
Citation: Miller, B.; Ziemiański, L.
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Abstract: Composite shells find diverse applications across industries due to their high strength-to-
weight ratio and tailored properties. Optimizing parameters such as matrix-reinforcement ratio and
orientation of the reinforcement is crucial for achieving the desired performance metrics. Stochastic
optimization, specifically genetic algorithms, offer solutions, yet their computational intensity hinders
widespread use. Surrogate models, employing neural networks, emerge as efficient alternatives by ap-
proximating objective functions and bypassing costly computations. This study investigates surrogate
models in multi-objective optimization of composite shells. It incorporates deep neural networks to
approximate relationships between input parameters and key metrics, enabling exploration of design
possibilities. Incorporating mode shape identification enhances accuracy, especially in multi-criteria
optimization. Employing network ensembles strengthens reliability by mitigating model weaknesses.
Efficiency analysis assesses required computations, managing the trade-off between cost and accuracy.
Considering complex input parameters and comparing against the Monte Carlo approach further
demonstrates the methodology’s efficacy. This work showcases the successful integration of network
ensembles employed as surrogate models and mode shape identification, enhancing multi-objective
optimization in engineering applications. The approach’s efficiency in handling intricate designs and
enhancing accuracy has broad implications for optimization methodologies.

Keywords: shell; composite; optimization; surrogate model; genetic algorithms; artificial neural
networks

1. Introduction

Composite shells find widespread applications across various industries, including
aviation, machinery, and even construction [1,2]. These shells, known for their high strength-
to-weight ratio and tailored material properties, have paved the way for innovative designs
and improved performance in structural components. The efficacy of composite materials,
however, is deeply intertwined with the meticulous selection of specific parameters, such
as the matrix-to-reinforcement ratio and the orientation of the reinforcement, which play
pivotal roles in shaping the mechanical behavior of these materials.

The optimization of these parameters has become a paramount pursuit, offering a
means to attain desired characteristics and performance metrics [2–4]. The optimization pro-
cess, whether aimed at achieving optimal dynamic responses, static stiffness under defined
loads, critical buckling loads, material cost-effectiveness, or other engineering objectives,
presents multifaceted challenges. Conventional gradient-based optimization techniques
have proven efficacious in swiftly locating minima in many functions; however, their
limitations are conspicuous when grappling with intricate, multimodal objective functions.

Amidst these complexities, stochastic optimization approaches emerge as promising al-
ternatives, capable of approximating near-global optima in intricate, non-linear landscapes.
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Within the realm of stochastic optimization, evolutionary algorithms, drawing inspiration
from biological processes, have garnered considerable interest from researchers. Among
these, genetic algorithms stand out as prominent candidates for tackling optimization
problems due to their ability to explore vast solution spaces effectively [5–8].

However, the wide-scale application of these methods is constrained by the computa-
tionally intensive nature of the optimization process. Conventional approaches necessitate
a substantial number of objective function evaluations, particularly when the function
values are computed using computationally intensive techniques such as Finite Element
Method (FEM). This numerical burden prolongs the optimization process and exacerbates
numerical instability issues.

The adoption of surrogate models emerges as a solution to alleviate these computa-
tional challenges [9,10]. Surrogate models, often based on artificial neural networks, offer
an expedited means of approximating objective function values using a previously pre-
pared dataset of patterns. Surrogate models enable faster and more efficient optimization
procedures by circumventing the need for intricate numerical computations like FEM,
significantly reducing the computational overhead.

Kalita et al. [11] conducted a comprehensive review of nearly 300 research articles on
high-fidelity and metamodel-based optimization of composite laminates. This review em-
phasizes various metamodels and succinctly presents each research article’s methodologies
and key outcomes, offering a valuable resource for future researchers and design engineers.

A global numerical approach for lightweight design optimization of laminated com-
posite plates subjected to frequency constraints was presented in [12]. Their method utilizes
an adaptive elitist differential evolution algorithm to solve the optimization problem with
both integer and continuous variables, demonstrating its efficiency and reliability. Bargh
et al. [13] applied the Particle Swarm Optimization (PSO) algorithm to optimize the lay-
up design of symmetrically laminated composite plates for maximizing the fundamental
frequency. The efficiency of the PSO algorithm was compared with the simple genetic
algorithm, and the method’s effectiveness was validated against the existing literature
results. In another study by Vo Duy et al. [14], the authors focused on multi-objective opti-
mization problems of laminated composite beam structures. They aimed to minimize the
beam’s weight and maximize its natural frequency. The study employed the Nondominated
Sorting Genetic Algorithm II (NSGA-II) to tackle the optimization problem, showcasing the
approach’s effectiveness for problems with both discrete and continuous design variables.

