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Abstract: Thin plates subjected to transverse load and undergoing large deflections have been
widely studied and published in the literature. However, there is still a lack of information and
understanding about the membrane stresses created under large deflections and their associated
Airy stress function, as displayed in the well-known von Kármán equations set. The present study
aims at providing explicit expressions for the membrane stresses, the deflections, and the Airy stress
function for a general square plate area vertically uniformly loaded to reach large deflection state.
This was obtained by using the results of a high-fidelity finite element analysis applied on a lateral
loaded simply supported thin square plate, which are then casted to yield approximate Fourier
series expressions for the membrane stresses, deflections, and the Airy stress function. The stress
map figures provide a good understanding of the critical points on the plate, while the explicit
mathematical expressions enabled the calculation of deflections and stresses for the entire plate area.
Among other interesting findings, the presence of relatively high tensile and compressive membrane
stresses existing near the plate edges was revealed, which might lead to potential failure hazards.
The derivatives of the deflections and the Airy stress function enabled the validation of the large
deflections von Kármán equations set for the investigated case, and it turned out that the generated
expressions for the stresses and the lateral deflection based on a high-fidelity finite element model
satisfy the second equation with a good accuracy, while the first one remains to further be investigated.
Moreover, using the generated explicit equations, the load influence on the deflections and stresses
was also analyzed to yield general novel expressions for the medium and very large deflections states.
To generalize the investigated case, the stresses and the deflections were non-dimensionalized so they
can be used for any material and plate dimensions.

Keywords: square thin plate; large deflection; von Kármán equations; membrane stress; non-linear
load–deflection curve; finite element analysis; Fourier series; simply supported movable edges

1. Introduction

The behavior of flat plates subjected to various loads has attracted over the years
great attention due to its technological importance. This immense problem is subdivided
into many sections. It can be divided by load type, thickness, perimeter shape, material
properties, small vs. large deflection, shear deformability, and more. Among these, the
problem of a thin isotropic square plate loaded by transversal pressure is considered as a
classical problem, deeply investigated in the literature.

Small deflections of a plate, not exceeding a fraction of the plate thickness, present a
linear load–deflection behavior with good and satisfactory solutions being available in the
literature. However, large deflections of a plate in the range of a few times the thickness
and higher have raised severe difficulties to reach solutions. The load–deflection graph
line is non-linear, suggesting an additional mechanism that accumulates elastic energy, in
addition to the bending energy accumulation due to the applied loading.
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A major breakthrough for the large deflection problem was made by Theodore von
Kármán in 1910 [1]. He published a set of two differential equations that describes the
plate’s large deflection behavior, considering the in-plane deformations, stresses, and
the elastic energy. Unfortunately, the von-Kármán equations set is very complicated for
solving. To date, there is still no closed-form analytic non-trivial solution that satisfies both
the equations and the boundary conditions for rectangular plates. Nevertheless, many
approximated and numerical solutions were published. The approximate methods suggest
solutions, however with severe limitations. Most of them are not easy to use, and the
non-linear nature of the plate hardening effect in large deflection is not evident (see, for
example, [2–28]). Although these references were widely referred to and described in [29],
for the convenience of readers, a detailed literature survey for Refs. [2–28] is presented in
Appendix D.

The present study is confined to the analysis of thin square plates loaded by transverse
pressure with simply supported edges. In addition, the edges are allowed to freely move
within the plate plane—to be named “movable edges”. The deflections are considered
moderately large, in which the in-plane stresses create a hardening effect, making the plate
more rigid while the load increases. The term “moderately” stands for a plate having large
deflections with relatively small rotations.

Despite the extensive research conducted in this field, there is still a lack of explicit
mathematical expressions and graphical pictures presenting the deflections and the in-plane
stresses for the entire plate due to normal loading. Moreover, no appropriate equation
for the Airy stress function (ASF) that relates to the in-plane stress field is available in the
literature. Therefore, the present study aims at filling up this knowledge gap.

Under a specified load, the plate would deform. The general shape of the deformed
plate is rather intuitive and easy to predict. Nevertheless, the exact function of the deformed
plate surface is still difficult to cast. Unlike deflections, the membrane stress field created
within the loaded plate during large deflections is beyond our natural perception. This
is a real problem when trying to find the resulting stress, the critical points, and the
corresponding ASF.

The purpose of the present study is to formulate, generate, and present high-fidelity
approximated mathematical expressions and graphical pictures of the deflections, tensile
and shear in-plane stresses, and ASF and its derivatives for the entire plate area. Moreover,
using the generated explicit equations, the load influence on the deflections and stresses
was also analyzed to yield general novel expressions for the medium and very large
deflections states.

The various expressions were generated based on a high-fidelity finite element (FE)
model developed and validated in Hakim & Abramovich [29], which presented its results,
but without mathematical expressions, which are presented in the present article. The
newly generated expressions would enable the use of an Excel worksheet to easily calculate
and display these parameters at any point on the plate, and for any applied distributed
load level, without elaborative FE models, thus yielding a powerful practical application to
be used by engineers and scholars, stemming from the present advanced numerical study.

Once the derivatives of the ASF and the deflection are numerically known, the validity
of the von Kármán equations set at any point on the plate was evaluated, yielding a
good accuracy.

During the large deflection plate analysis, a surprising finding was evident, namely
the existence of strong in-plane tensile and compressive stresses within the loaded plate.
The compressive stresses have the potential to create local buckling, which might be
considered as a failure. The strong tensile stresses might create cracks and breaking failures.
These potential failure sources have been rarely noticed and published in the past in the
open literature.
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2. Materials and Methods
2.1. Problem Definition

The square isotropic thin plate problem discussed in the present study has the follow-
ing variables: the width and the length are each a, the plate’s thickness is h, the material
Young’s modulus is E, and the Poisson’s ratio is ν.

In order to ease the calculation procedure, the horizontal and the vertical axes are
defined to obtain a square 2π × 2π plate. The origin (0, 0) of the x, y system is located at
the plate’s mid-point, as shown in Figure 1.
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Figure 1. The defined square plate.

The plate displayed in Figure 1 is assumed to be transversely loaded with a uniformly
distributed pressure q(x, y) = q, resulting in deflections, w(x, y), in the z direction as well
as in-plane displacements.

For the case considered in the present study, the plate edges are simply supported, i.e.,
w = 0 at the edges, while the plate at the edge is free to rotate around an axis, which is the
edge itself. In contrast, the holding support frame keeps the plate edge straight, preventing
any curvature along the edge. Consequentially, at the edges, there are no bending moments
in both x and y directions. These boundary conditions (BC) are designated as SSSS for the
four edges satisfying the simply supported condition, i.e., in all around edges transverse
deflection and bending moment are zero.

Additionally, the plate edges are free to move in the x, y plane within the support frame,
resulting in zero internal in-plane membrane forces and stress at the edges, perpendicular
to the edge. In addition, since there are no in-plane external forces on the plate’s edges,
including forces parallel to the edge, the shear membrane forces and the shear stresses at the
plate edges are zero as well. This arrangement is named “movable edges”, which is different
from the more common case where the plate edges are firmly held: “immovable edges”.

