface
z = d (ζ = 1) of the strip was adiabatic (the thermally insulated), and at Bic → ∞ , the
initial temperature on this surface was maintained during the entire process of friction
heating. On the other hand, with a fixed value of the Biot number Bic, the case Bir → 0
corresponded to such a heating mode of the considered system, at which the sliding sur-
faces of the strip and the semi-space were heated separately by heat fluxes with the same
intensity equal to the half of the specific power of friction, i.e., 0.5 q0. If Bir → ∞ , then
the temperature of the friction surfaces of the strip and the semi-space at any time of the
heating process should be equal.

The results of the calculations are presented in Figures 2–9, where the solid curves
correspond to the case of an FGM strip (ZrO2/Ti− 6Al− 4V), and the dashed curves—to
the case of the strip made entirely of ZrO2. The results, shown by continuous and dashed
curves, were obtained using exact solutions, while the dotted curves represent the results
obtained on the basis of asymptotic solutions.

The influence of the thermal contact conductivity (the Biot number Bir) on the dimen-
sionless temperature rises Θ∗ (39) and (40) of the surfaces of friction of the strip (ζ = 0+)
and the semi-space (ζ = 0−) for the four values of the Biot number Bic at the fixed value
of the Fourier number τ = 1 are shown in Figure 2. As expected, the greatest jump in
the temperature on the surfaces of friction for both types of strip material took place at
small ( Bir → 0+ ) thermal contact conductivity (high thermal resistance). Increasing the
Biot number Bir equalized the temperature of the friction surfaces of the strip and the
semi-space. At Bir ≈ 100, their temperature could be considered the same. During the
entire heating process, the temperature of the friction system with the FGM strip (the solid
curves) was lower compared to the temperature when the homogeneous material of the
strip was used (the dashed curves). This effect increased with the growth of the convective
cooling intensity (the Biot number Bic) on the free surface ζ = 1 of the strip.
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Figure 2. Dependences of dimensionless temperature rise Θ∗ on the friction surface of the strip
(ζ = 0+) and the semi-space (ζ = 0−) from the Biot number Bir for τ = 1 at four values of the
Biot number Bic: (a) 0.01; (b) 1; (c) 10; (d) 100. The continuous curves—the FGM strip; the dashed
curves—the strip made of zirconium dioxide.

The appropriate results for dimensionless intensities of the heat fluxes q∗i , i = 1, 2 (54)
and (55) are shown in Figure 3. It was noticed that the greatest changes in the intensity of
heat fluxes, directed along the normal from the contact surface to the inside of the strip
(q∗1) and the semi-space (q∗2), occurred in the range 0 ≤ Bir ≤ 10. Increasing the thermal
contact conductivity (reducing the thermal resistance) resulted in the fact that the amount
of heat absorbed by the FGM strip decreased and the heat absorbed by cast iron semi-space
increased. With an almost adiabatic process (Bic = 0.01), the free surface of the strip, the
influence of the gradient of the strip material on q∗i , i = 1, 2 was negligible (Figure 3a).
With the increase in the intensity of heat transfer (the Biot number Bic) between the free
surface of the strip and the surrounding environment, the effect of the FGM of the strip on
temperature became more noticeable (Figure 3b–d).
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Figure 3. Dependences of dimensionless heat fluxes intensities q∗i , i = 1, 2 on the Biot number Bir for
τ = 1, at four values of the Biot number Bic: (a) 0.01; (b) 1; (c) 10; (d) 100. The continuous curves—the
FGM strip, the dashed curves—the strip made of zirconium dioxide.

