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Abstract: The optimized design of the catalyst layer (CL) plays a vital role in improving the perfor-
mance of polymer electrolyte membrane fuel cells (PEMFCs). The need to improve transport and
catalyst activity is especially important at low Pt loading, where local oxygen and ionic transport
resistances decrease the performance due to an inevitable reduction in active catalyst sites. In this
work, local oxygen and ionic transport are analyzed using direct numerical simulation on virtually
reconstructed microstructures. Four morphologies are examined: (i) heterogeneous, (ii) uniform,
(iii) uniform vertically-aligned, and (iv) meso-porous ionomer distributions. The results show that
the local oxygen transport resistance can be significantly reduced, while maintaining good ionic
conductivity, through the design of high porosity CLs (ε ' 0.6–0.7) with low agglomerated ionomer
morphologies. Ionomer coalescence into thick films can be effectively mitigated by increasing the
uniformity of thin films and reducing the tortuosity of ionomer distribution (e.g., good ionomer
interconnection in supports with a vertical arrangement). The local oxygen resistance can be further
decreased by the use of blended ionomers with enhanced oxygen permeability and meso-porous
ionomers with oxygen transport routes in both water and ionomer. In summary, achieving high
performance at low Pt loading in next-generation CLs must be accomplished through a combination
of high porosity, uniform and low tortuosity ionomer distribution, and oxygen transport through
activated water.

Keywords: catalyst layer; local resistance; ionomer; modeling; PEMFC

1. Introduction

Polymer electrolyte membrane fuel cells (PEMFCs) are one of the most promising
alternatives to internal combustion engines due to their high efficiency, high power density,
low noise, and low pollutant emission (only water and heat are generated by electrochemi-
cal reactions) [1–3]. However, the high cost caused by the use of elevated Pt loadings at the
cathode still remains as a critical issue for the widespread commercialization of PEMFCs
either in portable, transport, or stationary applications [4,5]. As a result, a large body of
current research is devoted to mitigating potential losses in low Pt loading electrodes (see,
e.g., [6–11] and references therein).

Operation at low Pt loading is limited by the sharp increase in the so-called local
oxygen transport resistance around Pt sites, which originates a high concentration over-
potential at the cathode [12,13]. The origin of the resistance is inherently caused by the
reduction in active Pt surface area at low Pt loading, so that the local flux toward each
catalyst particle is amplified to maintain a targeted current density (per unit of geometric
or platform area). In other words, the lower the active surface area, the higher the oxygen
flux that each catalyst particle must support [14]. Therefore, electrochemical activity and
transport in the neighbourhood of every catalyst particle must be optimized to mitigate the
limitation (i.e., high flux demand) caused by a reduction in Pt loading [7]. The identifica-
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tion of suitable mitigation strategies is an essential step to meet the technological targets
established for PEMFCs in the near term [6,15].

A large experimental effort has been accomplished in the last decades to reduce Pt
loading around 0.1 mgPt cm−2. Some relevant experimental works dealing with the design
of improved CLs at low Pt loading are reviewed below. In 2006–2012, Debe et al. [16,17]
presented nanostructured thin film (NSTF) catalysts produced by 3M. Ultra-thin CLs
(δcl ' 0.3 µm) were prepared with a Pt monolayer supported on crystalline organic whiskers
without an ionomer binder. Proton and electron conduction relayed in liquid water and Pt
catalyst, respectively. High performance was reported for low Pt loading (' 0.1 mgPt cm−2)
with superior stability in a cyclic durability test compared to a conventional Pt/C catalyst.
The better performance at low Pt loading was ascribed to the absence of ionomer and
the agglomerated Pt/whisker structure, which reduced Pt growth and coalescence due
to Ostwald ripening. Yu et al. (2015) [18] examined the feasibility of the reactive spray
deposition technique for the preparation of high-performance CLs. They reported a better
distribution of ionomer in active Pt sites and ionomer penetration into nanopores with
a pore size of 1.7–10 nm. As a result, the optimal ionomer-to-carbon weight ratio was
decreased from around 0.65 for a conventional CL down to 0.3. The improved ionomer dis-
tribution and lower ionomer content led to higher performance at low Pt loading. Talukdar
et al. (2019) [19] studied the effect of drying on the preparation of conventional ink-based
CLs. They found that solvent removal via sublimation by means of freeze drying led
to a 3.5-fold increase in the effective porosity, thereby enhancing performance at low Pt
loading (0.16 mgPt cm−2). Conde et al. (2019) [20] analyzed the mass transport and water
uptake properties of CLs prepared by electrospry. A significant decrease in the local oxygen
transport resistance was reported compared to conventional CLs prepared by airbrushing
(0.8 s cm−1 vs. 0.2 s cm−1 at 0.025 mgPt cm−2, full humidification, and 80 ◦C). Moreover,
electrosprayed CLs showed a much higher water uptake than conventional CLs at the
micro-/meso-scale. Yoshino et al. (2020) [21] presentedan ionomer nanofiber scaffolding CL
formed by the combination of electrospinning of Nafion nanofibers and electrospraying of
a catalyst ink on nanofibers. The multiscale ionomer microstructure showed improved per-
formance at low RH and reduced catalyst poisoning thanks to the decrease in the ionomer
content in the catalyst ink. More recently, Cheng et al. (2022) [22] produced CLs with
nanoporous ionomer using polyvinyl alcohol as a sacrificial pore-forming agent during
CL preparation. Water-filled pores in ionomer allowed a dramatic reduction in the local
oxygen transport resistance from 0.37 s cm−1 down to 0.08 s cm−1. Zhang et al. (2022) [23]
developed porous ionomers by incorporating ionic covalent organic framework nanosheets
into Nafion. Meso-porosity significantly enhanced oxygen permeation and mass activity,
increasing performance at low Pt loading by a factor of 1.6 compared to conventional CLs.

