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Abstract: The surface layer of 8407 die steel was strengthened using the combination of ultrasonic
surface rolling and high-energy ion implanting in the present work. The strengthened layer was
then characterized via microstructure observation, composition analysis, and hardness test. After
that, the frictional wear and thermal fatigue properties of high-energy ion implanting specimens and
composite-reinforced specimens were compared. Results show that the pretreatment of specimens
with ultrasonic surface rolling causes grain refinement in the material surface, which promotes
the strengthening effect of high-energy ion implanting. The wear volume of composite-reinforced
specimens at medium and high frequencies is reduced by about 20%, and the wear resistance of these
specimens is significantly improved with a lower friction coefficient and wear volume at moderate
and high frequencies in alternating load friction experiments. Meanwhile, the thermal fatigue crack
depth of composite-reinforced specimens is reduced by about 47.5%, which effectively prevents the
growth of thermal cracks in the surface, thus improving the curing ability of the implanted elements.
Therefore, composite strengthening of the mold steel surface is conducive to improving the cycle
life, ensuring accuracy, effectively hindering the expansion of thermal cracks, and saving the cost
of production.

Keywords: frictional wear; thermal fatigue; ultrasonic surface rolling; high-energy ion implanting

1. Introduction

Currently, molds are liable to premature failure under complex working conditions. In
light of this, surface strengthening is usually adopted to extend their service life. Strength-
ening processes such as nitriding, laser cladding, thermal spraying, and ion implanting
are commonly used to improve the hardness, wear resistance, and thermal fatigue proper-
ties of die steel [1–4]. Among these processes, high-energy ion implanting (HEII) shows
superior advantages. For instance, no shedding phenomenon occurs, since the modified
layer has no clear interface with the base material. Also, it does not change the original
size and roughness of the workpiece, which is suitable for the final fabrication sequence of
all precision parts. Although high-energy ion implanting can improve the wear resistance
of various components, its implanting is fairly limited [5,6]. Considering this, surface
self-nanocrystallization like shot peening, for example, is used as pretreatment. This is
because grain refinement occurs after the severe plastic deformation of the material surface,
accompanied by an increase in non-equilibrium defects and dislocation density, which pro-
vides more channels for ion diffusion. At the same time, shot blasting effectively improves
the hardness of the original material, and the residual stress generated in the surface can
prolong the fatigue life [7–12]. However, shot peening leaves pits on the material surface,
leading to an increase in surface roughness, which greatly offsets the superior effects of ion
implanting. It is therefore very necessary to introduce a surface self-nanocrystallization
process with high precision. The ultrasonic surface rolling process (USRP) meets all of the
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requirements. The USRP can generate gradient nanostructure and residual compressive
stress in the surface layer, as well as improve the hardness and surface smoothness, which
can effectively prevent the initiation and propagation of cracks in the material surface [13].

The ultrasonic surface rolling process has been applied to modify the structural com-
ponents of various complex states, such as fatigue, corrosion, and wear [14–17]. It acts
on the surface of the material at a slow pace of motion to ensure uniform high-frequency
impacting and micro-deformation. The combination of ultrasonic surface rolling and
ion implanting will have a benign effect on each other and together obtain a satisfying
strengthening effect [18–20]. The spherical rolling head creates microscopic grooves on
the material surface during its movement and the appropriate parameters result in a high
density of microstructure, which also results in an improvement in friction and wear
properties [21,22].

For better understanding of the effective role of ultrasonic surface rolling on high-
energy ion implanting, the ultrasonic surface rolling pretreatment followed by high-energy
ion implanting of silicon nitride on the surface of 8407 die steel was carried out in this
paper. Then, the friction resistance and thermal fatigue properties of the strengthened
material surface were studied in detail. Relevant results will lay a foundation for the further
application of the ultrasonic surface rolling process.

The contact points between the mold surface and the molding material are widely
distributed, and the force during processing changes with the deformation demand of the
workpiece. Therefore, it is subjected to alternating force during mold processing. Studying
the friction and wear behavior of die steel under alternating load has a very practical
research value. During the molding process, heat is transferred from the surface of the
mold to the inside, forming a temperature gradient and resulting in the uneven heating of
the mold as a whole. Under the action of the temperature gradient, the thermal deformation
of the mold is not uniform. The thermal deformation of the surface is constrained, and
when the thermal deformation limit is exceeded, the plastic deformation of the surface will
lead to cracking, forming a thermal crack [23,24]. It has become a key research direction to
solve the friction wear and thermal cracking failure of die steel surfaces in long-term use.

