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Abstract: Determining soil and water conditions is essential for designing the optimal foundation
and safely transferring loads, including the self-weight of structures, to the ground. Excessive or
uneven settlement of the subsoil may ultimately lead to the formation of structural cracks in buildings
or the loss of slope stability. In extreme cases, the damage results in structural failure. This paper
presents the application of simple solutions from plasticity theory—an evaluation of the upper and
lower bounds of the exact solution—to estimate the slope safety factor. It is demonstrated that simple
kinematically admissible mechanisms for the non-associated flow rule provide solutions are close to
those obtained from the traditional Fellenius method.

Keywords: slopes; factor of safety; soil mechanics; theory of plasticity; kinematically admissible
mechanisms; the Fellenius method

1. Introduction

Slope stability is one of the issues related to geotechnical design. It is particularly
relevant when the building is founded on a site with a significant slope or one is in its
immediate vicinity. In such cases, there is a danger that the slope may slip together
with the building or trigger a landslide onto the building, which may lead to its damage
or even structural failure. Slope failures can also be caused by the disruption of the
slope’s natural stability (e.g., earthquake-induced landslides), which can result in
property damage, injury, loss of human life, as well as contamination and other serious
environmental problems [1–3]. In the context of preventing these accidents, it is of great
importance to assess the safety factor.

The current standard, Eurocode 7 (EN 1997-1) [4], does not include a single selected
computational approach according to which the stability of slopes should be checked.
However, it is recommended to check for the total moment and vertical stability of the
wedge of detachment. Instead, it is stated what to pay attention to when adopting a
particular calculation method and what equilibrium equations it verifies. In addition, in
the case of not verifying the equilibrium/horizontal stability, it is recommended to assess
the horizontal direction of forces among different slices of soil. The characteristic features
in terms of verified equilibrium states of the models summarized in a paper [5] or analyzed
in [6–9] are helpful in this case. The authors of [5] recommend using Spencer’s method
and Bishop’s simplified method for slope analysis. Analyses using these two methods to
determine slope stability can be found in many studies, including [10–13].

Numerous other computational methods can be found in the literature and engineering
practice. In addition to the traditional approaches discussed in [5], such as the Fellenius
method, Janbu, or Sarma, more advanced computational approaches can be considered, for
example, those based on probabilistic methods [14–19]; semi-probabilistic methods [20],
including the stochastic finite difference method [21]; and those based on the finite element
method [10,11,22].
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At the same time, it should be noted that, currently, with the development of digital
methods, there are more and more computer programs and digital computational models
that allow the analysis of even very complex cases, as evidenced by, e.g., [1–3].

Despite this development, relatively simple methods are still used and recommended
for less complex issues [23].

In the present paper, we discuss applying simple solutions from plasticity theory—
with an evaluation of the upper and lower bounds of the exact solution—to estimate the
slope safety factor. We demonstrate that simple kinematically admissible solutions for
the non-associated flow rule give solutions close to those obtained using the Fellenius
method [4].

Critical loads and failure mechanisms in the case of passive earth pressure (earth-
moving machinery tools) were analyzed using plasticity theory. Due to the adoption of
a rigid-perfectly-plastic model, it is difficult or even impossible to obtain exact solutions
that satisfy all the conditions of statics and kinematics. Hence, to estimate admissible loads,
statically or kinematically admissible solutions are built as the lower or upper bounds of
the exact solution. Since the magnitudes for the exact solution are between the lower and
upper bounds, kinematically admissible solutions give the lowest force estimate (upper
bound), and statically admissible solutions give the highest force estimate (lower bound).

Plasticity theory was applied to solve boundary issues for the plane deformation
state [24], assuming associated or non-associated flow rules. Experimental results for the
pressure problem of walls with different shapes (smooth wall, loader bucket models) in a
loose medium (sand) show good agreement with calculations for the non-associated flow
rule [25].