The small nanometric dimensions found in CLs make mumerical modeling especially
important to understand and develop new microstructural designs [24]. An increasing
body of numerical work has been presented in the literature dealing with the modeling
of CLs by molecular-scale techniques, such as molecular dynamics (MD) by pore-scale
techniques, direct numerical simulation (DNS), and pore network modeling (PNM), or by
macroscopic techniques, such as volume averaging. Zenyuk et al. (2016) [25] analyzed the
effect of CL thickness on performance using a 2D multiphase macroscopic model, with
a focus on water transport in thin CLs. They observed that water removal via phase-
change-induced-flow is significantly decreased in CLs below 5 µm in thickness, leading to
severe performance drop. Water flooding at the cathode can be mitigated by enhancing
water removal though the anode and/or reducing the water retention capacity of the
cathode CL. Mu et al. (2019) [26] modeled the effect of low Pt loading on local gas species
transport using the lattice Boltzmnann method (LBM) on reconstructed CL microstructures.
They concluded that the local species transport resistance is mainly caused by the high
diffusion resistance of ionomer film, which is around 5.9% of the bulk transport resistance
in a membrane. The local gas species transport resistance increases with I/C due to the
formation of thicker ionomer films and decreases with porosity due to the growth of



Materials 2023, 16, 6935 3 of 19

the ratio of ionomer loading relative to Pt. In a subsequent work, Mu et al. (2021) [27]
investigated the effect of liquid water saturation and Pt distribution on local oxygen
transport resistance considering a multiphase version of the LBM model presented in [26].
They showed that the effective oxygen diffusivity significantly decreases in hydrophilic
CLs, simultaneously reducing the effective ionomer surface area and pore space available
for transport. As a result, the local oxygen transport resistance increases in hydrophilic CLs,
especially when oxygen permeation through liquid water is ignored. Lee et al. (2022) [28]
examined water, proton, and oxygen transport in thin ionomer films of varying thicknesses
by means of MD. They found that thick ionomer films are favorable to improve water and
proton transport, while thin ionomer films enhance oxygen transport due to increased
solubility in ionomer. Dou et al. (2022) [29] investigated the effect of capillary condensation
on effective oxygen diffusivity and proton conductivity using LBM. They concluded that
oxygen blockage by liquid water can be significantly suppressed with hydrophobic CLs.
Moreover, the results showed the vital role of liquid water on proton conduction, reaching
a better agreement with previous data when the contribution of water conduction was
taken into account. Recently, Sadeghi et al. (2024) [30] used PNM to model transport in
fresh and aged CLs, which accounted for four phases, namely void, ionomer, carbon, and
catalyst. Good agreement was found with experimental data, considering the reduction in
the electrochemical surface area (ECSA) originated by degradation. The results highlighted
the importance of CL microstructure in PEMFC performance.

In the last few years, a growing interest has been devoted to understanding the
impact of heterogeneous CL composition on both performance and durability. In this
context, numerical modeling provides an efficient tool to asses experimental trends in
CLs with different multi-component microstructures and heterogeneous morphologies.
Mu et al. (2022) [31] used a multiscale version of the models presented in [26,27] to examine
reactive transport of oxygen and water in four reconstructed agglomerates in the cathode
CL. The results showed that the local oxygen transport resistance increases linearly with
ionomer content and exponentially with uncatalyzed carbon volume fraction. Furthermore,
the mean size of primary pores increases with porosity, a critical aspect to minimize the
local oxygen transport resistance. García-Salaberri et al. (2022) [12] presented a 1D + 1D
multiscale macroscopic model of an optimized cathode CL, in which ionomer pillars where
covered by a meso-porous shell of electronically conductive material. They concluded that
local oxygen transport resistance can be significantly suppressed by allowing transport
of oxygen through activated water-filled meso-pores, without incurring significant ohmic
losses. Dou et al. (2023) [32] analyzed the effect of carbon aggregation and ionomer mor-
phology on performance by means of a LBM model. They found that a reasonable degree
of agglomeration of carbon support can provide an optimal balance between pore and
cross-ionomer transport resistances. In addition, a uniform ionomer coating is favourable to
further improve performance, being the optimal ionomer content determined by a proper
balance between the ECSA and the oxygen transport resistance.