2. Materials and Methods

The material used in this study was 8407 die steel (Jiangsu Changhu Industrial Co.,
Ltd., Suzhou, China) in annealed conditions with the chemical composition shown in
Table 1. The 8407 die steel, with an original dimension of 170 mm × 170 mm × 6 mm,
was polished using 600, 800, and 1000 grit sandpaper in turn and then cleaned in anhy-
drous ethanol for 3 min. Partial specimens were first treated using the USRP. A HJ-III-
type ultrasonic surface rolling treatment device (Tianjin University, Tianjin, China) was
adopted for surface nano-treatment. During the ultrasonic surface rolling process, a 20 kHz
high-frequency alternating current was generated by ultrasonic power supply, and then
converted to ultrasonic mechanical vibration through a piezoelectric ceramic transducer.
The mechanical vibration acted on the mold steel surface to form plastic deformation.
When the USRP was performed, specimens were fixed in the spindle of lathe and the USRP
tool was fixed in the feed unit of lathe. With the rotation of the spindle and the feeding of
the ultrasonic tool head, the specimen surface can be treated uniformly. The processing
schematic diagram of the USRP is shown in Figure 1a. The shape of the rolled groove
caused by plastic deformation is schematically illustrated in Figure 1b. The processing
parameters of USRP are shown in Table 2. Specimens processed using the USRP are named
as USRP specimens.
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Table 1. The chemical composition of 8407 die steel (wt.%).

Element C Si Mn Cr Mo V Fe

Content 0.39 1 0.4 5.2 1.4 0.9 Residual
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Figure 1. The schematic diagram of the USRP: (a) processing principle diagram; (b) shape of the
rolled groove.

Table 2. Ultrasonic surface rolling parameters.

Frequency
/KHz

Amplitude
/µm

Spindle Speed
/r·min−1

Load
/N

Feed Rate
/mm·r−1

20 7.5 80 400 0.1

The original specimens and USRP specimens were ultrasonically cleaned in anhydrous
ethanol for 3 min and then placed in the HEII device (Borui Tiancheng Technology Co.,
Ltd., Beijing, China). All the specimens, including non-USRP-treated specimens, were
pierced and hung in a vacuum injection furnace, connecting with the cathode of the furnace.
SiN powder was also placed at the anode. Ionized ions were injected vertically into the
specimen surface. The injection penetrant powder was placed at the source of the furnace.
Test temperature was adjusted to 400–450 ◦C, and argon was used as the gas environment.
The processing parameters of HEII are shown in Table 3.

Table 3. The processing parameters of HEII.

Voltage/V Furnace
Pressure/Pa

Heat Preservation
Temperature/◦C

Heat Preservation
Time/h

1000 20 450 80

The high-temperature environment can reduce the activation energy of the material
surface, which is conducive to the depth of the ion implantation layer under high pressure.
Argon is introduced into the HEII device to protect specimens from oxidation in the high-
temperature environment. For simplicity, specimens are named as HEII specimens and
USRP+HEII specimens, respectively. Three specimens were prepared using each of the
above parameters.

These specimens were cut into small pieces, and then ground, polished, and etched
sequentially to prepare for micro-observation. A 4% nitric acid alcohol solution was used for
corrosion. The cross-sectional metallographic structure was observed using a Zeiss Scope
Al type optical microscope (ZEISS, Oberkochen, Germany). The chemical elements were
examined using scanning electron microscopy and corresponding energy spectrometry.
The microhardness of the cross-section was measured using a MHVD-1000 MPa Vickers
microhardness tester with an applied load of 1000 g and a holding time of 15 s. Spacing of
25 µm was implemented between every two measurement points. The measurement was
repeated three times at the same depth to obtain the average value.
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A D/Max 2500 PC X-ray diffractometer (Rigaku Corporation, Tokyo, Japan) was used
to characterize the surface phases of specimens. The equipment utilized a Cu-Kα radiation
source, which emitted X-rays with λ of 1.54156 Å. The surfaces of specimens were lightly
polished with sandpaper before data acquisition. The diffraction angle was set in the range
of 20–80◦ and the scanning rate was 0.05◦/s. The measured data were processed using Jade
software 6.5 to qualitatively analyze the physical phases, and to compare the diffraction
peaks and half-peak widths before and after the tumbling treatment.

The friction and wear properties were tested using an MFT-R4000 high-speed recipro-
cating friction and wear tester (CHENGXINSHIYANSHEBEI Limited Company, Zhangji-
akou, China), as shown in Figure 2a. The specimen surface was lubricated by applying
lubricant at a temperature of 200 ◦C with a frequency of 10 Hz. The variation of test load
within one cycle is shown in Figure 3, and the alternating load was repeated until the end
of the test.
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The thermal fatigue test was performed on a thermal fatigue tester as shown in
Figure 2b. Specimens were kept in a 600 ◦C constant-temperature oven for 225 s and then
cooled in 25 ◦C flowing water for 5 s. The time it took to transfer from the oven to the
flowing water was 10 s. This cycle was repeated 1920 times.