Ongoing studies have shown that for a cohesive medium, the kinematically admissible
mechanisms [26] describe the kinematics of the failure process quite well for both active and
passive pressures. Even complex processes related to the working problem of loader bucket
models can be described in the same manner [25,27–29]. Associated and non-associated
flow rules have been applied to describe such processes. For example, the non-associated
flow rule has been used to describe a quite advanced wall pushing process [27,29].

In the present study, plasticity theory and simple kinematically admissible mechanisms
were used to evaluate slope stability. The obtained results, easy to calculate, were compared
with those obtained using the Fellenius method. The kinematically admissible mechanisms
were applied within the landslide area, as determined by the method mentioned above.

2. Materials and Methods

The issue of slope stability can be analyzed using plasticity theory and a stress function
G
(
σij

)
called the plastic potential, where the relationship between strain and stress rates is

defined by
.
εij = λ

∂G
∂σij

(1)

where λ is a certain scalar multiplier that has a constant value at a given state and point; it
has different values at different points.

If the plastic potential is identified with the boundary condition (e.g., Mohr–Coulomb),
Equation (1) is called an associated flow rule. If it is a different condition (Tresca condition
was adopted in this paper), we deal with a non-associated flow rule.

In the general spatial issue of quasi-static motion, we have 16 unknowns to be deter-
mined, and we have 16 equations.

This system is quite challenging to solve, but effective solutions can be obtained for
special states, such as the planar flow state or axisymmetric flows.

In the case of planar surface flow, we have:
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Despite the simplifications, these solutions are labor-intensive and have limited 
practical application. In addition, adopting a rigid-perfectly-plastic model makes it dif-
ficult to obtain exact solutions, especially specific solutions that satisfy all the conditions 
of statics and kinematics. Hence, statically or kinematically admissible solutions are built 
as approximations, which, for the associated flow rule, represent the lower bound (stati-
cally admissible solutions) and upper bound (kinematically admissible solutions) to the 
exact solution. The solution is located between these quantities. 

The upper bound means that, for example, the allowable loads are no greater than 
those specified, and the lower bound is not less than that specified. The smaller the dif-
ference between these bounds, the closer to the exact solution we are. 

Two equilibrium equations

∂σx

∂x
+

∂τxy

∂y
= 0 (2)
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∂σy

∂y
+

∂τxy

∂x
= γ (3)

where γ is a volumetric weight;
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The relationships between the components of the stress vector and tensor, which take
the form:

.
εx
∂G
∂σx

=

.
εy
∂G
∂σy

=

.
εxy
∂G

∂τxy

(4)

A practical method of solving plane flow problems involves first determining the state
of stress and then the velocity field. Figure 1 shows an example of its application to the
analysis of smooth wall pressure (passive pressure).
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Despite the simplifications, these solutions are labor-intensive and have limited prac-
tical application. In addition, adopting a rigid-perfectly-plastic model makes it difficult
to obtain exact solutions, especially specific solutions that satisfy all the conditions of
statics and kinematics. Hence, statically or kinematically admissible solutions are built as
approximations, which, for the associated flow rule, represent the lower bound (statically
admissible solutions) and upper bound (kinematically admissible solutions) to the exact
solution. The solution is located between these quantities.

The upper bound means that, for example, the allowable loads are no greater than
those specified, and the lower bound is not less than that specified. The smaller the
difference between these bounds, the closer to the exact solution we are.

In the case of the non-associated flow rule, there is no evidence for the limit analysis
theorems, but we proceed via analogy.

In the statically admissible solution, static conditions must be satisfied, but this re-
quirement does not apply to kinematic conditions [30], which allows determining lower
stress values and searching for the solution giving the highest values [30]. The solution is
based on the analysis of separated slices of, for example, a slope and the determination of
their interaction by checking the state of stress. In each slice, the values of forces (loads)
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are determined, as a result of which plasticization of the material can occur based on,
for example, the Mohr–Coulomb condition. The conditions that the surfaces (lines) of
discontinuous stresses must meet are derived from the equilibrium conditions (Figure 2).
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From this, it follows that the stresses on both sides of the discontinuity surface must
be the same in such a structure. The stress parallel to this line may experience a spike.