Therefore, the BC used for the present case are given as:

w = 0, τxy = 0, Mx = My = 0 at all four edges (1)

σxx = 0 at x = ±π, σyy = 0 at y = ±π (2)

where w is the lateral deflection, τxy is the shear stress, and Mx and My are the bending
moments. One should note that the stress σxx does not vanish at y = ±π and σyy does not
vanish at x = ±π. This means that at the edges, there are tensile/compressive in-plane
stresses acting in the direction parallel to the edge. These stresses are the result of the
plate’s large deformation, not a result of external applied forces.
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In mathematical terms, the boundary conditions can be written as:

w(±π,±π) = 0,
∂2w
∂y2

∣∣∣∣
x,y=±π

=
∂2w
∂x2

∣∣∣∣
x,y=±π

= 0 (3)

and the in-plane stresses perpendicular to the edges are zero, namely

σxx|x=±π = 0, σyy
∣∣
y=±π

= 0 (4)

In addition, no in-plane shear forces and stresses exist between the support frame and
the plate edges, meaning that

σxy
∣∣
x,y=±π

= 0 (5)

One should remember that when the plate deflections due to the transversal load are
small in relation to the plate thickness, the plate presents a linear load–deflection behavior,
described by the classical plate theory (CPT). This linear case has several closed-form
solutions shown in many previously published sources, see Hakim & Abramovich [30] for
more details. However, for the moderated large deflections case, a general closed-form
solution is still not available, and the use of von Kármán equations is usually advised.
These equations have the following form, as presented in Timoshenko [31] (p. 417):

∂4 ϕ

∂x4 + 2
∂4 ϕ

∂x2∂y2 +
∂4 ϕ

∂y4 = E

((
∂2w
∂x∂y

)2

− ∂2w
∂x2

∂2w
∂y2

)
(6)

D
(

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
= q(x, y) + h

(
∂2 ϕ

∂y2
∂2w
∂x2 +

∂2 ϕ

∂x2
∂2w
∂y2 − 2

∂2 ϕ

∂x∂y
∂2w
∂x∂y

)
(7)

where ϕ(x, y) is the Airy stress function (ASF), w(x, y) is the lateral deflection, q(x, y) is the
applied distributed load, E is the extensional elasticity modulus, h is the plate thickness, ν
is the Poisson’s ratio, and D is the plate flexural stiffness:

D =
Eh3

12(1− ν2)

As presented above, the load is a uniformly distributed pressure: q(x, y) = q.
It is interesting to note, as pointed out by Bakker et al. [32], that Equations (6) and (7)

are a simplification of Marguerre’s [33] equations for plates having initial imperfections
and subjected to in-plane and transverse loads (the initial imperfection is taken as zero in
Equations (6) and (7)).

Notice that the ASF is an unknown two-dimensional (2D) scalar function designated
ϕ(x, y) with the relations to the plate in-plane membrane stresses:

σxx =
∂2 ϕ

∂y2 , σyy =
∂2 ϕ

∂x2 , τxy = − ∂2 ϕ

∂x∂y
(8)

For linear systems, and in the absence of body forces, thermal gradients, and potential
fields, the ASF must satisfy the 2D bi-harmonic equation:

∇4 ϕ =
∂4 ϕ

∂x4 + 2
∂4 ϕ

∂2x∂2y
+

∂4 ϕ

∂y4 = 0 (9)

For non-linear systems, however, this bi-harmonic equation requirement does not
exist. Therefore, the left-hand side of the first equation of the von Kármán equations set in
Equation (6) does not automatically vanish and therefore must be considered.
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Another important restriction on the ASF is that it must satisfy the stress BC Equa-
tions (4) and (5), namely

∂2 ϕ

∂y2

∣∣∣∣
x=±π

= 0,
∂2 ϕ

∂x2

∣∣∣∣
y=±π

= 0,
∂2 ϕ

∂x∂y

∣∣∣∣
x,y=±π

= 0 (10)

2.2. Preliminary Assumptions

There are several assumptions that are the basis for the formulation of the von Kármán
equation set. For example, squares and products of certain in-plane displacement deriva-
tives are considered small and therefore negligible, see, for example, Bhaskar [34] p. 306
(2013). By using the equations set, we implicitly accept these assumptions.

Another preliminary assumption is that both the deflection and the ASF are a multipli-
cation of a shape function (SF) by a load function (LF), namely:

w(x, y, q) = SF1d(x, y)·LF1(q) (11)

where SF1d is the shape function and LF1 is the load function, both for the deflection
expression.

ϕ(x, y, q) = SF2(x, y)·LF2ϕ(q) (12)

where SF2 is the shape function and LF2ϕ is the load function, both for the ASF expression.
This means that the general shape of the functions remains the same, while the load is

changing.
From (12), it follows that both shear and tensile membrane stress functions are also a

shape–load multiplication.
The purpose of function indices 1,2 is to distinguish between the deflection function

(1) and stress target functions (2). This assumption will be utilized later in Section 3.4.
The last preliminary assumption is that the load q is assumed to be a polynomial

function of the plate mid-point deflection w0, namely

q = K1w0 + K3w0
3 (13)

with K1 and K3 being constants, as presented in Hakim [30].
The above assumption is the result of many existing solutions mentioned in [30],

laboratory loading tests done on various plates, and a few non-linear finite element analyses
(FEA) performed (see Hakim & Abramovich [29], Siemens [35]).

The motivation for applying this assumption stems from its popularity among many
researchers. Note, however, that this assumption will be later rechecked during the present
study for its range of validity and eventually be modified.

2.3. Finite Element Analysis (FEA) of the Squared Plate

An FEA of the squared plate shown in Figure 1 was then performed. The analysis
code was Femap 2021.1 from Siemens, with Simcenter Nastran [35] as the code processor.
A 6.28 m by 6.28 m plate of 12 mm thickness made of an isotropic material (E = 2.4 GPa,
Poisson’s Ratio ν = 0.38) with appropriate BC was transversely loaded by an 800 Pa
uniformly distributed pressure. A non-linear static analysis was performed for 10,000
(100 × 100) quad plate-type elements with a 6.28 cm element size. The non-linear code
increased the load in 20 steps, while in each step the deflections and the stresses were
recalculated and used as a starting point for the next step. Each of these steps had internal
iterations to verify its convergence. Upon completion of the run, all final deflections and
membrane forces of the entire plate were transferred to an Excel sheet. Note that the
deflection and membrane force data were stored in an Excel 103 × 103 data table with the
following modifications, needed to correctly perform the various follow up calculations:

• Deflections at the center of element were calculated as the average of the four elements’
corner deflections, while the edges’ deflection values were set to 0.
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• The X-direction membrane force was modified to X tensile stress σxx(x, y) and at the
relevant edges, the values were set to 0.

• The shear membrane force was modified to XY shear stress τxy(x, y) and at the edges
and on X and Y axes, its values were set to 0.

Graphical calculation pictures of the FEA results were also saved for further processing.
The isotropic material used in the analysis is polycarbonate (PC), a tough transparent

polymer used in many technical applications such as aircraft cockpit canopies, safety
goggles, compact disks, and greenhouse glazing.

3. Results
3.1. Generation of Mathematical Expressions for Deflections, Stresses, and ASF

Numerical partial derivatives of both the deflection and the shear stresses are calcu-
lated using the finite difference schemes presented in Appendix A. The central difference
scheme is used for most cells, while forward and backward schemes are used for the edges.

After two subsequent numerical derivations (using the generated Excel worksheet,
see Section 2.3 above) in the x direction, the second derivative ∂2w

∂x2 is obtained. Note that

the y-direction second derivative, ∂2w
∂y2 , has a similar appearance but with a 90◦ rotation in

the xy plane (see also Appendix B).
Then, after another two subsequent derivations in the y direction, the fourth mixed

derivative, ∂4w
∂x2∂y2 , is generated. One should note that numerical “noise” ripples begin to be

evident on the surface in the vicinity of the plate’s corners (see a typical case in Figure 2).
This is a known effect of successive numerical derivations, and in a real plate case it does
not exist.
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The various colors in Figure 2 (and in the following figures) represent the function
values, according to the legend at the bottom of the figure.