The above experimental and numerical literature review shows the crucial role that
multi-component composition and morphology play on transport in CL and therefore
PEMFC performance. The aim of this work is to examine numerically the impact of the
most relevant approaches identified in the literature to mitigate local transport resistances
at low Pt loading, namely ionomer content, distribution, and porosity. Diffusion and
conduction simulations are performed at the intra-agglomerate scale to evaluate both the
local oxygen and the ionic transport resistances around catalyst sites. The predictions are
systematically compared with previous observations to shed new light on key factors to be
considered for improving performance at low Pt loading. The organization of this paper is
as follows. In Section 2, the generation algorithm used for the virtual reconstruction of CL
morphologies and the numerical model used for the calculation of local oxygen and ionic
transport resistances are presented. The results are discussed in Section 3, which includes
a calibration of the numerical model and a parametric analysis of volume composition,
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carbon/ionomer interaction, oxygen diffusivity in ionomer, and meso-porous ionomer.
Finally, the conclusions are presented in Section 4.

2. Methods
2.1. Virtual Reconstruction

CL microstructure was virtually reconstructed to differentiate among three phases,
carbon, ionomer, and free water, considering four ionomer morphologies: (i) heterogeneous,
(ii) uniform, (iii) idealized vertically-aligned, and (iv) meso-porous ionomer distributions.
The size of the representative domain was set to 300× 300× 300 nm3, significantly lower
than the average CL thickness, typically around δcl ∼ 10 µm. The voxel resolution was kept
equal to 2 nm throughout the work. Figure 1 shows examples of the steps followed for the
generation of heterogeneous CL microstructures, along with final modifications added to
create meso-porous ionomer. Uniform and idealized morphologies were omitted in Figure 1
for brevity since they involve small changes in the algorithm used for the heterogeneous
case. The main steps followed in the generation process were as follows:

1. Carbon agglomeration. As shown in Figure 1a, spherical carbon particles were
randomly located in the domain with a uniform radius of rc = 25 nm, allowing for
overlap between them. Particles were incorporated one by one into the domain until
a prescribed carbon volume fraction, εc, was reached. After each particle addition,
only the largest connected component was maintained in the process, while isolated
particles not connected to the main carbon structure were removed. At the end, the
connectivity of the agglomerated carbon structure to the top and bottom surfaces of the
domain was checked, and the generation process was repeated from the beginning if
there was not a connected pathway across the domain (six-connected voxels criterion).
Usually, no more than five iterations were needed to reach a connected structure
at the lowest carbon volume fraction examined, εc = 0.2. The generation of the
idealized carbon support composed of vertically-aligned cylinders was accomplished
using a simplified algorithm. Carbon cylinders were placed with a uniform spacing
in the material plane and the radius increased until reaching a prescribed carbon
volume fraction.

2. Ionomer addition. As shown in Figure 1b, a heterogeneous ionomer was created
by randomly selecting points from the carbon agglomerate and introducing semi-
spherical films around the structure. Ionomer films were incorporated one at a time
by identifying the void voxels enclosed in a sphere centered at the selected carbon
point with a prescribed ionomer radius, ri. For each radius, ionomer films were
sequentially added until no further variation of the ionomer volume fraction, εi, was
detected (below an established threshold). The whole process was completed when
a prescribed porosity, ε, was reached, gradually increasing ri by a factor of 1.2 from
an exceedingly small value (ri = 2 nm). For uniform coating, the ionomer phase was
simply identified using the Ecludiean distance transform, so that void voxels located
at a distance below ri from the carbon phase were identified as ionomer. As in the
heterogeneous case, the ionomer radius was gradually increased by a factor of 1.2
from ri = 2 nm until reaching the prescribed porosity, ε. In all cases, connectivity was
checked after every ionomer addition to remove isolated components not connected
to the main carbon+ionomer structure.

3. Free water addition. As shown in Figure 1c, free water was added in a similar way
to ionomer. However, random points were selected from either carbon, ionomer, or
water phases to identify void voxels to be converted into free water. The radius of
water spheres, rw, was sequentially increased by a factor of 1.2 from the last ionomer
radius used in Step 2 until reaching a prescribed water saturation, s. In structures
with uniform morphology, water was placed uniformly around ionomer by gradually
increasing rw by a factor of 1.2. Isolated water blobs which were not connected to
carbon or ionomer were removed.
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4. Additional features. Modifications of the morphology were incorporated to in-
clude specific features in the carbon, ionomer, and water distributions. As shown in
Figure 1d, meso-porous ionomer was created by introducing water-filled spherical
pores in the ionomer phase with a prescribed radius equal to the last ionomer radius
used in Step 2. A total of 120 random points were selected from the ionomer phase.

carbon

water

ionomer

(a) carbon (b) carbon+ionomer

(c) carbon+ionomer+water (d) porous ionomer

pores

Figure 1. 3D representation of carbon (black), ionomer (orange), and water (blue) distributions
in a virtually reconstructed heterogeneous CL, and steps followed in the generation algorithm:
(a) spherical carbon particles (black) are added randomly to form an agglomerated structure that
joins the bottom and top surfaces of the image, (b) ionomer (light grey) is randomly added in semi-
spherical regions around carbon particles, and (c) water (white) is added in semi-spherical regions
around ionomer films. (d) Spherical pores are additionally incorporated into ionomer to create
meso-porous ionomer.
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2.2. Numerical Model

Oxygen diffusion and ionic conduction were examined by DNS of mass species and
charge conservation equations, i.e., Laplace equation, at pore scale (see, e.g., [33,34])

∇ · (Γ∇ϕ) = 0 (1)

where Γ = Deff
O2

[m2 s−1], σeff
p [S m−1] is the property of interest, either mass diffusivity or

ionic conductivity, and ϕ = CO2 [mol m−3], φp [V] is the variable of interest, either oxygen
concentration or ionic potential.