On the other hand, the upper limit of load values can be determined on the basis
of kinematically admissible mechanisms arbitrarily adopted for the system. To apply a
kinematically admissible solution, the mechanism adopted for consideration must meet
the following criteria:

• The continuity of the medium must be achieved.
• The rule of flow must be assumed.
• Boundary conditions [30] must be met.

Static conditions need not be satisfied in this case.
In addition, since this is not an exact solution and depends on the kinematic mechanism

adopted by the researcher, the solution with the smallest value of estimated forces (loads)
that is “closer” to the exact solution should be searched for. The kinematically admissible
solution (the number of mechanisms is practically infinite) assumes that in the medium
under consideration, deformation occurs along the lines of discontinuity separating areas
of different kinematics defined by the researcher.

Consider an element undergoing plane deformation, which consists of the movement
with two rigid blocks moving along the discontinuity line L.

In the case of a Mohr–Coulomb medium and the associated flow rule, the velocity
increase vector along the discontinuity line deviates from it by an angle ϕ (internal friction)
(Figure 3a).
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In the case of a Mohr–Coulomb medium and the non-associated flow rule (we assume
the Tresca potential), the vector of the velocity increase on the discontinuity line is tangent
to it (Figure 3).

It can be demonstrated that the unit energy dispersion
.

D on the discontinuity line is
determined by the correlation:

.
D = c·V·cosϕ (5)

where c is cohesion for the associated flow rule, and:
.

D = c·V (6)

for the non-associated flow rule.
In the general case, it is possible to distinguish some typical mechanisms relating to

the adopted division of the embankment or slope, along with the adopted behavior of the
separate parts and the planes of their mutual displacement, as described in more detail
in [24,30].

Regardless of the mechanism adopted, a hodograph—a velocity plan incorporating ve-
locity vectors related to a common pole—should be made in each case, using the properties
of the velocity field [30].

Figure 4 shows three simple kinematically admissible mechanisms along with velocity
hodographs for the associated flow rule.
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The solution for determining the force required to implement the adopted kinematic
mechanism can be found by applying the block equilibrium method or the energy method.

The first method involves determining the forces acting on the various parts of the
considered system, and the graphical or mathematical solution is based on the estimation
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of the unknown force values. The energy method involves determining the maximum force
based on the energy balance of the system under consideration.

An example of the application of kinematically admissible methods can be found in
the work of [1], which analyzed the passive pressure acting on the retaining wall, which
results from the operation of machinery during earthworks, as well as in the work of [31],
in which the stability of slopes was estimated based on the analysis of the equilibrium of
curved slices.

3. Results
3.1. Statically and Kinematically Admissible Solution—Simple Example

As mentioned in Section 2, to calculate the upper and lower bounds of the exact
solution, both statically and kinematically admissible solutions can be constructed. The
concept of such simple solutions for a vertical slope is presented below.

3.1.1. Statically Admissible Solution—Lower Bound

It is assumed that in the areas shown in Figure 5, the state of stress is determined
by Equations (7)–(11). These relationships must be statically admissible and meet the
conditions of discontinuity of stress—dashed lines indicate the lines of discontinuity of
stress (Figure 2).
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There is no load along line AB and in Areas I and IV, it was assumed that σx = 0. In Ar-
eas III, II, and V, horizontal stress σx has to be equal and it was assumed that σx = γ(y− L).
In all areas, stresses are statically admissible, and conditions of discontinuity of stress
between areas are fulfilled.