Finally, the x-direction fourth derivative, ∂4w
∂x4 , is then generated using the process

described in Appendix B. Note that the y-direction fourth derivative, ∂4w
∂y4 , has a similar

appearance but with a 90◦ rotation in the xy plane.
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A Fourier series is then matched to the deflection distribution using the fourth mixed
derivative, ∂4w

∂x2∂y2 , as described in Appendix B. As can be seen in Figure 2, this function is
symmetric about both x and y axes, so a cosine-cosine series is suitable to be used, namely

∂4w
∂x2∂y2 =

∞

∑
m=0

∞

∑
n=0

Cmn cos mx cos ny (14)

The Cmn Fourier series coefficients are then found using the method presented in
Appendix B. The calculated 19 × 19 = 361 (a total of 190 independent) coefficients are
presented in Appendix C.

The resulted approximated Fourier series function with its Cmn coefficients is graphi-
cally displayed in Figure 3, well resembling the distribution presented in Figure 2.
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According to Appendix B, the obtained Fourier series can now be integrated twice
in the x direction and then twice in the y direction to yield the approximated deflection
function. However, before doing so, one has to separate the series for the indices m = 0 and
n = 0 to avoid division by zero, namely

∂4w
∂x2∂y2 ≈

18

∑
m=0

18

∑
n=0

Cmn cos mx cos ny = C0,0 +
18

∑
n=1

C0,n cos ny +
18

∑
m=1

Cm,0 cos mx +
18

∑
m=1

18

∑
n=1

Cmn cos mx ny (15)

Integrating twice in the x direction and twice in the y direction yields

w(x, y) ≈ x2y2C0,0 − 1
2 x2

18
∑

n=1

C0,n
n2 cos ny− 1

2 y2
18
∑

m=1

Cm,0
m2 cos mx +

18
∑

m=1

18
∑

n=1

Cmn
m2n2 cos mx cos ny

+x·F1(y) + F2(y) + y·G1(x) + G2(x)
(16)

where F1, F2, G1, and G2 are arbitrary integration functions to be found according to the
case solved.

Looking at the terms of the expression presented in Equation (16) and comparing
them with the FEA lateral deflection w(x, y), it is obvious that F1(y) = G1(x) = 0 since the
deflection must be symmetric about both x and y axes.

The symmetry also causes G2(x) and F2(y) to have the same form, with a symmetry
about its axes. These functions can be approximated by a cosine Fourier series, for which a
finite number of coefficients Aj can be found by fitting the deflection function Equation (16)
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to the FEA-generated deflection, while the terms with Cmn are already known. In our case,
50 Aj coefficients (0–49) were found, yielding

G2(x) =
49

∑
j=0

Aj cos jx , F2(y) =
49

∑
j=0

Aj cos jy → G2(x) + F2(y) =
49

∑
j=0

Aj(cos jx + cos jy) (17)

Considering that Cmn is a symmetric matrix, we obtain C0,n = Cm,0 for m = n. Therefore,
the final expression for the out-of-plane deflections can be written as

w(x, y) ≈ 1
4 x2y2C0,0 − 1

2

18
∑

m=1

Cm,0
m2

(
x2 cos my + y2 cos mx

)
+

18
∑

m=1

18
∑

n=1

Cmn
m2n2 cos mx cos ny +

49
∑

j=0
Aj(cos jx + cos jy)

(18)

The various Aj and Cmn coefficients for the present case are presented in Appendix C.
The calculated deflection according to Equation (18) is shown graphically in Figure 4c

and is shown to be practically identical to the FEA output and the Excel-generated deflec-
tion, except minor numerical ripples on the plate’s surface, as presented in Figure 4a,b.

Note that the calculated plate deflection at the mid-point x = y = 0 using Equation (18)
is calculated to be:

w(0, 0) = w0 =
18

∑
m=1

18

∑
n=1

Cmn

m2n2 +
49

∑
j=0

2Aj = 0.417727− 0.09517 = 0.32256[m] (19)

while the FEA mid-point deflection is found to be 0.32244 [m] and the Excel mid-point
deflection is 0.32250 [m]—without doubt an excellent agreement.
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Figure 4. The distribution of the plate’s lateral deflection: (a) FEA output, (b) Excel-generated
deflection, (c) Equation (18)-calculated deflection.

Next, the shear stresses expressed by the Fourier series are derived. Being an anti-
symmetric function about the x, y axes (see Figure 5a), the shear stress τxy(x, y) can be
approximated by a double summation sine-sine Fourier series, namely

τxy(x, y) ≈
19

∑
m=1

19

∑
n=0

Smn sin mx sin ny (20)

The symmetry of the stress function shape about the main diagonals causes the Smn
coefficients matrix to be a symmetric matrix. The matrix Smn is calculated and presented in
Appendix C.

The shear stress map is then calculated and is depicted in Figure 5c, which is practically
identical to Figure 5a,b, calculated by the FEA and the Excel spreadsheet, respectively.
Obviously, a higher number of coefficients would create a better similarity.

Note that the in-plane shear stress level is represented by the vertical z axis, where
the positive and negative values indicate the shear direction as defined by the FE software
(Femap v2021.1). Note also that the shear stress is close to zero at the edges and at the x, y
axes themselves, as expected.

Finally, the mathematical expression for the ASF is derived, using the following
expression (based on Equation (8))

τxy(x, y) = − ∂2 ϕ

∂x∂y
(21)

Twice integrating Equation (21) with respect to x and y yields the mathematical
expression for the ASF:

ϕ(x, y) = −
19

∑
m=1

19

∑
n=1

Smn
1

mn
cos mx cos ny + X(x) + Y(y) (22)

where Smn is the symmetric coefficients matrix, previously found from FEA data, and X(x)
and Y(y) are the arbitrary integration functions to be determined. A practical way to find
these integration functions is to write expressions for σxx based on Equations (8) and (22)
and then compare them with the numerical results of the FEA. These yield

σxx =
∂2 ϕ

∂y2 =
19

∑
m=1

19

∑
n=1

Smn
n
m

cos mxcos ny + Y′′(y) (23)
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Depicting the x stresses, σxx, distribution from the FEA results (see Hakim &
Abramovich [29]), calculating the double Fourier series presented in Equation (23) with the
already-determined coefficients Smn yields a difference between the two distributions, as
presented by Figure 6.

σxx Stress−Double Fourier Series = Cylindrical function Y′′ [MPa]
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The graphs presented in Figure 6 are the results of subtraction of two known numerical
functions, based on Equation (23), to obtain the numerical function of Y′′(y).

The general cylindrical shape of the difference function Y′′(y) suggests that it is a
function of y only, as expected. Since this function is known numerically, it is possible to
approximate it as a single Fourier series, for which a finite number of coefficients can be
found, yielding

Y′′(y) =
19

∑
k=1

Bk cos ky (24)

A similar analysis for the function X(x) leads to another series with the same number
of coefficients, namely

X′′(x) =
19

∑
j=1

Bj cos jx (25)

The calculated numerical values of Bj or Bk are given in Appendix C, where Bj =
Bk for j = k.

Integrating twice Equations (24) and (25) yields expressions for X(x) and Y(y), writ-
ten as

X(x) = −
19

∑
j=1

Bj

j2
cos jx + a1x + const. (26)

Y(y) = −
19

∑
k=1

Bk
k2 cos ky + b1y + const. (27)

Since both X(x) and Y(y) must be symmetric functions, the assumption that a1 = b1 = 0
is found to be valid.

