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Abstract: To investigate proposed ferromagnetic fluctuations in the so-called single-layer Bi-2201 and
La-214 high-Tc cuprates, we performed magnetization and electrical resistivity measurements using
single-layer Tl-2201 cuprates Tl2Ba2CuO6+δ and La-214 La2−xSrxCuO4 in the heavily overdoped
regime. Magnetization of Tl2Ba2CuO6+δ and La2−xSrxCuO4 exhibited the tendency to be saturated in
high magnetic fields at low temperatures, suggesting the precursor behavior toward the formation of
a ferromagnetic order. It was found that the power of temperature n obtained from the temperature
dependence of the electrical resistivity is ~4/3 and ~5/3 for Bi-2201 and La2−xSrxCuO4, respectively,
and is ~4/3 at high temperatures and ~5/3 at low temperatures in Tl2Ba2CuO6+δ. These results sug-
gest that two- and three-dimensional ferromagnetic fluctuations exist in Bi-2201 and La2−xSrxCuO4,
respectively. In Tl2Ba2CuO6+δ, it is suggested that the dimension of ferromagnetic fluctuations
is two at high temperatures and three at low temperatures, respectively. The dimensionality of
ferromagnetic fluctuations is understood in terms of the dimensionality of the crystal structure and
the bonding of atoms in the blocking layer.

Keywords: ferromagnetic fluctuation; Tl-2201 cuprate; La-214 cuprate; Bi-2201 cuprate; electrical
resistivity; magnetization

1. Introduction

In the study of high-Tc cuprate superconductivity, it is important to clarify the link
between the magnetism and superconductivity, and therefore, huge amounts of study have
been performed [1]. In the hole-doped cuprates, the parent compound without carrier
doping is an antiferromagnetic (AF) Mott insulator, and a small amount of hole doping
causes the AF order to disappear and superconductivity to emerge. AF spin fluctuations
have been observed in the hole concentration regime where superconductivity appears,
and an idea is that AF fluctuations are related to the formation of superconducting electron
pairs. In the so-called La-214 cuprates, the charge-spin stripe order and its fluctuations
have also been observed [2]. In other cuprates, the charge order and its fluctuations have
been observed from recent X-ray scattering and NMR experiments, and the relation to the
so-called pseudogap has been discussed [3].

In the overdoped regime, an anomalous metallic state, as well as the disappearance
of the pseudogap, has been observed [4]. Moreover, the disappearance of the stripe fluc-
tuations [5] and a phase separation into superconducting and normal-state regions [6–8]
have also been suggested. For spin fluctuations, neutron scattering experiments in the
La-214 cuprate La2−xSrxCuO4 (LSCO) have revealed that AF fluctuations weaken with
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overdoping and disappear together with superconductivity, suggesting the close relation-
ship between AF fluctuations and superconductivity [9]. On the other hand, resonant
inelastic X-ray scattering (RIXS) experiments using LSCO thin films have reported robust
AF fluctuations in the non-superconducting heavily overdoped regime [10]. These indicate
that the relationship between superconductivity and AF fluctuations is yet to be solved.