Area I:
σy = q + γy σx = 0 (7)

Area IV:
σy = γy σx = 0 (8)

Area III:
σy = γ(y− L) σx = γ(y− L) (9)

Area II:
σy = q + γy σx = γ(y− L) (10)

Area V:
σy = yγ σx = γ(y− L

)
(11)
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It can be noticed that Area I gives the most unsafe results.
The results of the use of the Mohr–Coulomb failure criterion are shown in Figure 6.

(σ1 − σ3) = (σ1 + σ3 + 2H)sin ϕ ≡ (σ1 − σ3) =

(
σ1 + σ3 + 2

c
tan ϕ

)
sinϕ (12)

where c is cohesion, and ϕ is the internal friction angle.

q =
2Hsinϕ + (sinϕ− 1)γy

1− sinϕ
(13)

Materials 2023, 16, x FOR PEER REVIEW 7 of 20 
 

 

𝜎𝜎𝑥𝑥 = 𝛾𝛾(𝜕𝜕 − 𝐿𝐿) 𝜎𝜎𝑥𝑥 = 𝛾𝛾(𝜕𝜕 − 𝐿𝐿) (9) 

Area II:  

𝜎𝜎𝑥𝑥 = 𝑞𝑞 + 𝛾𝛾𝜕𝜕 𝜎𝜎𝑥𝑥 = 𝛾𝛾(𝜕𝜕 − 𝐿𝐿) (10) 

Area V:  

𝜎𝜎𝑥𝑥 = 𝜕𝜕𝛾𝛾  𝜎𝜎𝑥𝑥 = 𝛾𝛾(𝜕𝜕 − 𝐿𝐿) (11) 

It can be noticed that Area I gives the most unsafe results.  
The results of the use of the Mohr–Coulomb failure criterion are shown in Figure 6. 

 
Figure 6. Mohr–Coulomb condition. 

(𝜎𝜎1 − 𝜎𝜎3) = (𝜎𝜎1 + 𝜎𝜎3 + 2𝐻𝐻) sin𝑐𝑐  ≡ (𝜎𝜎1 − 𝜎𝜎3) = �𝜎𝜎1 + 𝜎𝜎3 + 2 𝑐𝑐
tan𝜑𝜑

� sin𝑐𝑐  (12) 

where c is cohesion, and φ is the internal friction angle. 

𝑞𝑞 =
2𝐻𝐻sin𝑐𝑐 + (sin𝑐𝑐 − 1)𝛾𝛾𝜕𝜕

1 − sin𝑐𝑐
 (13) 

For a slope made of a single soil type, whose angle of internal friction is 𝑐𝑐 = 20°, 
with cohesion c = 20 kPa, volume density 𝜌𝜌 = 2.15 g

cm3, and volume weight 𝛾𝛾 = 21.5 kN
m3,  

𝑞𝑞 = 14.13
kN
m

,   𝑃𝑃 = 2 ∙ 𝑞𝑞 = 28.26 kN  

The safety factor for unloaded slope q = 0. 

𝜎𝜎1 = 𝛾𝛾𝐿𝐿 (14) 

𝜎𝜎2 = 0 (15) 

𝐹𝐹 =
𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑
𝜎𝜎

= 1.33 (16) 

where𝜎𝜎 𝑑𝑑𝑑𝑑𝑑𝑑 is the allowable stress, and φ is the internal friction angle. 
It can be demonstrated that the stress state in Areas III, II, and V for q < qdop, where 

qdop is an allowable load, does not reach an arbitrarily deep boundary condition (at infin-
ity). 

3.1.2. Kinematically Admissible Solution—Associated Flow Rule—Upper Bound 
Energy dissipation for the associated flow rule, where 𝑃𝑃 = 𝑞𝑞 ∙ 𝐵𝐵𝐵𝐵,  

𝐺𝐺 = 0.5 ∙ |𝐵𝐵𝐵𝐵| ∙ |𝐵𝐵𝐵𝐵| ∙ 𝛾𝛾  

Figure 6. Mohr–Coulomb condition.