The generated microstructures were imported into the CFD software ANSYS Fluent
2020 R1 using a numerical mask to identify carbon, ionomer, free water, and void regions
in a hexahedral mesh created with the same voxel resolution of image stacks. The various
cell regions were then differentiated in the numerical mesh using the built-in capabilities of
ANSYS fluent to separate cell regions and create the corresponding interfaces. Simulations
were carried out on ionomer, water, and void phases, considering a no-flux boundary
condition at passive carbon interfaces where reaction does not take place. As shown in
Figure 2, a Dirichlet boundary condition was set at the reactive carbon/ionomer interface,
corresponding to a limiting current density condition (CO2 = φp = 0). Additionally, the
carbon/water interface was also assumed to be reactive (CO2 = φp = 0) in simulations
with meso-porous ionomer. The system was excited by introducing a concentration or
potential difference at the upper and lower surfaces (CO2 = φp = 1). Symmetry boundary
conditions were set at sidewalls to mimic the representative location of the domain within
larger carbon agglomerated structures.

𝜙𝑝 = 1

𝜙𝑝 = 1

𝜙𝑝 = 0

𝐶O2 = 1

𝐶O2 = 1

𝐶O2 = 0

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦

Figure 2. Schematic of the boundary conditions used in the calculation of O2 and ionic transport
resistances. Dirichlet boundary conditions are prescribed in the upper and lower exterior surfaces of
the domain (CO2 = 1, φp = 1) and the interior ionomer/carbon surface (magenta) where the reaction
takes place (CO2 = 0, φp = 0)—a water/carbon interface is also considered for meso-porous ionomer.
Symmetry conditions are set at sidewalls of the representative domain. The void space was removed
in the distribution corresponding to the ionic transport resistance since it is meaningless.

The diffusivity and the ionic conductivity of ionomer and water were set as constant.
In the void phase, diffusivity was corrected for Knudsen diffusion based on the average
pore radius (determined by applying the Euclidean distance transform on image stacks).
Ionic conductivity of the void phase was set to a negligible value due to the absence of
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conductive routes for protons. According to previous work, the values adopted in each
region were as follows

Deff
O2

=



3× 10−11 m2 s−1 ionomer
4× 10−9 m2 s−1 water

Dbulk
O2

1 +
Dbulk

O2

Dkn
O2

void
(2a)

σeff
p =


1 S m−1 ionomer
0.1 S m−1 water
10−3 S m−1 void (assumed)

(2b)

Comparatively, the effective oxygen diffusivity in ionomer (Deff
O2,i ∼ 10−7 cm2 s−1

[26,27,35,36]) is around five and two orders of magnitude lower than that in void space
(Deff

O2,v ∼ 10−2 cm2 s−1 [12,14]) and liquid water (Deff
O2,w ∼ 10−5 cm2 s−1 [12,37]). Hence,

void space and liquid water lead to a negligible concentration drop compared to ionomer,
which is where almost the entire oxygen transport resistance originates [14,26]. In contrast,
the effective ionic conductivity of ionomer (σeff

p ∼ 1 S m−1 [38–41]) is around one order of
magnitude higher than that of liquid water (σeff

p ∼ 0.1 S m−1 [12,42,43]). The increase in
the effective ionic conductivity of ionomer (one order of magnitude) is not as pronounced
as the decrease in the effective oxygen diffusivity (two orders of magnitude).

In the above expressions, Dbulk
O2

and Dkn
O2

are the bulk and Knudsen diffusivities of
oxygen, given by [12,14]

Dbulk
O2

= 2.65× 10−5
(

T
333.15

)1.5
m2 s−1 (3a)

Dkn
O2

=
rv

3

√
8RT

πMO2

m2 s−1 (3b)

where rv is the average pore radius of void space, T is the temperature (fixed to 80 ◦C),
MO2 is the molecular mass of oxygen, and R is the universal gas constant.

The local mass and ionic transport resistances per unit of geometric (or platform area
of the CL), Rlocal

O2
and Rlocal

p , are obtained from a flux balance [14]

Nlocal
O2,Ptr f =

∆CO2

Rlocal
O2

⇒ Rlocal
O2

=
∆CO2

Nlocal
O2,Pt

1
r f

(4a)

Nlocal
p,Pt r f =

∆φp

Rlocal
p

⇒ Rlocal
p =

∆φp

Nlocal
p,Pt

1
r f

(4b)

where r f = APt/Ageo is the roughness factor, defined as the ratio between the ECSA and the
CL geometric area, Nlocal

O2,Pt and Nlocal
p,Pt are the oxygen and proton flux at Pt surface, and ∆CO2

and ∆φp are the concentration and ionic potential drops from the bulk space toward Pt
surface, respectively. ∆CO2 was determined as the average concentration in the void space

minus the oxygen concentration at reaction sites (∆CO2 = Cbulk,avg
O2

), while ∆φp was directly
taken as the prescribed potential drop (∆φp = 1). According to Equations (4a) and (4b), the
local resistance per unit of the geometric area is inversely proportional to the roughness
factor (Rlocal ∝ r−1

f ), dramatically increasing at low Pt loading when APt → 0 [13,14,44].
Pt was assumed to be well dispersed over Pt surface, so no explicit description of

the Pt nano-particle shape was made (Ac ' APt). Consequently, the roughness factor
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is meaningless, and the variable of interest calculated in the simulations was the local
resistance per unit of Pt (or carbon) surface area Rlocal