The evolutions of the dimensionless temperature rise Θ∗ (39), (40) on the friction
surfaces of the strip (ζ = 0+) and the semi-space (ζ = 0−) for different values of the
Biot numbers Bir and Bic are shown in Figure 4. It can be seen that with the same input
parameters, the use of an FGM strip caused a decrease in the temperature of both elements
in comparison to the temperature found in the case in which the strip has a homogeneous
material. This tendency is most clearly visible on the friction surface of the strip (ζ = 0+)
with a small value of thermal contact conductivity (Bir = 0.01) and the intensive convective
cooling (Bic = 100) of the strip. The influence of the gradient nature of the strip material
on the temperature on the friction surface of the semi-space (ζ = 0−) is much smaller. On
this surface, the noticeable temperature differences when using the FGM of the strip and
the homogeneous strip material occur in the case of perfect thermal contact of friction
(Bir = 100) with intensive (Bic = 100) convective cooling of the free surface the strip.
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Corresponding changes with time (the Fourier number τ) of dimensionless heat flux
intensities q∗i , i = 1, 2 (54), (55) are illustrated in Figure 5. The much higher thermal
conductivity of cast iron ChNMKh compared to ZrO2 and Ti− 6Al− 4V resulted in the
fact that the semi-space absorbed most of the heat generated during friction. At Bir = 0.01,
when the conditions for the separate heating of friction elements were implemented, as
expected, the intensities persisted at a constant level of 0.5 during the entire heating process,
regardless of the intensity of cooling the exposed strip surface. But already at Bir = 1
with the time, the amount of heat directed to the strip monotonically decreased and to the
semi-space decreased. The evolutions of the heat flux intensities looked slightly different,
with perfect thermal contact of friction (Bir = 100). First of all, it was clearly seen that
for a fixed value τ the difference between q∗1 and q∗2 in this case was the largest compared
to the appropriate results obtained at Bir = 0.01 or Bir = 1. Secondly, the sensitivity q∗i ,
i = 1, 2 to the intensity of the convective cooling on the free surface of the strip increased
significantly. If the initial temperature was maintained on this surface (Bic = 0.01), a rapid
achievement of the minimum value by q∗1 and the maximum value by q∗2 was established.
Then, with increasing the dimensionless time τ, q∗1 decreased slightly and q∗2 accordingly
increased. When Bic = 1 and the above-mentioned extreme values q∗i , i = 1, 2 were
reached, further heating practically did not cause their changes. A further increase in
the intensity of convective heat transfer on the free surface of the strip (Bic = 10, and in
particular Bic = 100) caused the amount of heat absorbed by the strip to increase after
quickly reaching the minimum q∗1 and maximum q∗2 values, and that by the semi-space
decreased accordingly over the time. The most noticeable such effect was in the case of an
FGM strip.
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curves—the FGM strip; the dashed curves—the strip made of zirconium dioxide.

Distributions of the dimensionless temperature rises Θ∗ (29) and (30) along the thick-
ness of the strip (0 ≤ ζ ≤ 1) and semi-space (−1 ≤ ζ ≤ 0) at τ = 1 for different values of
the Biot numbers Bir and Bic are presented in Figure 6. At a fixed-value Bic in the case of
Bir = 0.01, the temperature jump was clearly visible on the contact surface ζ = 0. At Bir = 1
this jump decreased, and at Bir = 100 it became practically imperceptible. Comparing to
the case of a homogeneous strip, the FGM strip did not show a significant impact on the
temperature of the semi-space. It could be observed that the temperature of the semi-space
decreased linearly with distance from the contact surface, regardless of the choice of strip
material. A different, non-linear nature of the temperature distribution was observed in the
strip. At the same time, the use of FGM reduced the temperature of the strip in comparison
to the temperature of the strip made of zirconium dioxide. This effect was most noticeable
with intensive (Bic = 10 or Bic = 100) cooling on the free surface (ζ = 1) of the strip.
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Figure 6. Change in dimensionless temperature rise Θ∗ with dimensionless distance ζ from the
contact surface ζ = 0 at the final moment of time τ = 1 of the heating process for selected values of
Biot number Bir at four values of the Biot number Bic: (a) 0.01; (b) 1; (c) 10; (d) 100. The continuous
curves—the FGM strip; the dashed curves—the strip made of zirconium dioxide.

The next part of the numerical analysis was devoted to determining the time intervals
in which the asymptotic solutions could be used to estimate the temperature of the friction
surfaces of the FGM strip (ζ = 0+) and the homogeneous semi-space (ζ = 0−) at small
(73), (74) (Figure 7) and large (85), (86) (Figure 8) values of the Fourier number τ (9). The
temperature values obtained by these solutions (the dotted curves) were compared with
the corresponding results found using the exact solutions (29), (30) (the solid curves). It was
established that the usefulness of the asymptotic solution (73) to determine the temperature
of the friction surface of the FGM strip largely depended on the value of the Biot number
Bir: results obtained from the exact (29) and asymptotic (73) solutions, which differed
slightly for Bir = 0.01 or Bir = 1 at 0 ≤ τ ≤ 0.1 and for Bir = 10 or Bir = 100—if 0 ≤ τ ≤ 1
(Figure 7a). On the other hand, an asymptotic solution (74) for the semi-space could be
used to estimate the temperature of the surface of friction at 0 ≤ τ ≤ 1 for four selected
values of Bir (Figure 7b).
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Figure 7. Evolutions of the dimensionless temperature rise Θ∗ on the surfaces of friction: (a) FGM
strip (ζ = 0+); (b) homogeneous semi-space (ζ = 0−) for Bic = 1 at four values of the Biot number
Bir = 0.01; 1; 10; 100. The solid curves—the exact solutions (36) and (37); the dotted curves—the
asymptotic solutions (80) and (81) at small values of the Fourier number τ.