For a slope made of a single soil type, whose angle of internal friction is ϕ = 20◦, with
cohesion c = 20 kPa, volume density ρ = 2.15 g

cm3 , and volume weight γ = 21.5 kN
m3 ,

q = 14.13
kN
m

, P = 2·q = 28.26 kN

The safety factor for unloaded slope q = 0.

σ1 = γL (14)

σ2 = 0 (15)

F =
σdop

σ
= 1.33 (16)

where σ dop is the allowable stress, and ϕ is the internal friction angle.
It can be demonstrated that the stress state in Areas III, II, and V for q < qdop, where qdop

is an allowable load, does not reach an arbitrarily deep boundary condition (at infinity).

3.1.2. Kinematically Admissible Solution—Associated Flow Rule—Upper Bound

Energy dissipation for the associated flow rule, where P = q·BC,

G = 0.5·|BC|·|BA|·γ

V0(y + P) = V1·sin25◦·AC·c

V0 = V1·sin25◦ (17)
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and the energy equilibrium condition is defined by the relation:

V0(G) = V1·cosϕ·c·AC (18)

Hence, for the data adopted:

q = 41.43
kN
m

The safety factor (for the unloaded slope) is defined as the ratio of the energy dispersed
at the slip line to the energy of the sliding block.

F =
V1·cosϕ·AC·c

V0(G)
= 2.93 (19)

To calculate the forces and the safety factor, the block balance method (Figure 7),
equivalent to the energy method, or a simpler method, i.e., energy dissipation, can be used.
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3.1.3. Kinematically Admissible Solution—Non-Associated Flow Rule—Lower Bound

From the energy equilibrium condition,

V0(G + P) = V1·AC (20)

Hence, for the data adopted:

q = 18.52
kN
m

The safety factor for unloaded slope is:

F =
V1·c·AC
V0(G)

= 1.86 (21)

Table 1 summarizes the load values and safety factors estimated using the three
calculation methods.

Table 1. Load values and safety factors obtained using three calculation methods.

Method A Statically Admissible
Solution—Lower Bound

Associated Flow
Rule—Upper Bound

Non-Associated Flow
Rule—Upper Bound

Safety factor 1.33 2.93 1.86

The distinction between the non-associated (Figure 8) and associated flow rule (Figure 7)
exists in the intrinsic property of a material and has to be established/assumed. Not
knowing this material property, to describe the slope sliding process, both rules were
applied, and safety factors were calculated for comparison. In the case of material described
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using a non-associated flow rule, a solution closer to a statically admissible solution is
obtained, which is thus closer to a precise solution.
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3.2. Simple Kinematically Admissible Solutions for the Slope Stability Problem—Comparison with
the Classical Fellenius Method
3.2.1. Slope Stability—The Fellenius Method

As the first computational example, the bearing capacity of a slope was analyzed,
inclined at an angle of 60◦ and built of a single type of soil (clayed sand), with angle of
internal friction ϕ = 20◦, cohesion c = 20 kPa, and volumetric density ρ = 2.15 g

cm3 .
Figure 9 shows a diagram of the analyzed slope, where, according to the Fellenius

method, the point of theoretical rotation O is marked, with the following coordinates
x = 0.25 m and y = 7.75 m, and the cylindrical slip plane is plotted.
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The area thus defined was divided into 11 (Figure 10) slices with a width B of no more
than 0.73 m according to Equation (1):

B ≤ 0.1·R (22)

where B is the width of the block (slice); R is the radius of rotation of the block.
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Figure 10. (a) Division of the slope into slices with a diagram of the forces acting on a slice; (b) distri-
bution of forces in a single slice.

The values of the forces acting on each block (slice) are determined using Equations (2)–(5).

Gi = Pi·γ (23)

where Gi is the weight of a single block, Pi is the area of a separate block, and γ is the
volumetric weight of the soil (21.9 kN/m3).