Then, the final expression of the ASF in [MN] units can be obtained using Equation (22)
in combination with Equations (26) and (27), yielding

ϕ(x, y) = −
19

∑
m=1

19

∑
n=1

Smn
1

mn
cos mx cos ny−

19

∑
j=1

Bj

j2
(cos jx + cos jy) + Const. (28)

where Smn and Bj are a finite number of known Fourier coefficients given in Appendix C.
One should note that the general expression for the Airy stress function (ASF) is a

novel finding, never presented in the literature.
The coefficients Smn and Bj can now be used to calculate the approximated values of

the ASF function for every (x, y) point, as shown in Figure 7. One can change the vertical
position by an arbitrary constant. For Const. = 0, the mid-point value is −4.067 [MN] and
the edge value is 2.374 [MN].

The various colors in Figure 7 represent the function values in [MN] according to the
legend at the bottom of the figure.

To validate the above performed calculations, the tensile stresses obtained from the
ASF are recalculated and compared to other available results. From Equations (8) and (28),
we obtain

σxx =
∂2 ϕ

∂y2 =
19

∑
m=1

19

∑
n=1

Smn
n
m

cos mx cos ny +
19

∑
j=1

Bj cos jy (29)

Calculating Equation (29) with the known coefficients Smn and Bj, we obtain the tensile
stress distribution as given in Figure 8c.

It is clear that the calculated surface shape is generally similar to the results of the FEA
shown in Figure 8a and the Excel-calculated stresses (Figure 8b), and by that the process
was validated.

Note that the ripples on the surface presented in Figure 8c were due to the limited
number of coefficients used in the present Fourier series.
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Figure 8. Tensile stresses σxx (mid-point value 1.6839 MPa): (a) FEA output, (b) Excel-generated
stress, (c) Equation (29)-calculated stress.
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3.2. Validation of the von Kármán’s Equations Set

Having numerical values for the partial derivatives of the deflection and the ASF
allows us to check that the various found expressions satisfy the von Kármán equations,
Equations (6) and (7). This may support the validity of the presented approximated
expressions.

Equations (6) and (7) are modified to be written in residuals form by moving all terms
to the left side, yielding:

∂4 ϕ

∂x4 + 2
∂4 ϕ

∂x2∂y2 +
∂4 ϕ

∂y4 − E

((
∂2w
∂x∂y

)2

− ∂2w
∂x2

∂2w
∂y2

)
= 0 (30)

D
(

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
− q− h

(
∂2 ϕ

∂y2
∂2w
∂x2 +

∂2 ϕ

∂x2
∂2w
∂y2 − 2

∂2 ϕ

∂x∂y
∂2w
∂x∂y

)
= 0 (31)

An Excel spreadsheet with the various partial derivative data was used to calculate the
stand-alone derivatives and the multiplications above. Each term is a 103 × 103 numeric
table representing its values at all the plate’s points. Since the equations should hold
everywhere on the plate, each point is calculated separately for the equations’ value. A
non-zero value indicates the deviation from von Kármán’s theory. The equations’ value
matrices are then displayed graphically with some statistics and conclusions.

Figures 9 and 10 show Equations (30) and (31) for three truncation levels. The three
truncations are necessary in order to see the function shape properly. Using a single image
would hide most of the graphical information. The full scale (a) shows the corners well,
but the middle area is flat. The second truncation (b) shows more details, while (c) shows
the middle area real shape. Note the vertical axis scale differences.

To better visualize the variation of the equations’ values across the plate, cross-section
graphs are shown in Figures 11 and 12.

Obviously, the sharp changes of the stress functions near the edges, and even more near
the corners, create very high derivative values that do not zero the equations. Nevertheless,
the plate’s middle zone has better results. Table 1 shows the average values and the
standard deviations (Std) of both Equations (30) and (31) at a 3.14 × 3.14 m square in the
middle zone of the plate, i.e., 25% of the plate area.

In Table 1, the first column, Equation (30), shows the average calculated value of the left
side of Equation (30) and its standard deviation (Std). A value close to zero would indicate
that the calculated data agree well with that equation. The second column, Equation (31),
is similar but for the other equation.

From these results, one can conclude that the suggested numerical model conforms
well with the second von Kármán equation, Equation (7), written in residual form as
Equation (31), at the middle zone of the plate. However, for the first von Karman equation,
Equation (6) (in residual form, Equation (30)), the proposed numerical model yields a
relatively high error, probably due to the process involved in generating the expressions for
the lateral deflection and the ASF. A more refined model is expected to yield better results.

In addition, since both functions w and ϕ are also function of the load, their derivatives
are also functions of the load. However, in the presented calculation, the load is taken as a
constant. It might be possible that recalculating while considering these load functions may
yield results closer to zero and thus completely validate the von Kármán equations set.
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Table 1. Equations (30) and (31) statistics values.

Equation (30) Equation (31)

Average −3183.38 0.7605

Std 3740.91 2.3635
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Figure 12. Equation (31) at an arbitrary cross-section y = ±1.288: (a) entire plate, (b) magnification of
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3.3. The Load Influence on the Lateral Deflection and Stresses

The common way to predict the mid-point deflection due to an applied load is to use
the third power polynomial model presented by Equation (13), (see Appendix B in Hakim &
Abramovich [30] for more details). For relatively medium deflections (up to four times the
thickness), it works well, although considerable variability exists between various sources
published in the literature (see Appendix B in [30]). For higher deflections, however, this
model deviates from the actual load–deflection FEA data, as shown in Figure 13b. Note the
correlation coefficients Pearson’s r that show the increased deviation. In these figures, both
the deflection and the load are presented as dimensionless variables to make the findings

more general: w0
h , qa4

Eh4 , where w0 is the mid-point deflection, h is the thickness, q is the load,
a is the length–width, and E is the modulus.
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Figure 13. Medium deflection (a) and high deflection (b) load–deflection curves.



Materials 2023, 16, 6967 17 of 26

An attempt to find a better model, considering the Poisson’s ratio ν, yields the follow-
ing inverse non-dimensional deflection–load function relation:

w0

h
=

k1

1 + 0.212044(0.09− ν2)

[
k2

(
qa4

Eh4

)k3

−
(

qa4

Eh4

)k4
]

(32)

where k1 = −2.1528, k2 = 1.10798, k3 = 0.22488, and k4 = 0.3101 (see Appendix C for more
digits). The deflection is linearly corrected around ν = 0.3.

The term “inverse” relates to the deflection being a function of the load, which is
opposite to the original third order polynomial.

The model presented by Equation (32) has an excellent correlation coefficient of
Pearson’s r = 0.99999904 with the FEA data. The graphic result is displayed in Figure 14.
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Figure 14. Large deflection (a), medium deflection (b).

Note that since the function presented in Equation (32) becomes negative for
(

qa4

Eh4

)
< 3.33,

it is not valid for that region. Therefore, small deflections classical plate theory (CPT)
described in Hakim & Abramovich [30] Appendix A can be used for

(w0
h
)
< 0.5 or for(

qa4

Eh4

)
< 10 in which

qa4(1− ν2)
Eh4 =

246.16
12

(w0

h

)
(33)

Using the assumption presented in Equation (11), the deflection function is a multipli-
cation of a normalized shape function and a load function. Both functions have already
been found. Dividing the deflection expression Equation (18) by the mid-point deflection
Equation (19) yields the normalized shape function SF1d, for −π ≤ x ≤ π,−π ≤ y ≤ π
and the mid-point value is 1. Hence, the multiplication of Equation (32) by the normalized
shape function SF1d yields the full non-dimensional deflection function, namely

w
h (w, y, q) ≈ k1

1+0.212044(0.09−ν2)

[
k2

(
qa4

Eh4

)k3
−
(

qa4

Eh4

)k4
]
·

· 1
0.32256

[
1
4 x2y2C0,0 − 1

2

18
∑

m=1

Cm,0
m2

(
x2 cos my + y2 cos mx

)
+

18
∑

m=1

18
∑

n=1

Cm,n
m2n2 cos mx cos ny +

49
∑

j=0
Aj(cos jx cos jy)

] (34)

where all the coefficients are given in Appendix C and the small load case is considered in
Equation (33).
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The influence of the load level on the generated stresses is next investigated in order
to find the Load Function LF2t(q) defined after Equation (12).