3. Results and Discussion
3.1. Surface Characterization

The cross-sectional microstructures of the HEII specimen and the USRP+HEII speci-
men are shown in Figure 4. As can be seen, the metallographic structure is mainly composed
of austenite and ferrite in both types of specimens. The Si and N elements hit the surface
of the specimen with high kinetic energy, resulting in a deeper color compared to that of
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the matrix. The thickness of the deeper color layer of the HEII specimen and USRP+HEII
specimen is about 37 µm and 62 µm, respectively. Clearly, the USRP+HEII specimen has
better elemental enrichment. The combined rolling and ultrasonic peening leads to an
increase in grain boundaries and other microscopic defects, which facilitate the diffusion
process of infiltrated elements from the specimen surface into the matrix, thus presenting a
deep injection layer.
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The EBSD images of the HEII specimen and USRP+HEII specimen are shown in
Figure 5. It can be seen from Figure 5a that grains in the surface of the HEII specimen remain
the original size of about 40 µm. In Figure 5b, it can be observed that the undistinguished
region in the material surface after USRP treatment is larger and densely distributed
with more point-like regions, which indicates that the region undergoes denser plastic
deformation with higher grain refinement, and the depth of the deformed region is about
25 µm. The surface grains are randomly oriented and refined to nanoscale. While in
Figure 5c, comparing with the USRP sample, the grains in the surface of the USRP+HEII
sample have grown under the high-temperature environment of energetic ion impregnation.
But the size of grains is much smaller than those in the HEII sample, and the grown grains
still contribute to the improvement of the effect of energetic ion impregnation. The area of
grain refinement (in the red dashed box) is about 20 µm deep from the surface. The grains
below this area are about 15 µm in size and gradually coarsen to their original size at a
depth of 150 µm from the surface.
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(c) USRP+HEII specimen.

The cross-sectional line scanning results of the HEII specimen and USRP+HEII speci-
men are shown in Figure 6. The signal intensities of Si and N are obviously larger at the
surface of both types of specimens. As shown in Figure 6a, the intensified Si signal and
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N signal are detected as deep as 20 µm below the surface of the HEII specimen. While
for the USRP+HEII specimen in Figure 6b, the intensity of the Si element is improved
more dramatically and deeply, up to 70 µm below the surface. The N signal shows the
same trend, but the increase in strength and depth is smaller. This can be explained by the
diffusion of elements deeper into the specimen due to dislocations in the surface of the
USRP specimen, which effectively increase the thickness of the strengthened layer. The
mass percent ratios of elemental Si and N for the two specimens show that the USRP+HEII
specimen has better high-energy ion implanting.
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The X-ray diffraction patterns of the HEII-treated surface and USRP+HEII-treated
surface are shown in Figure 7. The γ-Fe, Fe3N, and Si3N4 phases appear on the surfaces of
both the HEII specimen and the USRP+HEII specimen, reflecting the fact that the presence
of reinforced phases is mainly in the form of iron compounds and silicon nitride. Compared
with the HEII specimen, the diffraction intensity of Fe3N and Si3N4 in the USRP+HEII
specimen has increased and the diffraction peaks have broadened to different degrees.
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The half-height width values of the γ-Fe diffraction peak of the HEII specimens
and USRP+HEII specimens are shown in Table 4. γ-Fe is the matrix phase of 8407 die
steel. Again, it can be seen from Table 4 that the half-height width of the matrix phase is
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significantly broadened after USRP treatment, indicating that severe plastic deformation
occurs on the specimen surface after the USRP [25].

Table 4. Half-height width variation of γ-Fe diffraction peak.

2θ 35.705 47.381 64.089

FWHM (HEII) 0.1929 0.0966 0.1550
FWHM (USRP+HEII) 0.3237 0.2344 0.4707

The cross-sectional microhardness values of the HEII specimen and USRP+HEII
specimen are shown in Figure 8. The surface hardness of the USRP+HEII specimen is
increased by 22.2% compared to that of the HEII specimen, and the average hardness of
the USRP+HEII specimen is 19.8% higher than that of the HEII specimen within 250 µm
from the surface. This is because the apparent increased hardness after the USRP is further
increased through HEII. Moreover, the diffusion concentration and depth of silicon nitride
are both improved by the pretreatment of the USRP, which is more conducive to the
improvement of hardness.
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3.2. Friction and Wear Properties

Figure 9 shows the variation of the friction coefficient for the HEII specimens and
USRP+HEII specimens at different friction frequencies with alternating friction loads. The
friction coefficient of the HEII specimens and USRP+HEII specimens decreases when the
load increases and increases when the load decreases. The USRP+HEII specimens have a
higher surface hardness than HEII specimens, and support pressure changes better when
the load changes, so their friction coefficient is more stable. The USRP+HEII specimens
have smaller and more stable friction coefficients at 4 Hz, 6 Hz, and 8 Hz.
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(b) USRP+HEII.