Ni = Gni = Gi·cos αi (24)

Ni is the normal component. cos αi is the cosine of angle alpha.

Sti = c·li + Ni·tgφ (25)

c is cohesion; li is the length of the section of contact between the block and the base; tgφ is
the tangent of the internal friction angle.

Gsi = Gi·sin αi (26)

The holding moment Mu and the moment of causing rotation Mo are given by the
following correlation:

Mu =
n

∑
i=1

(r·Sti) =
n

∑
i=1

(r·(Ni·tgφ + c·li)) = 2555.6 kNm (27)

Mo = ∑n
i=1(r·Gi·sin αi) = 1514.6 kNm (28)

Hence, the slope safety factor F (7) is:

F =
Mu

Mo
= 1.7 > 1.0 (29)

Thus, the slope can be considered stable.
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3.2.2. Kinematically Admissible Solution—One Slip Line Associated Flow Rule

An analysis was also conducted for a simpler case, where the slope landslide was
modeled as a single block (for which the parameters are summarized in Table 2). In this
case, too, both associated and non-associated flow rules were used.

Table 2. Parameters of the separated block.

Block Area Pi (m2) Side lengths Li
(m) Weight G = Pi·γ (kN) Tangential Component

C = c·Li (kN)

ABC 11.5 |AB| = 4.6 |AC| = 5.8 |BC| = 9.0 248 c·|BC| = 180 kN

For the associated flow rule, the distribution of forces and velocities and hodograph
are shown in Figures 11 and 12.

V01 = V1·sin(α) (30)
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Hence:
Fo = G1·V01 = 59.5 kN·V1 (31)

Fu = |BC|·c·V1·cos φ = 169.2 kN·V1 (32)

F =
Fu

Fo
=

169.2 kN·V1

59.5 kN·V1
= 2.8 (33)

Fu ≥ Fo (34)
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3.2.3. Kinematically Admissible Solution—One Slip Line (Non-Associated Flow Rule)

For the non-associated flow rule, the velocity distribution and the hodograph are
shown in Figures 13 and 14.

V01 = V1·sin(α) = 0.55·V1 (35)
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Hence:
Fo = G1·V01 = 136.4 kN·V1 (36)

Fu = |BC|·c·V1 = 180 kN·V1 (37)

F =
Fu

Fo
=

180 kN·V1

136.4 kN·V1
= 1.3 (38)

3.2.4. Kinematically Admissible Solution for an Associated Flow Rule

The stability analysis of the selected slope was also carried out by assuming two rigid
blocks as the failure mechanism. The area at risk of the landslide was assumed to be as in
the Fellenius method, entering the rigid area—the triangle ∆ABC and ∆ACD.

Figures 15 and 16 show the slip lines and velocities of each block and the forces acting
on the slip lines.
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Figure 17 shows the hodograph where for the associated flow rule α = 33.4◦.
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The geometric parameters of the adopted fields are given in Table 3.
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Table 3. Geometric parameters of the adopted fields.

Block Area Pi (m2) Side Lengths Li
(m)

Weight G = Pi·γ
(kN)

Tangential Component
C = c·Li (kN)

ABC 7.17 |AB| = 4.61 |AC| = 3.87 |BC| = 3.87 154.2 c·|AC| = c·|BC|= 77.4 kN
ACD 10.25 |AD| = 5.77 |AC| = 3.87 |CD| = 5.52 220.4 c·|CD|= 110.4 kN

The energy method was used to determine the safety of the slope.

Fu =
n

∑
i=1

(Li·c·Vi·cos ϕ) (39)

Fo =
n

∑
i=1

(Gi·V0i) (40)

V1 = V12 (41)

V2 = 2·V1·cos(α) = 1.67·V1 (42)

V01 = V1·sin (α) =0.55·V1 (43)

V02 = 0 (44)

Hence,
Fo = G1·V01 + G2·V02 = 84.8 kN·V1 (45)

Fu = |BC|·c·V1·cos φ + |AC|·c·V12·cos φ + |CD|·c·V2·cos φ = 286.17 kN·V1 (46)

Fu ≥ Fo (47)

F =
Fu

Fo
= 3.4 (48)

3.2.5. Kinematically Admissible Solution for a Non-Associated Flow Rule

Figure 18 shows the velocity distribution on the BC, AC, and DC slip lines, and
Figure 19 shows the hodograph.