Using the FEA results, the stress at several indicative points are checked vs. varying
loads. All stress values at the various locations are factored such that the maximum value
at each location is equal to the maximum value of the tensile σm

x stress at the mid-point.
The factored stress vs. load curves are shown in Figure 15, where the legend lists the points’
locations.
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Although differences between the various points do exist, the general shape of the
lines is rather similar. In order to obtain a single stress function, we use the average of the
values of these points for the calculations. Both the stress and the load are modified to be
non-dimensional according to Timoshenko [31] (p. 423), in which the graph axes are:

σm
x a2(1− ν2)

Eh2 vs.
qa4

Dh
=

qa4·12
(
1− ν2)

Eh4 (35)

This yields a general non-dimensional expression for stresses, enabling its use for
various materials and dimensions.

Using the best fitting regression of these average FEA stress data to an empirical
formula yields the following stress–load expression, with an excellent correlation coefficient
of r = 0.999995.

σm
x a2(1− ν2)

Eh2 ≈ 0.054603

(
qa4(1− ν2)

Eh4

)0.85396

− 0.0050161

(
qa4(1− ν2)

Eh4

)
(36)

The graph of the non-dimensional mid-point tensile stress against the non-dimensional
load for both FEA data and the formula calculated values is displayed in Figure 16.
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3.4. Closed-Form Non-dimensional Expressions for Tensile and Shear Stresses

The approximated mid-point stress–load function presented in Equation (36) can now
be used to find the various membrane stresses on the entire plate.

According to the assumption presented in Equation (12), the ASF is a multiplication of
a normalized shape function and a load function. From this, it follows that the membrane
shear and tensile stresses can also be represented with a similar multiplication. To do that,
we use a shear shape function named SF3τ and a tensile shape function named SF4σ. The
necessary involved functions have already been found before in Equations (20) and (29).

For shear stresses, dividing Equation (20) by the maximum shear stress, 3.2237 MPa
(see Figure 5), yields the normalized shape function SF3τ in which −π ≤ x ≤ π,−π ≤
y ≤ π and its maximum value is 1.

SF3τ(x, y) =
1

3.2237

19

∑
m=1

19

∑
n=1

Smnsin mx sin ny (37)

Then, Equation (36), which is the mid-point non-dimensional tensile stress vs. load
function, is used. However, since we need here the shear stress, we must multiply Equa-
tion (36) by the ratio of the maximum τxy = 3.2237 MPa to mid-point σx = 1.6839 MPa.

This yields the final membrane shear stress τm
xy in a non-dimensional form

τm
xya2(1 − ν2)

Eh2 (x, y, q) =

= 3.2237
1.6839

[
0.054603

(
qa4(1 − ν2)

Eh4

)0.85396
− 0.0050161

(
qa4(1 − ν2)

Eh4

)]
·
[

1
3.2237

19
∑

m=1

19
∑

n=1
Smnsin mxsin ny

]
= 1

1.6839

[
0.054603

(
qa4(1 − ν2)

Eh4

)0.85396
− 0.0050161

(
qa4(1 − ν2)

Eh4

)]
·
[

19
∑

m=1

19
∑

n=1
Smnsin mxsin ny

]
(38)
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A similar procedure is applied for tensile stresses. Dividing Equation (29) by the
mid-point stress, 1.6839 MPa, yields the normalized shape function SF4σ in which π ≤
x ≤ π,−π ≤ y ≤ π and the mid-point value is 1, having the following form

SF4σ(x, y) =
1

1.6839

[
19

∑
m=1

19

∑
n=1

Smn
n
m

cos mxcos ny+
19

∑
k=1

Bkcos ky

]
(39)

Then, Equation (36) is multiplied by Equation (39) to yield the non-dimensional
membrane tensile stress σm

x , namely

σm
x a2(1 − ν2)

Eh2 (x, y, q) =

=

[
0.054603

(
qa4(1 − ν2)

Eh4

)0.85396
− 0.0050161

(
qa4(1 − ν2)

Eh4

)]
·

· 1
1.6839

[
19
∑

m=1

19
∑

n=1
Smn

n
m cos mxcos ny+

19
∑

k=1
Bkcos ky

] (40)

where all coefficients are given in Appendix C. The other direction stress σm
y can be calcu-

lated by simply switching between x and y axes.

4. Discussion

The present study can be considered to be significant and innovative, as, in addition to
displaying numerical solutions for the plate’s in-plane stresses and deflections, it presents
high-fidelity non-dimensional mathematical expressions that can be used to calculate
deflections and stresses for various materials and plate dimensions. Consequentially, these
expressions allow us to calculate and display for the first time the Airy stress function (ASF)
and also to check the correctness of von Kármán’s equations set.

Another innovative finding is that the commonly used third power polynomial ex-
pression for a plate’s large deflection is not accurate enough for higher deflections. An
improved expression is suggested for deflections up to 20 times the plate’s thickness.

The present study deals with square plates. From Hakim & Abramovich [29], it
is obvious that rectangular plates with higher aspect ratios (length/width), are not a
simple “stretching” of the square plate. Therefore, rectangular plates should be considered
separately, following the process presented in the present study.

5. Conclusions

In view of what has been presented above the following conclusions can be drawn:

• Fourier series approximations produced high-fidelity closed-form expressions for the
deflections and stresses on the entire plate domain.

• For the first time, a closed-form equation was derived for the Airy stress function,
presented in the von Kármán equations set.

• Mathematical expressions for the load influence on the deflections and the stresses
were also derived.

• The mathematical expressions were given in a non-dimensional form, enabling the
use of any elastic material and plate dimensions.

• Strong compressive stresses do exist near the edges in the direction parallel to the
edges. This might raise the possibility of plate local buckling there. In addition, high
tensile stresses were detected, which might cause failure of the plate.

• The numerical model upholds the second von Kármán equation, Equation (7), in the
plate’s middle zone, while the first equation, Equation (6), has not been fully verified
by the present model.

• It was found that the third power model can describe the mid-point load–deflection
relation accurately enough for moderate deflections only, up to five times the thickness.
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For higher-type deflections, up to 20 times the thickness, an improved (r≈1) model is
presented and discussed.
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Appendix A. Finite Difference Schemes Used in the Present Analysis

First Derivatives:

Forward difference: f ’(x) ≈ f (x+h)− f (x)
h

Central difference: f ’(x) ≈ f (x+h)− f (x−h)
2h

Backward difference: f ’(x) ≈ f (x)− f (x−h)
h

Second Derivatives:

Forward difference: f ”(x) ≈ f (x+2h)−2 f (x+h)+ f (x)
h2

Central difference: f ”(x) ≈ f (x+h)−2 f (x)+ f (x−h)
h2

Backward difference: f ”(x) ≈ f (x)−2 f (x−h)+ f (x−2h)
h2

Appendix B. Remarks on Fourier Series Approximation and Finding the Best
Fit Coefficients

In order to handle the deflection and the stress functions analytically, the approximate
Fourier series that are close enough to these functions were defined and used.