Formerly, it has been proposed from theories [11,12] and experiments [13–15] that
ferromagnetic orders/fluctuations exist in the heavily overdoped regime and are related
to the suppression of superconductivity. Calculations by Teranishi et al. using the FLEX
approximation with the one-band Hubbard model have suggested that the spin suscepti-
bility approaches q = (0,0) in the heavily overdoped regime [16]. It has been suggested in
calculations of the four-band d-p model by Watanabe et al. that the magnetic moment is
enhanced in the heavily overdoped regime [17]. Experimentally, measurements of muon
spin relaxation (µSR) and the ab-plane electrical resistivity ρab in heavily overdoped LSCO
conducted by Sonier et al. [13] have revealed the enhancement of spin fluctuations and the
behavior of the resistivity characteristic of three-dimensional ferromagnetic fluctuations
via itinerant electrons, according to the self-consistent renormalization (SCR) theory [18].
We have also measured ρab, magnetization, specific heat, and µSR in the single-layer Bi-
2201 cuprate (Bi,Pb)2Sr2CuO6+δ [14] and found that spin fluctuations are enhanced at low
temperatures, and the magnetization curve saturates at low temperatures in high magnetic
fields. Moreover, ρab, specific heat, and magnetic susceptibility have shown characteristic
behavior of two-dimensional ferromagnetic fluctuations [18]. In Fe-substituted Bi-2201
cuprate Bi1.74Pb0.38Sr1.88Cu1−yFeyO6+δ, we have observed from magnetization measure-
ments that ferromagnetic fluctuations are enhanced by the Fe substitution [19]. RIXS
measurements in Bi-2201 have reported the enhancement of spin fluctuations at q ~ (0,0) in
the heavily overdoped regime [20]. These results suggest that two-dimensional ferromag-
netic fluctuations exist in heavily overdoped Bi-2201. In the electron-doped La2−xCexCuO4
in the heavily overdoped regime, the formation of a ferromagnetic order is suggested from
measurements of the resistivity, magnetization, polar Kerr effect, etc. [15].

To gain insight into the difference in the dimensionality of ferromagnetic fluctuations
between LSCO and Bi-2201, we investigated the single-layer Tl-2201 cuprate Tl2Ba2CuO6+δ,
in which the non-superconducting heavily overdoped regime is accessible and the CuO2
plane is rather flat. The electrical resistivity and magnetization were measured in heavily
overdoped Tl-2201 as well as in heavily overdoped LSCO for comparison.

2. Experimental

Polycrystals of Tl2Ba2CuO6+δ and single crystals of LSCO were prepared by the solid-
state reaction [21] and floating zone [22] method, respectively. The obtained samples
were confirmed to be of the single phase by X-ray diffraction analysis. The single domain
structure of LSCO crystals was confirmed by the X-ray back-Laue photography. For
Tl2Ba2CuO6+δ, annealing was performed in 1–3 atm oxygen or 1 atm Ar flow to control the
hole concentration. LSCO single crystals were annealed in 1 atm oxygen at 900 ◦C for 50 h,
followed by annealing at 500 ◦C for 50 h to compensate for the oxygen deficiency [23].

The Sr concentration of LSCO was found to be x = 0.29 from inductively coupled
plasma analysis. The oxygen deficiency d of LSCO estimated from iodometric titration
was found to be d = 0.005(10) in La2-xSrxCuO4-d, indicating our LSCO crystals were almost
stoichiometric. The hole concentration of Tl2Ba2CuO6+δ was determined from the empirical
formula for the superconducting transition temperature, Tc, and hole concentration per
Cu, p, by Presland et al. [24]. The electrical resistivity was measured by the dc four-
probe method, and the magnetization was measured using a superconducting quantum
interference device magnetometer (Quantum Design (Tokyo, Japan), MPMS) in magnetic
fields between ±5 T.
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3. Results

Figure 1a shows the magnetization curves of Tl2Ba2CuO6+δ with p = 0.265 in the
heavily overdoped regime (Tc ~ 6 K). Above 10 K, the magnetization exhibits paramag-
netic behavior (linear in the magnetic field). The slope of magnetization increases with
decreasing temperature, in agreement with the previous results [25], where the magnetic
susceptibility exhibits a Curie-like behavior. It is found that the magnetization is slightly
curved in the high-field region at 5 K, and it tends to saturate in the high-field region at 2 K.
A tiny hysteresis behavior is observed between the increasing and decreasing magnetic
field, around the zero field at 2 K. This might originate from the pinning of the supercon-
ducting vortices, tiny ferromagnetic ordered regions, or others. The overall behavior of
the magnetization curve in LSCO with x = 0.29, shown in Figure 1b, is almost identical
to that in Tl2Ba2CuO6+δ. At 2K, however, a hysteresis behavior in low fields is apparent,
which may be due to weak superconductivity, as observed in the resistivity in Figure 2a.
The tendency of the saturation of the magnetization in heavily overdoped Tl2Ba2CuO6+δ
and LSCO is similar to those observed in heavily overdoped Bi-2201 [14] and probably
indicates the enhancement of ferromagnetic fluctuations.
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Figure 1. Magnetization curves of heavily overdoped (a) Tl2Ba2CuO6+δ (p = 0.265) and
(b) La2−xSrxCuO4 (x = 0.29).