Pt

Rlocal
O2,Pt = Rlocal

O2
r f =

∆CO2

Nlocal
O2,Pt

(5a)

Rlocal
p,Pt = Rlocal

p r f =
∆φp

Nlocal
p,Pt

(5b)

Rlocal
Pt controls the incremental slope of Rlocal when the Pt loading (and APt) are de-

creased, removing the expected effect of the increase in Nlocal
Pt with respect to Nlocal caused

by area (i.e., Nlocal
Pt = r f Nlocal). The only concern is that the enlargement of transport path-

ways created by the discrete nature of Pt nano-particles at a given Pt loading is ignored [45].
Nevertheless, the aim of this work is to examine the overall effect of ionomer morphology,
so the contribution of the discrete Pt shape is a secondary factor.

3. Discussion of Results

The discussion of results is divided into five sections. First, the model is calibrated in
terms of local oxygen transport resistance and effective diffusivity of oxygen in ionomer.
The results of a parametric analysis are then presented, which includes a study of volume
composition, carbon/ionomer interaction, ionomer diffusivity, and meso-porous ionomer.
The local oxygen and ionic transport resistances computed in the parametric analysis were
averaged among five sample realizations for every condition examined. Water saturation
was fixed to s = 0.3, while porosity and carbon volume fraction were varied depending on
the case under study.

3.1. Calibration

Before proceeding further, the predictive capabilities of the model were compared
against data reported in the literature. The variables considered for the model calibration
were the local oxygen transport resistance, RO2 r f , and the effective diffusivity of oxygen
in ionomer, Deff

O2,i, due to the uncertainty in mass transport results and the availability of
previous experimental data. Figure 3a shows the experimental data of RO2 r f reported by
different literature sources, along with the numerical results computed with the baseline
Deff

O2,i used in the simulation campaign (Deff
O2,i = 3× 10−7 cm−2 s−1). A partially saturated

CL (s = 0.3) with a conventional composition (εc = 0.3, ε = 0.4) was used in the simulations.
A large dispersion is found among previous data, with RO2 r f ranging between 5 s cm−1

Pt
and 30 s cm−1

Pt (a factor of six). These variations can be mainly ascribed to microstructural
differences that arise from volume composition and manufacturing techniques. The numer-
ical results computed in sixteen sample realizations vary stochastically around 12 s cm−1

Pt ,
which is close to the mean experimental value (≈15 s cm−1

Pt ). Hence, the numerical results
can be considered representative of the behavior of a conventional CL when the oxygen
diffusivity is fixed at Deff

O2,i ≈ 3× 10−7 cm−2 s−1. As shown in Figure 3b, the assumed diffu-
sivity is in line with previous data adopted in mesoscopic simulations by Mu et al. [26,27],
who varied the oxygen diffusivity between 2.5× 10−7 cm−2 s−1 and 1× 10−6 cm−2 s−1.
This range agrees with previous experimental data reported for the oxygen diffusivity in
bulk Nafion membranes, even though there is a large variability among authors (three
orders of magnitude) [35]. The large fluctuation of the diffusivity in bulk Nafion can be
ascribed to conditioning, substrate interaction, and confinement of membranes [46–48].
The oxygen diffusivity considered here is a good approximation, which leads to realistic
values of the local oxygen transport resistance.
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(a) (b)

Figure 3. (a) Local O2 transport resistance normalized with respect to Pt surface area, Rlocal
O2

r f ,
computed in simulations with a heterogeneous CL (εc = 0.3, ε = 0.4) compared to previous
experimental data presented in the literature [49–55]. (b) Effective diffusivity coefficient of O2 in
ionomer, Deff

O2,i, used as a baseline value in the work compared to previous experimental data reported
for Nafion [35] and numerical data considered in pore-scale simulations [26,27]. Black symbols show
data from previous literature sources.

3.2. Volume Composition

Figure 4 shows the results of the analysis of the volume composition for conventional
CLs with a heterogeneous ionomer distribution. The variation of the local oxygen and
ionic transport resistances is examined as a function of porosity for three carbon volume
fractions. As shown in Figure 4a, there is a strong dependency of RO2 r f with porosity, which
decreases by a factor of two when the porosity is increased from ε ' 0.1 to ε ' 0.7. That is,
the ionomer volume fraction is reduced from εi ' 0.7 to εi ' 0.1, since ε + εi + εc = 1. For
a given porosity, RO2 r f is also reduced with carbon volume fraction due to the decrease
in ionomer volume fraction. These results agree with previous works, which showed that
the use of moderate ionomer-to-carbon weight ratios (I/C . 0.65) is beneficial to enhance
oxygen transport at low Pt loading due to a decrease in average ionomer thickness [14,18,
44,53,56]. Notice also the non-linear dependency of the local oxygen transport resistance
with porosity. For high ionomer volume fractions (εi ' 0.5–0.7), RO2 r f remains large and
rather constant around RO2 r f & 15 s cm−1