Fu =
n

∑
i=1

(Li·c·Vi·cos φ) (49)

Fo =
n

∑
i=1

(Gi·V0i) (50)

V01 = V1·cos(γ) = 0.80·V1 (51)

V2 = V1·
sin(γ)
cos(α)

·
(

1 +
cos(γ + α)

cos(γ− α)

)
= 0.999·V1 (52)

V02 = V2·sin(α) = 0.34·V1 (53)

V12 = V1·
cos(γ + α)

cos(γ− α)
= 0.57·V1 (54)
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Hence:
Fo = G1·V01 + G2·V02 = 198.4 kN·V1 (55)

Fu = |BC|·c·V1 + |AC|·c·V12 + |CD|·c·V2 = 234.0 kN·V1 (56)

F =
Fu

Fo
=

234.0 kN·V1

198.4 kN·V1
= 1.2 (57)

3.2.6. Kinematically Admissible Solution—Associated Flow Rule

The stability analysis of the selected slope was also carried out using a system of four
blocks in the rigid area—the triangles ∆ABC, ∆ACD, ∆ADE, and ∆AEF.

Figure 20 shows the slip lines and velocities of each block, as well as the forces acting
on the slip lines, whose geometric parameters for the associated flow rule are given in
Table 4.

Table 4. Geometric parameters of adopted fields.

Block Field Pi (m2) Side Lengths Li
(m)

Weight G = Pi·γ
(kN)

Tangential Component
C = c·Li (kN)

ABC 3.27 |AB| = 4.61 |AC| = 4.15 |BC| = 1.59 70.3 c·|AC| = 83.0 kN
c·|BC| = 31.8 kN

ACD 4.53 |AC| = 4.15 |AD| = 3.96 |CD| = 2.34 97.4 c·|AD| = 79.2 kN
c·|CD| = 46.8 kN

ADE 5.36 |AD| = 3.96 |AE| = 4.54 |DE| = 2.72 115.2 c·|AE| = 90.8 kN
c·|DE| = 54.4 kN

AEF 6.56 |AE| = 4.54 |AF| = 5.77 |EF| = 2.92 141.0 c·|EF| = 58.4 kN
c·|AE| = 90.8 kN
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Figure 20. Distribution of forces acting in the slope according to the adopted kinematically admissible
solution.

Figure 21 shows the velocity hodograph.
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The energy method was used to determine the safety of the slope.

Fu =
n

∑
i=1

(Li·c·Vi·cos ϕ) (58)

Fo =
n

∑
i=1

(Gi·V0i) (59)

Fu ≥ Fo (60)

F =
Fu

Fo
= 2.2 (61)
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3.2.7. The Kinematically Admissible Solution—The Associate Flow Rule

An analysis was also performed for the non-associated flow rule. Figure 22 shows the
slip and velocity lines of each block and the forces acting on the slip lines.
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The energy method was used to determine the safety of the slope.

Fu =
n

∑
i=1

(Li·c·Vi) (62)

Fo =
n

∑
i=1

(Gi·V0i) (63)

Fu ≥ Fo (64)
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F =
Fu

Fo
= 1.3 (65)

A summary of the results is presented in the Table 5.

Table 5. Summary of the test results.