Figure 2a shows the temperature dependence of the electrical resistivity of
Tl2Ba2CuO6+δ with p = 0.265 and LSCO with x = 0.29, as well as heavily overdoped Bi-
2201 [14]. The superconducting transition is observed at low temperatures in Tl2Ba2CuO6+δ.
For LSCO, the superconducting transition is also observed at low temperatures, which
may be due to the slightly non-uniform Sr distribution in the crystal. Figure 2b shows
the temperature dependence of the electrical resistivity, plotted as the resistivity vs. T4/3,
for Tl2Ba2CuO6+δ as well as our previously reported heavily overdoped Bi-2201 single
crystal [14]. In heavily overdoped Bi-2201, ρab follows T4/3 in a wide temperature range
below room temperature, suggesting the enhancement of two-dimensional ferromagnetic
fluctuations. In Tl2Ba2CuO6+δ, the behavior of resistivity is proportional to T4/3 above
~160 K, shown by an arrow, and the resistivity deviates upwards from the linear relation
between the resistivity and T4/3 below ~160 K.
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Figure 2. Temperature dependence of the electrical resistivity plotted against (a) T, (b) T4/3,
and (c) T5/3 in heavily overdoped Tl2Ba2CuO6+δ (p = 0.265), La2−xSrxCuO4 (x = 0.29), and
Bi1.77Pb0.33Sr1.90CuO6+δ (p = 0.281) [14]. Orange arrows in (b,c) indicate the temperature where
the resistivity deviates from the linear relation between the resistivity and T4/3 (T5/3). Note that the
resistivity of La2−xSrxCuO4 and Bi1.77Pb0.33Sr1.90CuO6+δ is the ab-plane resistivity ρab.

A plot of the temperature dependence of the resistivity of Tl2Ba2CuO6+δ on T5/3 is
shown in Figure 2c, together with the results of LSCO with x = 0.29. The ρab of LSCO is
proportional to T5/3 in a wide temperature range above Tc, while for LSCO with x = 0.33,
Fermi-liquid behavior proportional to T2 is observed below 50 K [13]. The difference in
the temperature range of T5/3 may be related to the hole concentration. It is found that
the resistivity of Tl2Ba2CuO6+δ is proportional to T5/3 below ~160 K down to Tc. These
results are summarized as ρab being proportional to T4/3 for Bi-2201 and being proportional
to T5/3 for LSCO in a wide temperature range, while the temperature dependence of the
resistivity changes between T4/3 and T5/3 around 160 K for Tl2Ba2CuO6+δ.

The temperature dependence of the resistivity was fitted by the equation
ρ = A + BTn to estimate the power of temperature n. The dependencies of n and Tc
on the hole concentration in Tl2Ba2CuO6+δ and LSCO are shown in Figure 3, together
with our former results of Bi-2201 [14] and preceding results of Tl2Ba2CuO6+δ [25] and
LSCO [13]. For Tl2Ba2CuO6+δ, both n values obtained above and below ~160 K are shown.
For the preceding LSCO [13], both n values obtained at high and low temperatures are
shown. Circles indicate the n values obtained by fitting the entire temperature range. For
Tl2Ba2CuO6+δ, n obtained above ~160 K is close to 4/3 in the heavily overdoped regime,
which is similar to that of Bi-2201. On the other hand, n below ~160 K is close to 5/3. For
LSCO with x = 0.29, n ~ 5/3, in agreement with that for x = 0.33 at high temperatures [13].
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4. Discussion