Similar sensitivity to the value of the Biot number Bir of the results obtained by means
of an asymptotic solution (85) for the FGM strip at high values τ is visible in Figure 8a.
The difference in the results obtained by means of exact (30) and asymptotic (86) solutions
for Bir = 0.01; 1 was insignificant at τ ≥ 5, and for Bir = 10; 100, it was permissible not
only at large but also at small values τ. The asymptotic solution (86) for semi-space at high
values of the Fourier number could be used at τ ≥ 0 (Figure 8b).
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Figure 8. Evolutions of the dimensionless temperature rise Θ∗ on the friction surfaces: (a) FGM
strip (ζ = 0+); (b) homogeneous semi-space (ζ = 0−) for Bic = 1 at four values of the Biot number
Bir = 0.01; 1; 10; 100. The solid curves—the exact solutions (29) and (30); the dotted curves—the
asymptotic solutions (85) and (86) at large values of the Fourier number τ.
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Figure 9. Isolines of the dimensionless temperature rise Θ̂∗(ζ, τ) during braking for Bic = 100, τs = 1
at two values of the Biot number Bir: (a) 1; (b) 100. The continuous curves—the FGM strip; the
dashed curves—the strip made of zirconium dioxide.

Isolines of the dimensionless temperature rise Θ̂∗(ζ, τ) (47)–(49) during single braking
with constant deceleration with the forced (Bic = 100) convective cooling of the free surface
of the strip for two values of the Biot number Bir is demonstrated in Figure 9. First of all,
it should be noted that the temperature of the strip made of FGM was lower compared
to the case of applying a layer of zirconium dioxide to the material. Secondly, just like
during sliding with constant specific friction power, the jumps of isolines were also visible
when passing through the contact surface in the case of Bir = 1 (Figure 9a). However, for
Bir = 100, the temperature of the friction surfaces of the strip and semi-space were the same
(Figure 9b). At low contact thermal conductivity (Bir = 1), the temperature of the strip
was higher than the semi-space temperature (Figure 9a). The increase in parameter Bir
equalized the temperature of both elements of the friction pair (Figure 9b). The effect of the
linearly decreasing time profile of the specific friction power was visible primarily in the
achievement of the maximum temperature of both elements at a fixed distance from the
contact surface, not at the stop moment τ = τs = 1 (as it was in the case of sliding with
constant specific friction power), but within the time interval 0 < τ < τs.
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4. Conclusions

A mathematical model to determine the temperature field resulting from heating
during the sliding of a strip made of FGM on a homogeneous semi-space surface was devel-
oped. The influence of two dimensionless input parameters, namely the Biot numbers Bir
and Bic, defined by Formula (9), on the temperature of such a friction system was examined.
The first of them (Bir) was directly proportional to the thermal contact conductivity hr,
which in turn was inversely proportional to the thermal resistance of the friction surface
of the strip and semi-space. Thus, at a fixed value of the contact pressure, the higher the
roughness of these surfaces, the greater their thermal resistance and the lower the thermal
contact conductivity.

Consideration of thermal contact conductivity in the modeling of the frictional heat
generation process was carried out by means of two boundary conditions on the contact
surface. The first of them assumed that the sum of the intensities of heat fluxes absorbed
on the contact surface along the normal to this surfaceinside each element of the friction
pair was equal to the specific power of friction, i.e., the product of the coefficient of friction,
the contact pressure, and the sliding speed. The second condition stated that the difference
in the above-mentioned intensity of heat fluxes was proportional to the difference in
the temperature of friction surfaces. The ratio of proportionality here was the thermal
contact conductivity hr or in the dimensionless form of the Biot number Bir. Both of these
conditions created the so-called conditions of imperfect thermal contact of friction. A
characteristic of the solutions of appropriate heat problems of friction, obtained under such
boundary conditions, is the temperature jump on the contact surfaces of the sliding bodies.
It should be noted that during the sliding of smooth surfaces, the thermal resistance became
negligible and the value of the parameter Bir was large. In the limit case, Bir → ∞ , the
temperature difference in the friction surfaces disappeared. So, it can be said the generation
of heat takes place in conditions of perfect thermal friction contact.