Pt . In contrast, at lower ionomer volume fractions
(εi ' 0.1–0.5), RO2 r f gradually decreases until it settles down around RO2 r f ' 10 s cm−1

Pt
for CLs with low ionomer volume fractions and high porosities (εi ' 0.1–0.3, ε ' 0.5–0.7).
Such non-linear behavior highlights the need to design high porosity CLs to mitigate the
detrimental effect of local oxygen transport resistance at low Pt loading [57]. Experimentally,
a strong reduction in RO2 r f has been previously reported for high porosity electrosprayed
CLs [20]. A low ionomer content minimizes the agglomeration of ionomer films, avoiding
the formation of locally dense ionomer regions that prevent a proper distribution of oxygen
throughout the ionomer surface. CL design with low ionomer fraction and high porosity
must be accompanied by a moderate increase in the local ionic transport resistance. As
shown in Figure 4b, Rlocal

p r f remains rather constant around 1.5–2 mΩ cm−2
Pt for ε . 0.5

(εi & 0.2) but significantly increases beyond 3 mΩ cm−2
Pt for ε ' 0.7 (εi ' 0.1) when ionomer

interconnection approaches the percolation threshold [58]. Operation close to the ionic
percolation threshold of ionomer must be ensured by the incorporation of supporting
routes for proton transport, created, for example, by an enhanced water uptake at the
micro- and meso-scale, as is the case for optimized electrosprayed CLs [20]. Alternatively, a
delicate arrangement of ionomer might be necessary, as discussed in the next section.
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(a)

ε = 0.2 ε = 0.4 ε = 0.6

(b)

Figure 4. (a) Heterogeneous CL microstructures corresponding to εc = 0.3 and various porosities,
ε = 0.2, 0.4, 0.6. Black: carbon, orange: ionomer, blue: water. (b) Variation of local O2 and ionic
transport resistances normalized with respect to Pt surface area, Rlocal

O2
r f and Rlocal

p r f , as a function of
porosity, ε, corresponding to three carbon volume fractions, εc = 0.2, 0.3, 0.4. The error bars indicate
the range of variation of results among different sample realizations.

3.3. Carbon/Ionomer Interaction

Figure 5 shows the results of the carbon/ionomer interaction for three ionomer mor-
phologies, heterogeneous, uniform, and idealized vertically aligned distributions, as a
function of porosity. A representative carbon volume fraction is considered, εc = 0.3.
As shown in Figure 5a, the local oxygen transport resistance of the heterogeneous and
uniform ionomer distributions are similar at low-to-middle porosities (ε ' 0.1–0.4). The
low sensitivity of RO2 r f to ionomer heterogeneity is explained by the presence of both thick
and thin ionomer regions in the heterogeneous samples, which lead on average to a similar
oxygen resistance to that of uniform samples [59–61]. This situation is further illustrated
in Figure 6a, which shows the histograms of the local oxygen flux at active sites of the
examined samples at ε = 0.4. For heterogeneous ionomer, the local oxygen flux distribution
varies roughly linearly due to the presence of a continuous distribution of regions with
high and low oxygen resistances. In contrast, for uniform ionomer, the local oxygen flux
distribution is more concentrated toward intermediate values that are characteristic of the
mean ionomer thickness (lower dispersion). The difference between heterogeneous and
uniform ionomer distributions is enlarged at high porosity (ε ' 0.5–0.6), where the uniform
samples reach a lower oxygen resistance than the heterogeneous samples (a factor of two,
RO2 r f ' 5 s cm−1

Pt vs. RO2 r f ' 10 s cm−1
Pt ). The reduction in the oxygen resistance at high

porosity in the uniform samples is caused by a strong suppression of ionomer agglomera-
tion when the ionomer volume fraction is low (εi ' 0.1–0.2) [53]. The optimal arrangement
of uniform ionomer virtually removes coalescence of ionomer films, facilitating oxygen
distribution between ionomer films. Similarly, the local ionic transport resistance of the
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uniform samples is especially reduced compared to that of the heterogeneous samples at
high porosity (a factor of two, Rpr f ' 1.5 mΩ cm−2

Pt vs. Rpr f ' 3 mΩ cm−2
Pt ). The superior

ionic conductivity of uniform samples arises from the better arrangement of ionomer and
the suppression of ineffective agglomerated ionomer regions, i.e., a tortuosity decrease [62].
Overall, the use of high porosity CLs with a uniform-as-possible ionomer distribution can
be an effective way to improve performance at low Pt loading due to facilitated oxygen
transport and good proton conduction [56,63,64].

(a)

Heterogeneous Uniform Idealized

(b)

Figure 5. (a) Microstructures of CLs with heterogeneous, uniform, and idealized vertically-aligned
ionomer morphologies (εc = 0.3, ε = 0.5). Black: carbon, orange: ionomer, blue: water. (b) Variations
in local O2 and ionic transport resistances normalized with respect to Pt surface area, Rlocal

O2
r f and

Rlocal
p r f , as a function of porosity, ε, corresponding to CLs to heterogeneous, uniform, and idealized

vertically-aligned ionomer morphologies (εc = 0.3). The error bars indicate the range of variation in
results among different sample realizations.