The morphologies of the HEII specimens at different frequencies are shown in
Figure 10a,c,e,g. The reciprocal motion of hard particles produced more furrows on the
surface of the HEII specimens, making the surface uneven. As the frequency of friction
increases, the density of furrows gradually increases. The HEII specimen has a low bond
strength between the percolation layer and the substrate, which causes flaking and de-
tachment under the pressure of reciprocal friction to form abrasive particles which are
dispersed on the surface of abrasion marks. The wear mechanism of the HEII specimen can
be concluded as aggressive abrasive and adhesive wear. Figure 10b,d,f,h show the wear
morphologies of the USRP+HEII specimens at different frequencies. Dislodged abrasive
grains, fine furrows, and shallow spalling pits can be observed on these surfaces, indicating
that the USRP+HEII specimens have good enough strength and bonding properties to cope
well with high-frequency reciprocating friction movements. The USRP+HEII specimens
present good resistance to abrasive wear with slight adhesive wear.

Figure 11 shows the wear volumes of the HEII specimen and USRP+HEII specimens
at different frequencies. Clearly, the wear volume of the HEII specimen is higher than that
of the USRP+HEII specimen at each frequency. The values for the USRP+HEII specimens at
4 Hz and 6 Hz can be maintained at a lower level, indicating that the USRP+HEII specimens
have better wear resistance under these wear conditions. No significant difference can be
found between the HEII specimens and USRP+HEII specimens at 2 Hz. The USRP+HEII
specimens show a 25%, 28.3%, and 18.5% reduction in wear volume at frequencies greater
than 2 Hz, respectively, and by comparison, it can be concluded that the USRP+HEII
specimens have a smaller wear volume.
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Figure 10. Worn morphologies of HEII specimens and USRP+HEII specimens at different frequencies:
(a) HEII specimen at 2 Hz, (b) USRP+HEII specimen at 2 Hz, (c) HEII specimen at 4 Hz, (d) USRP+HEII
specimen at 4 Hz, (e) HEII specimen at 6 Hz, (f) USRP+HEII specimen at 6 Hz, (g) HEII specimen at
8 Hz, and (h) USRP+HEII specimen at 8 Hz.
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3.3. Thermal Fatigue

The thermal fatigue cracks of the HEII specimens and USRP+HEII specimens are
shown in Figure 12. The crack length of the HEII specimen is about 906 µm. It is wider in
the initial stage and gradually becomes narrower as the crack grows. The crack length of
the USRP+HEII specimen is about 476 µm, which is approximately 47.5% shorter than that
of the HEII specimen, and the crack is distinctly narrower compared with that of the HEII
specimen. The crack propagation direction of the USRP+HEII specimen changes several
times, indicating that the crack is blocked several times during propagation. The refined
grains generated through USRP treatment and the increased hardness after HEII treatment
both improve the thermal crack resistance [26,27].
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Figure 12. Thermal fatigue cracking of specimens: (a) HEII, and (b) USRP+HEII.

The surface morphology of the HEII specimen is shown in Figure 13. As can be seen,
dense cracks and pits distribute in the surface. The maximum width of crack reaches 10 µm,
and the maximum diameter of pit is about 50 µm. The material spalling in the specimen
surface is relatively serious. It can be observed that the primary cracks in the specimen
surface are deeper. The secondary cracks propagate from the substrate of the primary
cracks and densely distribute across the whole surface of the specimen. The overall damage
is relatively large.
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Figure 13. Surface morphology of HEII specimen: (a) representative region; (b) enlarged view of the
red dotted box.

Figure 14 shows the surface morphology of the USRP+HEII specimen. The cracks are
relatively small and narrow, and evenly distributed across the surface without obvious pit
spalling. The grain refinement and high strength of the USRP+HEII specimens effectively
inhibit the propagation of thermal cracks, and the better bonding strength ensures the
surface integrity of specimens. Thus, the specimens have slight surface failure [28].