The Biot number Bic characterized the intensity of convective cooling on the exposed
surface of the strip by means of the heat transfer coefficient hc. The influence of the
parameter Bic on the temperature of the system operating in conditions of perfect thermal
contact of friction was examined in article [48].

Numerical analysis was performed for the FGM (ZrO2/Ti − 6Al − 4V) strip and
homogeneous (gray cast iron ChNMKh) semi-space. At the same time, the temperature of
the system, consisting of a homogeneous (ZrO2) strip and a cast iron (ChNMKh) semi-space,
was analyzed. It was established that:

1. Regardless of the value Bic, the perfect thermal contact of friction occurs when Bir ∼= 100.
2. The use of the functionally graded material on a strip reduces its temperature compared

to the case of homogeneous material. The greater the decrease in temperature, the smaller
the parameter Bir and the higher the parameter Bic is. The effect of the gradient nature of
the strip material on lowering the temperature of the semi-space is insignificant.

3. Most of the heat generated during friction is absorbed by the cast iron semi-space.
With a fixed value of the Biot number Bic, the greatest changes in the intensity of heat
fluxes, directed along the normal to the contact surface between the strip and the
semi-space, occur in the range of 0 ≤ Bir ≤ 10. As the parameter Bic increases, the
impact of the gradient of the strip material on the intensity of heat fluxes becomes
more noticeable.

4. The obtained asymptotic solutions at small and large values of the Fourier number τ
can be used with sufficient accuracies to estimate the temperature of the considered
friction pair. Increasing the parameter Bir causes the widening of the interval of the
parameter τ, in which the temperature of the strip obtained from asymptotic solutions
slightly differs from the temperature determined by the exact solution. Such an effect
was not noticed when determining the temperature on the friction surface of the semi-
space: the appropriate asymptotic solutions allow one to obtain satisfactory results in
the entire range of the Fourier number changes.
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5. With a linearly decreasing time profile of the specific friction power, the spatial–temporal
temperature distribution in the strip and semi-space is non-uniform. At each set distance
from the contact surface, the temperature reaches its maximum value within the heating
time interval. In a strip made of FGM, the moment of reaching the maximum temperature
approaches the stop moment as the distance from the contact surface increases. However,
when using a homogeneous layer and half-space materials, the maximum temperature is
reached in approximately half the heating time.

In the future, the authors intend to develop a mathematical model to determine the
temperature of the friction system of two FGM strips with imperfect thermal contact of friction
and convective heat exchange with the surrounding environment on their free surfaces.
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Nomenclature

Bic Biot number on the free surface of the strip
Bir Biot number through the contact surface
c Specific heat (J kg−1K−1)
d Thickness of the strip (m)
hc Coefficient of convective heat exchange on the free surface of the strip
hr Coefficient of contact heat conductivity through the surfaces
In(·) Modified Bessel functions of the nth order of the first kind
Jn(·) Bessel functions of the nth order of the first kind
Kn(·) Modified Bessel functions of the nth order of the second kind
k Thermal diffusivity (m2s−1)
K Thermal conductivity (W m−1K−1)
q Specific power of friction (W m−2)
q0 Nominal value of the specific friction power (W m−2)
t Time (s)
ts Stop moment of the process (s)
T Temperature (

◦
C)

T0 Initial temperature (
◦
C)

Yn(·) Bessel functions of the nth order of the second kind
z Spatial coordinate in axial direction (m)
γ∗ Gradient parameter of FGM
Λ Temperature rise scaling factor (

◦
C)

ε Dimensionless coefficient of thermal activity
Θ Temperature rise (

◦
C)

Θ∗ Dimensionless temperature rise
Θ̂∗ Dimensionless temperature rise during sliding
ρ Density (kg m−3)
τ Dimensionless time
τs Dimensionless stop time
ζ Dimensionless spatial coordinate in axial direction
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