The importance of ionomer morphology is exacerbated in the samples with an ide-
alized vertically-aligned distribution. As shown in Figure 5a, the local oxygen transport
resistance of the idealized samples is low in the full porosity range, slightly decreasing
from 5 s cm−1

Pt to 2 s cm−1
Pt when the porosity is increased between 0.1 and 0.6. Fur-

thermore, as shown in Figure 5b, the local ionic transport resistance is significantly re-
duced compared to the heterogeneous and uniform distributions, remaining between
0.6 mΩ cm−2

Pt –1.1 mΩ cm−2
Pt for ε = 0.1–0.6. The extremely high performance of the ideal-

ized ionomer distribution arises from a minimization in ionomer agglomeration and an
optimal arrangement of proton transport pathways (i.e., tortuosity minimization) [12]. No-
tice that the oxygen resistance of the idealized and the uniform distributions are similar at
high porosity, reflecting the superior oxygen distribution in both cases. High performance at
low Pt loading with vertically aligned microstructures have been previously demonstrated
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in several experimental works [65–67], where current densities as high as 2.6 A cm−2 were
reached at 0.6 V with 0.1 mgPt cm−2 and air supply. As a final remark, it is worth noting
that the results of the idealized morphology do not vary among sample realizations, unlike
the results calculated with random carbon particles. This fact highlights the importance
of using reproducible manufacturing techniques and homogenized catalyst supports to
reduce maldistribution of transport resistances, which can affect local performance and
degradation rates [68,69].

(a) (b)

Figure 6. (a) Histograms of local O2 flux at ionomer/carbon interface corresponding to CL microstruc-
tures with heterogeneous and uniform ionomer morphologies. (b) Histograms of local O2 flux at
ionomer/carbon and water/carbon interfaces corresponding to a CL with meso-porous ionomer.
εc = 0.3, ε = 0.4

3.4. Ionomer Diffusivity

The results of the analysis of the effective oxygen diffusivity in ionomer are shown in
Figure 7. The local oxygen and ionic transport resistances are plotted as a function of poros-
ity for the heterogeneous ionomer distribution (εc = 0.3). As expected, the local oxygen
transport resistance decreases almost linearly with an increase in the oxygen diffusivity (see
Figure 7a). Indeed, small deviations from linearity are caused by stochastic fluctuations
that arise from random microstructures. As shown in Figure 7b, the local ionic transport
resistance remains invariant with respect to oxygen diffusivity, reaching similar values to
those presented in Figure 4b (except for stochastic variations among samples). The use of
modified ionomers with enhanced permeability and good conductivity offers a viable route
to improve performance at low Pt loading. Among available options, blended ionomers
can be a satisfactory solution to produce tailored designs with balanced mass and ionic
transport properties [70,71]. Nevertheless, it is worth noting that achieving a remarkable
high performance may only be possible if enhanced diffusion is accompanied by a proper
CL design in terms of high porosity and ionomer morphology. The increase in oxygen dif-
fusivity shown in previous work is typical of order unity, so a disruptive increase in oxygen
diffusivity may not be possible by solely altering the chemical ionomer structure [54,70–73].
Local oxygen transport can be more effectively increased by incorporating meso-porosity
into ionomer, an aspect that is discussed in the next section.
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(a) (b)

Figure 7. Variation of (a) local O2, Rlocal
O2

r f , and (b) ionic. Rlocal
p r f , transport resistances as a function

of porosity, ε, corresponding to three effective diffusivities of O2 in ionomer, Deff
O2,i = 1.5× 10−7,

3× 10−7, 6× 10−7 cm2 s−1 (εc = 0.3). The error bars indicate the range of variation of results among
different sample realizations.

3.5. Meso-Porous Ionomer

The results of the uniform meso-porous ionomer are compared to those of the uniform
ionomer as a function of porosity in Figure 8 (εc = 0.3). As shown in Figure 8a, the local
oxygen transport resistance of the meso-porous ionomer is sharply decreased, reaching val-
ues even one order of magnitude lower than the uniform ionomer (RO2 r f ' 0.1–1 s cm−1

Pt
vs. RO2 r f ' 5–10 s cm−1

Pt ). The strong enhancement of oxygen transport is caused by
the much higher diffusivity of oxygen in liquid water (Deff

O2,w ∼ 10−5 cm2 s−1) compared
to ionomer (Deff

O2,i ∼ 10−7 cm2 s−1), two orders of magnitude higher—see histograms in
Figure 6b. This result clearly evidences that oxygen resistance can be greatly suppressed by
enhancing water uptake within ionomer and allowing oxygen transport directly through
liquid water (provided that water regions are electrochemically activated). For instance,
the increase in the oxygen resistance of the meso-porous ionomer with CL porosity is
explained by a reduction in the carbon/water interface, since the ionomer pore radius was
varied according to the film thickness (a decreasing function of CL porosity). As shown
in Figure 8b, the local ionic transport resistance shows an opposite behaviour to that of
the oxygen resistance, being higher in the meso-porous ionomer due to the worse trans-
port of protons in liquid water (a factor around two to three, Rlocal