The EDS results of the HEII specimens and USRP+HEII specimens are shown in
Figure 15. Si densely and uniformly distributes in the surface of the HEII specimen, while
N and O are less distributed. For the USRP+HEII specimen, Si distributes more densely in
the surface. There is a more obvious aggregation phenomenon in some regions, and these
regions correspond to the location of thermal cracks, which indicates that no significant
loss of Si is found in the cracks. Slightly denser N is found in the surface of the USRP+HEII
specimen than that of HEII specimen. It can be inferred that USRP treatment enhances the
binding ability of 8407 die steel with N. Moreover, O densely distributes in the surface of
the USRP+HEII specimen and is not removed via pickling during the thermal fatigue test.
Thus, it can be inferred that O has a good protective effect on the specimen surface.
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Figure 15. EDS results of specimens: (a) HEII, and (b) USRP+HEII.

The cross-sectional microhardness values of the HEII specimens and USRP+HEII
specimens after thermal fatigue are shown in Figure 16. After thermal fatigue, the cross-
sectional hardness decreases in both types of specimens. The maximum hardness of the
HEII specimen is 750 HV, and decreases to a large extent in the first 50 µm from the surface.
Then, the hardness shows a stable decreasing trend and maintains at 520 HV after a depth
of 350 µm. The maximum hardness of the USRP+HEII specimen is 980 HV, and the overall
hardness shows a stable decreasing trend. The coarse grains in the HEII specimen surface
are unable to resist the heat deformation stress generated during the thermal cycle, resulting
in the loss of the reinforcing phase. On the contrary, the refined grains in the surface of
the USRP+HEII specimen help to resist the heat deformation stress. The elements of the
strengthened phase have a stronger bonding ability with the matrix, and the strengthening
effect can be maintained after several thermal cycles.
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Figure 16. Cross-sectional hardness distribution of HEII specimens and USRP+HEII specimens after
thermal fatigue.

The schematic diagram of the strengthening mechanism for the HEII specimens and
USRP+HEII specimens is shown in Figure 17. After HEII, the grains in the surface undergo
a slight refinement under the high-temperature atmosphere. The ions emitted at high
speed enter the surface of the material, and the alloying facilitates the enhancement of
surface properties. After the USRP, the grains in the surface undergo significant refinement.
The grain boundaries largely increase, providing many more channels for ion diffusion,
thus further enhancing the surface properties. In addition, the high-frequency impacting
on the material surface leads to an increase in non-equilibrium defects, like high-density
dislocation [29], and the surface activation energy is reduced to promote the entry of
activation ions into the material at these defects, providing a stable location for their
presence and avoiding element loss under complex conditions. Thus, USRP pretreatment
provides favorable conditions for HEII treatment with better performance against wear. In
fact, the strengthening effect induced via surface plastic deformation can increase the depth
of ion implantation. Thus, surface-strengthening methods based on plastic deformation
can all improve the effect of ion implantation more or less. For instance, studies show that
shot peening can increase the depth of ion implantation, thereby improving the fatigue
properties of structural components [30].
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4. Conclusions

The surface of 8407 die steel was first treated using ultrasonic surface rolling and then
treated with high-energy ionized silicon nitride. The microstructure, chemical elements,
hardness, frictional wear, and thermal fatigue properties of the strengthened surface layer
were investigated and summarized as follows:

The depth of the silicon nitride-enriched layer is 37 µm and 62 µm for the HEII speci-
men and USRP+HEII specimen, respectively. The grain size of the USRP+HEII specimens
shows a gradient increase, and the refined microstructure in the surface effectively increases
the depth of high-energy ion implanting.

The surface hardness of the USRP+HEII specimen reaches 1089 HV, which is 25.6%
higher than that of the HEII specimen, and the depth of the hardened layer is about
20% higher.

The USRP+HEII specimens have lower friction coefficients with oil lubrication and
better wear resistance under medium- and high-frequency conditions.

The wear volumes of the USRP+HEII specimens at different test frequencies are lower
than those of the HEII specimens, and the wear mechanism is mainly abrasive wear and
slight adhesive wear.

The USRP+HEII specimens have shorter and shallower thermal cracks than the HEII
specimens after thermal fatigue testing, and the curing effect of the implanted elements is
better, which can maintain higher hardness.

The surface-strengthening technology of mold steel in this work reduces the wear and
tear of the mold surface as well as surface cracks, which can effectively extend the service
life of mold parts.

Considering that ultrasonic surface rolling introduces residual stresses in the mold sur-
face, this paper is deficient in the study of the effect of residual stresses on the performance
of the mold surface. Moreover, it is difficult to process the shaped surface of ultrasonic
surface rolling, so there are limitations in the application scenarios.
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