For deflections, this process was done on one of the deflection fourth derivatives. The
reason for taking the highest derivative degree was that deriving a finite Fourier series
may increase the numerical “noise”, while integration reduces it. By taking the highest
possible derivative, it was necessary only to integrate, gaining less numerical noise. For
deflections, the fourth mixed derivative ∂4w

∂x2∂y2 was used. For stresses, however, the shear
stress was used (not its derivative) since the numerical derivations were too “noisy” for
this approximation. For deflection, the derivative symmetry suggested the use of a double
summation cosine-cosine series, while for the shear stresses, the anti-symmetry suggested
a double summation sine-sine series.

Since the analytic functions were unknown, it was not possible to use a closed-form
formula to yield the series coefficients. However, as 103 × 103 data points of the functions
were already known, it was possible to find a finite number of coefficients that make
the above double summation best fit the data. This was done through Excel’s Solver by
minimizing the sum of squares of the difference between the calculated and the actual
data—a least squares regression analysis. Solver used internally a generalized reduced
gradient (GRG) non-linear solving method. Solver has a limit of 200 variable cells that
can be looked for, limiting the coefficients matrix size to be 14 × 14 = 196. Nevertheless,
since the functions were symmetric and anti-symmetric, their coefficients matrices were
symmetric. This reduced the number of independent coefficients to be not N × N, but
0.5 × N × (N + 1), which is a lower number. Therefore, using Solver, we could find 190
variables that, with the matrix symmetry, yielded 361 (19 × 19) coefficients. Due to the
large number of variable cells and the matrix size, it took Solver code several hours to find
the convergent solution.
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Appendix C. Fourier Series Coefficients
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3 -0.2397989 0.5392763 -0.5834063 0.5616218 -0.5117141 0.4032415 -0.2653449 0.1228825 -0.0067425 -0.0842787 0.1426955 -0.1820668 0.1992419 -0.2077099 0.2029169 -0.1961304 0.1813118 -0.1685438 0.1507636

4 0.1860946 -0.4141196 0.4998052 -0.5117141 0.4742361 -0.4002861 0.3059167 -0.1883812 0.0734375 0.0295222 -0.1033849 0.1561416 -0.1833112 0.1985381 -0.198015 0.1938659 -0.180526 0.1685996 -0.1511706

5 -0.1225948 0.2605058 -0.3451359 0.4032415 -0.4002861 0.3520375 -0.2930131 0.2144561 -0.1260019 0.0329058 0.0436227 -0.1045903 0.1414158 -0.1650654 0.171578 -0.1724812 0.1631859 -0.1538854 0.1387129

6 0.0673444 -0.1324755 0.1887737 -0.2653449 0.3059167 -0.2930131 0.2590097 -0.2090437 0.1486683 -0.0763886 0.009352 0.0502767 -0.0916562 0.1212888 -0.1345726 0.1410113 -0.1367862 0.1311113 -0.1192632

7 -0.0208401 0.0319231 -0.0576048 0.1228825 -0.1883812 0.2144561 -0.2090437 0.1824693 -0.1456532 0.0955338 -0.0442847 -0.0032045 0.045129 -0.0758361 0.0928618 -0.1033392 0.1037307 -0.1016938 0.093568

8 -0.0144003 0.0404813 -0.0359867 -0.0067425 0.0734375 -0.1260019 0.1486683 -0.1456532 0.1291936 -0.0992352 0.0640175 -0.0254807 -0.0073387 0.0355339 -0.0537667 0.0662661 -0.0702506 0.0711704 -0.0667043

9 0.0432044 -0.0980212 0.1057156 -0.0842787 0.0295222 0.0329058 -0.0763886 0.0955338 -0.0992352 0.0889551 -0.0703426 0.0455441 -0.0213592 -0.0012609 0.0181637 -0.0304789 0.0367601 -0.0397632 0.0384815

10 -0.0626106 0.1359616 -0.1494709 0.1426955 -0.1033849 0.0436227 0.009352 -0.0442847 0.0640175 -0.0703426 0.0665535 -0.0546635 0.0394898 -0.0232626 0.0097751 0.0012347 -0.0086509 0.0125856 -0.0139877

11 0.0768526 -0.1636877 0.1797872 -0.1820668 0.1561416 -0.1045903 0.0502767 -0.0032045 -0.0254807 0.0455441 -0.0546635 0.0549196 -0.049219 0.0403712 -0.03077 0.022182 -0.0154664 0.0107241 -0.0083195

12 -0.0833995 0.1757192 -0.1924204 0.1992419 -0.1833112 0.1414158 -0.0916562 0.045129 -0.0073387 -0.0213592 0.0394898 -0.049219 0.0511094 -0.0488211 0.0433534 -0.0378468 0.0319844 -0.0279509 0.0243997

13 0.0870137 -0.1820612 0.1986154 -0.2077099 0.1985381 -0.1650654 0.1212888 -0.0758361 0.0355339 -0.0012609 -0.0232626 0.0403712 -0.0488211 0.0524034 -0.0510134 0.0485395 -0.0441641 0.0408513 -0.0371389

14 -0.0852412 0.1776511 -0.1932133 0.2029169 -0.198015 0.171578 -0.1345726 0.0928618 -0.0537667 0.0181637 0.0097751 -0.03077 0.0433534 -0.0510134 0.052826 -0.0528755 0.0500452 -0.0477001 0.0440342

15 0.0827139 -0.171856 0.1864355 -0.1961304 0.1938659 -0.1724812 0.1410113 -0.1033392 0.0662661 -0.0304789 0.0012347 0.022182 -0.0378468 0.0485395 -0.0528755 0.0551154 -0.0535847 0.0521322 -0.0486661

16 -0.0766915 0.1590092 -0.1722289 0.1813118 -0.180526 0.1631859 -0.1367862 0.1037307 -0.0702506 0.0367601 -0.0086509 -0.0154664 0.0319844 -0.0441641 0.0500452 -0.0535847 0.0531092 -0.0523341 0.0492494

17 0.0714654 -0.1479729 0.1601228 -0.1685438 0.1685996 -0.1538854 0.1311113 -0.1016938 0.0711704 -0.0397632 0.0125856 0.0107241 -0.0279509 0.0408513 -0.0477001 0.0521322 -0.0523341 0.0520108 -0.049151

18 -0.0640491 0.1324493 -0.1432166 0.1507636 -0.1511706 0.1387129 -0.1192632 0.093568 -0.0667043 0.0384815 -0.0139877 -0.0083195 0.0243997 -0.0371389 0.0440342 -0.0486661 0.0492494 -0.049151 0.0464597

Shear Stress Smn:

n           m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1.5601895 -0.4407794 0.0560268 0.0487945 -0.0614851 0.0466753 -0.0329062 0.0223677 -0.0154228 0.0111273 -0.008065 0.0021027 -0.0040607 0.0028072 -0.0018738 0.0011816 -0.0006729 0.0003031 -3.832E-05

2 -0.4407794 0.5294403 -0.3079312 0.123423 -0.0221461 -0.0155332 0.0231599 -0.0201874 0.01504 -0.0108176 0.0073072 -0.0049878 0.0003432 -0.0016451 -1.068E-05 1.816E-05 -2.178E-05 2.117E-05 -1.89E-05