p r f ≈ 1.5–4.5 mΩ cm−2
Pt

vs. Rlocal
p r f ≈ 1–2 mΩ cm−2

Pt ). The ionic resistance of the meso-porous ionomer decreases
with porosity due to the presence of smaller water regions at high porosity (i.e., narrower
ionomer film thickness). Comparatively, the increase in the ionic transport resistance of
the meso-porous ionomer is significantly less important for performance than the reduc-
tion in the oxygen transport resistance, so reaching high performance with meso-porous
ionomer is certainly possible. Previous experimental works that have shown improved
performance at low Pt loading by exploiting the use of liquid water include (i) NSTF
electrodes [16,17] and (ii) engineered porous ionomers [22,23,74,75]. In the latter group, it
may also be included some blended ionomers with a significant bulky structure [70]. In
agreement with the present results, a reduction in the local oxygen transport resistance
down to one order of magnitude (RO2 = 0.08 s cm−1 vs. RO2 = 0.37 s cm−1) with a mod-
erate ionic resistance in the polarization curve was recently reported by Cheng et al. [22]
using a masked nanoporous ionomer. In addition, the low oxygen transport resistance
of electrosprayed CLs at low Pt loading (Rlocal

O2
' 0.17 s cm−1) can be explained by the

combination of high porosity, more uniform ionomer distribution, and enhanced water
uptake at the micro-/meso-scale [20].
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(a)

Uniform Uniform & Porous

(b)

Figure 8. (a) Microstructures of CLs with uniform non-porous and uniform meso-porous ionomer
morphologies (εc = 0.3, ε = 0.5). Black: carbon, orange: ionomer, blue: water. (b) Variation of local
O2 and ionic transport resistances normalized with respect to Pt surface area, Rlocal

O2
r f and Rlocal

p r f , as
a function of porosity, ε, corresponding to CLs with uniform non-porous and uniform meso-porous
ionomer morphologies (εc = 0.3). The error bars indicate the range of variation of results among
different sample realizations.

4. Conclusions

The local and ionic transport resistances of catalyst layers (CLs) used in polymer
electrolyte membrane fuel cells (PEMFCs) have been analyzed by direct numerical simu-
lation on virtually reconstructed microstructures. The generated samples accounted for
carbon, ionomer, and liquid water, neglecting the discrete geometry of Pt nano-particles, to
study the effect of volume composition, carbon/ionomer interaction, ionomer diffusivity,
and ionomer meso-porosity. To this end, four ionomer morphologies were considered:
(i) heterogeneous, (ii) uniform, (iii) idealized vertically-aligned, and (iv) meso-porous distri-
butions. As summarized in Table 1, the numerical results have shown that the local oxygen
transport resistance can be reduced through the design of high porosity CLs with low
ionomer agglomeration. Increasing the uniformity and reducing the tortuosity of ionomer
distribution avoids excessive coalescence of ionomer films, while enhancing proton trans-
port. Oxygen transport can be further improved through the use of blended ionomers with
high oxygen permeability and good ionic conductivity, as well as meso-porous ionomers.
Allowing oxygen diffusion through liquid water near active Pt sites is crucial to strongly
enhance oxygen transport toward Pt surface. Indeed, the high diffusivity of oxygen in
liquid water compared to ionomer can decrease the oxygen resistance by one order of
magnitude. The above guidelines, high porosity, uniform and low tortuosity ionomer, and
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oxygen transport through activated liquid water are key aspects to mitigate losses at low Pt
loading in next-generation PEMFCs.

Table 1. Comparison of the local oxygen and ionic transport resistances of the various ionomer
morphologies examined in this work for a representative carbon volume fraction (εc = 0.3). The
relative variation with respect to the first case is shown in brackets.

Ionomer Morphology
Local O2 Resistance

[s cm−1
Pt ]

Local Ionic Resistance
[mΩ cm2

Pt]

Heterogeneous (ε = 0.1–0.3) 14.88 (–) 1.21 (–)
Heterogeneous (ε = 0.4–0.6) 10.09 (−32.19%) 2.27 (+87.6%)
Uniform (ε = 0.1–0.4) 14.03 (−5.71%) 1.23 (+1.65%)
Uniform (ε = 0.5–0.6) 4.57 (−69.29%) 1.83 (+51.24%)
Ideal (ε = 0.1–0.6) 3.42 (−77.02%) 0.82 (−31.92%)
Diffusivity increase (ε = 0.1–0.6) 5.93 (−60.15%) 1.64 (+35.9%)
Meso-porous (ε = 0.1–0.6) 0.43 (−97.08%) 2.58 (+113.22%)

Several aspects warrant future work. The effect of the discrete geometry of Pt nano-
particles and porous carbon support must be examined. In addition, a numerical analysis
accounting for electrochemical reactions must be performed, with special emphasis on
reaction kinetics in liquid water.
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Nomenclature
Symbols
A area/m2

C species concentration/mol m−3

D mass diffusivity/m2 s−1

M molecular mass/kg mol−1

N flux/mol m−2 s−1 or A m−1

R universal gas constant/J mol−1 K−1

Ri mass transport or ionic resistance/s m−1 or Ω m2

r radius/m
r f roughness factor/–
s water saturation/–
T temperature/K
Greek letters
Γ diffusivity or conductivity/IS units
δ thickness/m
ε porosity/–
εi volume fraction of component i/–
σp ionic conductivity/S m−1

φp ionic potential/V
ϕ transport scalar/IS units
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Subscripts
c carbon
cl catalyst layer
i ionomer
p protonic or ionic
v void
Superscripts
bulk bulk property
eff effective
kn Knudsen
local local quantity around active Pt sites
w water
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