Used Method Safety Factor

Fellenius Method F = Mu
Mo

= 1.7

Kinematically admissible solution—one block
non-associated flow rule F = Fu

Fo
= 1.3

associated flow rule F = Fu
Fo

= 2.8

Kinematically admissible solution—two blocks
non-associated flow rule F = Fu

Fo
= 1.2

associated flow rule F = Fu
Fo

= 3.4

Kinematically admissible solution—four blocks
non-associated flow rule F = Fu

Fo
= 1.3

associated flow rule F = Fu
Fo

= 2.2

As mentioned before, the distinction between the non-associated and associated flow
rule exists in the intrinsic property of a material and has to be established/assumed. Not
knowing such material property, to describe the slope sliding process, both rules were
applied, and safety factors were calculated for comparison.

In this paper, where the Mohr–Coulomb medium is discussed, we assume the Tresca
potential for the non-associated flow rule. It is worth mentioning that potentials other than
the Tresca potential can be taken into account to describe material behavior.

In the case of the Fellenius method, the safety factor was built in terms of the moment
ratio, since the “block rotation” mechanism was assumed, and the comparison of the
holding moment and moment-rotation is most appropriate.

In the case of kinematically admissible mechanisms, the mechanism of sliding blocks
is assumed, and the comparison of work rate was used to calculate the safety factor.

4. Conclusions

This paper presents the application of simple plasticity theory solutions that give a
basic assessment of slope stability and bearing capacity for simple cases. Using very simple
kinematically admissible solutions, it is easy to assess the stability or bearing capacity of a
slope. The calculations presented in Section 3.1 show that for a material described using the
non-associated flow rule, the solution is close to that obtained with the Fellenius method.
This way one can have a simple and quick rough estimation of slope stability.

Even a very simple kinematically admissible mechanism (one sliding block), inscribed
in the landslide area determined with the Fellenius method, can be taken into consideration
(Table 5).

The authors plan to carry on further research on this subject, including experimen-
tal studies.

Author Contributions: Conceptualization, W.T. and K.B.; methodology, W.T., K.B. and M.B.; software,
K.B.; validation, W.T.; formal analysis, K.B., M.B. and W.T.; investigation, K.B., M.B. and W.T.;
resources, W.T.; data curation, K.B., M.B. and W.T.; writing—original draft preparation, K.B. and
W.T.; writing—review and editing, W.T. and M.B.; visualization, K.B., M.B. and W.T.; supervision,
W.T.; project administration, W.T.; funding acquisition, W.T. All authors have read and agreed to the
published version of the manuscript.

Funding: Source of financing—statutory work no 02.0.18.00/1.02.001, SUBB. BKWK.23.003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Materials 2023, 16, 7074 19 of 20

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, C.; Huang, Y.; Zhan, L.-T. SPH-based simulation of flow process of landslide AT Hongao landfill in China. Nat. Hazards

2018, 93, 1113–1126. [CrossRef]
2. Zhu, C.; Huang, Y. Numerical simulation of earthquake-induced landslide run-out. Jpn. Geotech. Soc. Spec. Publ. 2016, 2, 938–941.

[CrossRef]
3. Huang, Y.; Zhu, C. Simulation of flow slides in municipal solid waste dumps using a modified MPS method. Nat. Hazards 2014,

74, 491–508. [CrossRef]
4. PN-EN 1997-1; Eurocode 7: Geotechnical Design—Part 1: General Rules. SAI: Warsaw, Poland, 1997.
5. Bond, A.J.; Shuppener, B.; Scarpelli, G.; Orr, T.L.L. Eurocode 7: Geotechnical Design Worked examples. In Proceedings of the JRC

Scientific and Policy Reports, Dublin, Ireland, 13–14 June 2013; pp. 59–63.
6. Pantelidis, L.; Griffiths, D.V. Integrating Eurocode 7 (load and resistance factor design) using non-conventional factoring strategies

in slope stability analysis. Can. Geotech. J. 2004, 51, 208–216.
7. Länsivaara, T.; Poutanen, T. Slope stability with partial safety factor method. In Proceedings of the 18th International Conference

on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 September 2013.
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