3 0.0560268 -0.3079312 0.3115711 -0.2156988 0.1137063 -0.0457397 0.0121882 0.0006591 -0.0032453 0.0008977 -3.818E-05 0.0007793 2.49E-05 -4.066E-05 4.694E-05 -4.486E-05 3.684E-05 -2.877E-05 2.037E-05

4 0.0487945 0.123423 -0.2156988 0.2122532 -0.1572046 0.0951118 -0.0519155 0.0264123 -0.0137395 0.0012307 -0.0062021 0.00548 -0.0053528 0.0054197 -0.0055104 0.0055572 -0.0055383 0.0054527 -0.0053081

5 -0.0614851 -0.0221461 0.1137063 -0.1572046 0.1511143 -0.1157617 0.0778661 -0.0491906 0.0312495 -0.0207395 0.0148514 -0.0116809 0.0099702 -0.0046276 0.0004619 -8.018E-05 2.028E-05 -0.0072584 0.0068902

6 0.0466753 -0.0155332 -0.0457397 0.0951118 -0.1157617 0.1053496 -0.0817617 0.0585406 -0.0396658 0.0268606 -0.0205437 0.0155605 -0.0126632 0.0109851 -0.0096837 0.0045867 -0.0006857 0.0001389 -0.0074398

7 -0.0329062 0.0231599 0.0121882 -0.0519155 0.0778661 -0.0817617 0.0713571 -0.0560868 0.0417796 -0.030356 0.0223254 -0.0163179 0.0129757 -0.0111529 0.0094598 -0.0078644 0.0015099 -0.0002917 3.035E-05

8 0.0223677 -0.0201874 0.0006591 0.0264123 -0.0491906 0.0585406 -0.0560868 0.0475055 -0.0356186 0.0297197 -0.0210945 0.0162642 -0.0125678 0.0101253 -0.0085048 0.0074822 -0.006796 0.0062765 -0.0059143

9 -0.0154228 0.01504 -0.0032453 -0.0137395 0.0312495 -0.0396658 0.0417796 -0.0356186 0.0316376 -0.0251869 0.0190369 -0.0143173 0.010815 -0.00838 0.0038056 -0.0004168 7.82E-05 -1.758E-05 0.0043542

10 0.0111273 -0.0108176 0.0008977 0.0012307 -0.0207395 0.0268606 -0.030356 0.0297197 -0.0251869 0.0202823 -0.015595 0.0116579 -0.0084865 0.0032675 -0.000196 2.687E-05 -0.0030445 0.0027003 -0.002524

11 -0.008065 0.0073072 -3.818E-05 -0.0062021 0.0148514 -0.0205437 0.0223254 -0.0210945 0.0190369 -0.015595 0.0119659 -0.0083864 0.0030436 -9.945E-05 1.406E-05 -0.0015157 0.0009674 -0.0006937 0.0006029

12 0.0021027 -0.0049878 0.0007793 0.00548 -0.0116809 0.0155605 -0.0163179 0.0162642 -0.0143173 0.0116579 -0.0083864 6.986E-05 -6.847E-05 0.0016696 1.081E-05 -1.618E-05 1.724E-05 -1.561E-05 1.268E-05

13 -0.0040607 0.0003432 2.49E-05 -0.0053528 0.0099702 -0.0126632 0.0129757 -0.0125678 0.010815 -0.0084865 0.0030436 -6.847E-05 0.0014052 1.666E-05 -2.687E-05 3.474E-05 -3.237E-05 2.575E-05 -1.963E-05

14 0.0028072 -0.0016451 -4.066E-05 0.0054197 -0.0046276 0.0109851 -0.0111529 0.0101253 -0.00838 0.0032675 -9.945E-05 0.0016696 1.666E-05 -2.094E-05 5.221E-05 -5.515E-05 4.616E-05 -3.49E-05 2.442E-05

15 -0.0018738 -1.068E-05 4.694E-05 -0.0055104 0.0004619 -0.0096837 0.0094598 -0.0085048 0.0038056 -0.000196 1.406E-05 1.081E-05 -2.687E-05 5.221E-05 -0.0041576 6.391E-05 -5.224E-05 3.789E-05 -0.0055852

16 0.0011816 1.816E-05 -4.486E-05 0.0055572 -8.018E-05 0.0045867 -0.0078644 0.0074822 -0.0004168 2.687E-05 -0.0015157 -1.618E-05 3.474E-05 -5.515E-05 6.391E-05 -0.0057524 4.784E-05 -1.998E-05 0.0064848

17 -0.0006729 -2.178E-05 3.684E-05 -0.0055383 2.028E-05 -0.0006857 0.0015099 -0.006796 7.82E-05 -0.0030445 0.0009674 1.724E-05 -3.237E-05 4.616E-05 -5.224E-05 4.784E-05 -0.006775 0.0071036 -0.0071671

18 0.0003031 2.117E-05 -2.877E-05 0.0054527 -0.0072584 0.0001389 -0.0002917 0.0062765 -1.758E-05 0.0027003 -0.0006937 -1.561E-05 2.575E-05 -3.49E-05 3.789E-05 -1.998E-05 0.0071036 -0.0073658 0.0074932

19 -3.832E-05 -1.89E-05 2.037E-05 -0.0053081 0.0068902 -0.0074398 3.035E-05 -0.0059143 0.0043542 -0.002524 0.0006029 1.268E-05 -1.963E-05 2.442E-05 -0.0055852 0.0064848 -0.0071671 0.0074932 -0.0076248

For w(x,y ): For X (x ) and Y (y ): Load-Deflection Relation:
j Aj j Aj n Bn

0 -0.1125203 25 0.0013566 1 1.730457 k 1= -2.1528057

1 0.0976717 26 -0.0012672 2 -1.6455532 k 2= 1.1079752

2 -0.0558052 27 0.0011791 3 1.1916045 k 3= 0.2248833

3 0.0397199 28 -0.0011087 4 -0.8102589 k 4= 0.3100993

4 -0.0297229 29 0.0010362 5 0.5532466

5 0.0233493 30 -0.0009788 6 -0.3885289

6 -0.0186162 31 0.0009183 7 0.2901048

7 0.0151538 32 -0.0008704 8 -0.2247062

8 -0.0124857 33 0.000819 9 0.1778418

9 0.0104501 34 -0.0007785 10 -0.1436514

10 -0.0088017 35 0.0007338 11 0.1200706

11 0.0074831 36 -0.0006993 12 -0.0813445

12 -0.0063859 37 0.0006597 13 0.0796202

13 0.0054929 38 -0.0006298 14 -0.0688747

14 -0.0047435 39 0.0005941 15 0.0558373

15 0.0041303 40 -0.0005678 16 -0.048211

16 -0.0036118 41 0.0005353 17 0.0427206

17 0.003183 42 -0.0005114 18 -0.0396774

18 -0.002821 43 0.0004817 19 0.0345259

19 0.0022509 44 -0.0004592

20 -0.0020489 45 0.0004319

21 0.0018683 46 -0.0004099

22 -0.0017176 47 0.0003848

23 0.0015807 48 -0.0003625

24 -0.0014648 49 0.0003394  
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Appendix D. Large Deflection Literature Survey

This section is based on a previous paper of the authors Hakim, G.; Abramovich,
H. [29], where various sources about the large deflection problem have been reviewed. This
review is repeated here to enhance the view of this vast problem.