The magnetization curves in heavily overdoped Tl2Ba2CuO6+δ and LSCO showed
that the magnetization tended to saturate at low temperatures in high magnetic fields.
Such behavior has also been observed in heavily overdoped Bi-2201 [14] and LSCO [13].
Therefore, it is likely that ferromagnetic fluctuations also develop at low temperatures in
Tl2Ba2CuO6+δ, which is consistent with the theoretical indication [11]. The SCR theory
suggests that n = 4/3 is characteristic of two-dimensional ferromagnetic fluctuations and
n = 5/3 of three-dimensional ferromagnetic fluctuations [18]. Therefore, in the heavily
overdoped regime, it is likely that three-dimensional ferromagnetic fluctuations exist in
LSCO and two-dimensional ferromagnetic fluctuations in Bi-2201. For heavily overdoped
Tl2Ba2CuO6+δ, it is likely that two-dimensional ferromagnetic fluctuations exist at high
temperatures and three-dimensional fluctuations at low temperatures.

The difference in the dimensionality of ferromagnetic fluctuations in Tl2Ba2CuO6+δ,
LSCO, and Bi-2201 may originate from the difference in the strength of the spin correlation
of itinerant electrons between the CuO2 planes. As the strength of the spin correlation
perpendicular to the CuO2 plane is strongly influenced by the crystal structure, the longer
the distance between the CuO2 planes, the more likely it is that two-dimensional ferro-
magnetic fluctuations will develop. The interplane distances between the CuO2 planes of
Bi-2201, Tl2Ba2CuO6+δ, and LSCO are about 12.3 Å, 11.6 Å, and 6.6 Å, respectively. The
present results indicate that the temperature range where three-dimensional ferromagnetic
fluctuations are observed is wider with the shorter interplane distance between the CuO2
plane. The reason for the difference in the dimensionality of the ferromagnetic fluctu-
ations developed in Bi-2201 and Tl2Ba2CuO6+δ may also be related to the difference in
the bonding of atoms in the blocking layer. In Bi-2201, due to the lone pair of electrons
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of Bi in the blocking layer, two overlapping BiO planes are electrically repulsive, so that
the BiO planes are weakly coupled via van der Waals force. On the other hand, it is
known in Tl2Ba2CuO6+δ that the TlO planes are covalently bonded with each other and
the LaO planes in LSCO are bonded with each other via ionic coupling. It is therefore
likely that the ferromagnetic correlation crossovers from two to three dimensions with
decreasing temperature in Tl2Ba2CuO6+δ owing to the coupling between the CuO2 planes
being stronger at low temperatures, while they are very two-dimensional in Bi-2201 over a
wide temperature range.

Anomalous metallic states have been proposed in the overdoped regime of single-layer
copper oxides. In the resistivity of LSCO [26] and Tl2Ba2CuO6+δ [27], it has been suggested
that the T linear component observed near the optimally doped regime extends into the
overdoped regime and coexists with the Fermi-liquid T2 component. It is a future issue to
clarify how they connect and whether they are compatible with the characteristic behavior
of ferromagnetic fluctuations in the heavily overdoped cuprates.

5. Summary

Magnetization curves and electrical resistivity of single-layer Tl2Ba2CuO6+δ, LSCO,
and Bi-2201 cuprates in the heavily overdoped regime were measured. The magnetization
revealed a tendency to saturate at low temperatures in high magnetic fields, which is
considered to be a precursor phenomenon to the formation of a ferromagnetic order. The
power of temperature n obtained by fitting the temperature dependence of the electrical
resistivity was found to be ~4/3 for Bi-2201 and ~5/3 for LSCO. These results suggest
the enhancement of two-dimensional and three-dimensional ferromagnetic fluctuations in
Bi-2201 and LSCO, respectively. In Tl2Ba2CuO6+δ, n ~ 4/3 at high temperatures and n ~ 5/3
at low temperatures, suggesting that two-dimensional ferromagnetic fluctuations at high
temperatures crossover to three-dimensional ones at low temperatures. The differences in
dimensionality may be understood in terms of the dimensionality of the crystal structure
and bonding strength of atoms in the blocking layer. It is concluded that ferromagnetic
fluctuations are universal in the heavily overdoped regime of the single-layer cuprates.
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