Browsing the literature reveals that the non-linear behavior of flat plates using von
Kármán’s two equations was mainly investigated for the transverse deflections of the
plate, with the in-plane (the membrane)-generated stresses being less discussed. NACA
had allocated a lot of efforts to investigate the issue by publishing technical reports in
the years 1941–1951 (see typical reports in [2–9]). Various methods were employed, such
as multiplying double Fourier series results in quadruple series with a large number of
terms, leading to numerical tables and graphs with the membrane stresses in the x and y
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directions being calculated at the mid-point of a square plate and mid-point edges, and
the shear stresses set to zero in Levy [3]. The numerical work was further enhanced in
an experimental study on aluminum-squared plates [4]. Another interesting study is
presented in Levy [5] for a clamped plate having an aspect ratio of 1.5 and undergoing large
deflections. Their results differed only by 3% from an infinitely long plate, thus implying
that long plates should be treated as infinitely long and the in-plane stress distribution
along lines parallel to the edges going through the plate center do not change significantly.

Following the studies presented by Samuel Levy [3–6], Wang [7,8] solved the large
deflection problem by employing two finite differences schemes, the successive approxima-
tions and relaxation method to yield a good comparison with Levy’s results. He considered
an all-around immovable clamped plate and all-around simply supported movable bound-
ary conditions. Both square and rectangular plates were presented with the in-plane stresses
being calculated at three points, center of the plate, long edge mid-point and short edge
mid-point, without indicating the presence of compression-type stress. One should note
also the study presented in Yen [9] for sandwich-type plates, for which numerical and
experimental results were presented and well compared.

In 1954, Berger [10] assumed that the strain energy due to the second invariant of
the middle surface strain can be neglected, leading to a solution of the von Kármán
equations set. This neglection would mean that for the large deflections case, the plate’s
bending resistance is low, and the plate would behave as a pure membrane. The study
presented results for circular and rectangular flat plates for both clamped and simply
supported boundary conditions, with deflections and stresses being presented graphically
and numerically at certain points on the plate.

In 1969–1970, Scholes and Bernstein [11] and Scholes [12] presented approximate large
deflections solutions using energy methods for all-around simply supported rectangular
plates [11] and all-around clamped plates [12]. A good comparison with experimental
results was reported in Scholes and Bernstein [11]. They employed Timoshenko’s [31]
mentioned idea to divide the loading path into a first part, which would cause bending,
and a secondary part leading to membrane stretching, and the load–deflection curve
was calculated by a finite differences scheme. The clamped case being dealt with in
Scholes [12] presents stresses and deflections calculations and comparison with measured
results. Maximal values are presented for a pressure-loaded plate to enable efficient design.

Li-Zhou and Shu [13] used the perturbation variational method to solve the large
deflections problem of rectangular plates under transverse pressure, leading to an analytical
expression for displacements and stresses. They reported a good comparison with available
experiments.

Bert et al. [14] also addressed von Kármán’s equations for orthotropic rectangular
plates. The solution was obtained and presented using the differential quadrature method.
The boundary condition used in their study was all-around simply supported and all-
around clamped, both immovable. They reported deflections, membrane, and bending
stresses are in good agreement with known solutions. Values of the stresses were calculated
at the plate’s mid-point as a function of the applied transverse load. Yeh and Liu [15]
also addressed the issue of the approximated analytic solution for the orthotropic von
Kármán equations. The presented solution led to an expression for the self-mode frequency.
Numerical and graphical solutions were presented only for deflections, while the stress
distribution was not dealt with in the study.

More recent studies, such as by Wang and El-Sheikh [16], presented results for the von
Kármán equations by multiplying Fourier series, obtaining quadruple sums, and equating
similar terms in the results series. The output was a non-linear algebraic equations system
with 1, 3, 4, 6, or 9 equations and unknowns, according to the number of terms taken for the
series. This system was solved for every desired point on the plate. For that, the authors
used numerical tools based on the generalized reduced gradient (GRG) method. They
also presented a closed-form solution for the mid-point deflection using the first term only
having the form of q = α · w + γ · w3 (q = transverse load, w = lateral deflection, and α, γ =
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fitted constants). However, there are indications from other sources that the use of only
one term is not accurate enough and has serious deviations from reality. An interesting
solution for the Föppl–von Kármán equations set was presented by Bakker et al. [32]
using an approximated analytic solution. Thanks to the simplicity of the trial function, the
bending and the membrane loading influences were separated, easing the solution process.
The results were compared to ANSYS FEA v2023-R1 (Engineering Simulation Software,
Canonsburg, PA, USA) results with less than 10% difference. Six combinations of boundary
conditions and four loading cases made the results presentation rather complex. Stresses
were presented using various formulas without any graphical outcome.

Ugural [17], in his book, Ch.10, presented approximate solutions for circular thin plate
S–I (simply supported, immovable edge). However, for the solution for a thin rectangular
plate, he assumed membrane-only stresses (no bending resistance) at the mid-point, with
SSSS–I boundary conditions.

Razdolsky [18] also presented approximate solutions for rectangular SSSS–I rectangu-
lar plates with deflections and stresses calculated for several aspect ratios. He converted
the stress expressions of Levy [3–6] through the minimum potential energy method to
computer executable algorithms. His square plate deflection curve was found to be between
Timoshenko [31] and Levy [3–6] curves, while for the stresses, no direct comparison was
presented.

Turvey and Osman [19] performed numerical analysis with finite differences dynamic
relaxation (DR) of square isotropic Mindlin (shear deformable) plates. His results are said
to be in “generally good agreement” with Alamy and Chapman (1969) and Rushton (1968),
but no comparison was shown.

Paik et al. [20] have developed complex expressions for thin plates’ large deflection
using the Galerkin method. Their example included both transverse and axial edge com-
pression load. Since the results showed only in-plane loads on the edges, it is difficult to
compare it to a case without these loads.

Nishawala [21] handled both non-linear beams and plates. For plates, both movable
and immovable edges were displayed. Several other sources were compared for deflections,
but without stresses. He suggested a third-degree polynomial load–deflection expression
for the plate mid-point.

Jianqiao Ye [22] used both boundary elements (BE) and finite elements (FE) to calculate
deflection and mid-point stress for both simply supported and clamped immovable edges.
A comparison with Boshton (1970) was made, yielding a good agreement.

Abayakoon [23] studied beams as the main subject, while presenting also plates using
a third-degree polynomial mid-point deflection expression. A deflection comparison was
made to Timoshenko [23] and others. Stresses were simulated for ribs stiffened plates only,
which cannot be compared with thin plates.

Seide [24] presented an expression for deflection, but for stresses it was limited to an
infinitely long plate, which cannot be used for a square plate.

Parker [25] solved the plate problem with finite differences. He presented membrane
stress results with good agreement with Levy [3] but less good with Wang [8].

Belardi et al. [26] analyzed a circular plate made of shear deformable orthotropic
composite materials. While the material had Cartesian XY orthotropy, the other variables
in the analysis were polar. The shear deformations were calculated using the FSDT (first
order shear deformation theory). Deflections and rotations were presented. Stresses were
considered, but without presented results.

Plaut [27], in a recent study, used Reissner theory for plates, which allows large strains
(not to be confused with shear deformation) for circular and annular thin plates with both
movable and immovable BC. Results for various loading cases were presented, but for
deflection only. No in-plane stresses were considered.

Finally, Shufrin et al. [28] solved the problem of laminated rectangular plates under
large deflections with a semi-analytic method considering the coupling coefficients tension–
bending and bending–twisting. The non-linear partial differential equations were converted
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to an iterative process of an ordinary non-linear differential equation according to the
Kantorovich method. The result was large mathematical expressions, calculated and
compared to ANSYS FEA (Engineering Simulation Software, Canonsburg, PA, USA.) with
good agreement. Several cases of local loads (patch type load) were also demonstrated.
In-plane stresses including shear stress were partially given along certain lines and loading
arrangements.
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