Tanaka [15] introduced a multi-objective optimization method for variable-thickness
carbon fiber placement in composite laminates. The method aimed to achieve high strength
and low weight by optimizing fiber orientation and thickness distribution using the Chris-
tensen fracture criterion and mean curvature as objective functions. In [16], the simul-
taneous optimization of stiffness and buckling load of composite laminate plates with
curvilinear fiber paths has been tackled. This approach integrated surrogate modeling into
an evolutionary algorithm, resulting in efficient optimization that simultaneously improved
stiffness and buckling load over quasi-isotropic laminates.

Lee and Lin [17] presented a regression equation-based response surface approach
to estimate the behavior of composite laminated structures, reducing the computational
time required for optimization. The approach was validated with examples such as a
marine propeller and a rotor wing, demonstrating both efficiency and accuracy. The same
authors [18] enhanced a standard Genetic Algorithm (GA) by introducing local improve-
ment and utilizing regression modeling for real calculation. The improved GA showed
quicker convergence and significantly reduced calculation time. The approach’s efficacy
was demonstrated through applications to a sandwich plate and composite propeller.

Drosopoulos et al. [19] proposed a multi-objective optimization study for the cost-
effective design of nano-reinforced laminates. Their approach utilized the NSGA-II to
optimize a hybrid laminate with conventional fibers and graphene nanoplatelets reinforce-
ment. The optimization achieved enhanced fundamental frequency and reduced cost.
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In [20], a global-local search strategy for the optimal design of laminated composite
cylindrical shells with maximum fundamental frequency has been presented. The strategy
employed the sequential permutation search algorithm for global optimization and the
Ritz method for vibration analysis, offering a comprehensive approach for cylindrical shell
design optimization. Sayegh [21] introduced an alternative approach to multi-objective
optimization for detailed building models using reduced sequences in both sequential and
adaptive strategies. These methods efficiently reproduced the Pareto front with reduced
computational time and errors, showcasing their potential for optimizing complex systems.

The results of previous studies conducted by Miller and Ziemiański on single- and
multi-objective optimization, including aspects such as maximizing the fundamental nat-
ural frequency, broadening frequency-free bands, and maximizing critical buckling load,
have been presented in [22–26]. The present work significantly extends the scope of the
previous findings.

In this context, this paper delves into the utilization of surrogate models in multi-
objective optimization of composite shells. The study explores the application of Deep
Neural Networks (DNN, see [27–29]) trained on a dataset of patterns to approximate
objective function values, subsequently aiding in optimizing complex systems with diverse
performance metrics. The investigation considers various optimization scenarios, including
maximizing fundamental natural frequencies, optimizing frequency bandwidths, and
optimizing cost parameters [30]. Additionally, the impact of mode shape identification and
network ensembles on the performance of the optimization process is explored.

Surrogate models in multi-objective optimization: Surrogate models approximate
complex simulations’ behavior, providing an efficient alternative to the computationally
expensive Finite Element Analysis (FEA). In this study, surrogate models are employed
to approximate the relationship between input parameters and the fundamental natural
frequency ( f1), or width of frequency bands around different frequencies free from the
structure’s natural frequencies. This allows for the exploration of a broad range of design
possibilities without the need for a large number of FEA simulations.

Mode shapes identification and optimization accuracy: To improve the accuracy of
surrogate models, mode shape identification is introduced as a preprocessing step. By
identifying and analyzing mode shapes, the precision of surrogate models is enhanced,
particularly in optimization of f1 and frequency bands. The results demonstrate that the
incorporation of mode shapes identification significantly improves the optimization process,
providing more reliable and accurate Pareto fronts.

Utilizing network ensembles: To mitigate potential weaknesses in individual surrogate
models, network ensembles are employed. These ensembles consist of multiple unique
surrogate models, and the final predictions are selected from the best-performing model
in the ensemble. Using network ensembles mitigates the risk of suboptimal results and
ensures greater robustness and reliability in the multi-objective optimization process.

Efficiency analysis: One of the key aspects of our study is the analysis of the number of
FE calls required for the optimization process. The computational effort is comprehensively
assessed across various scenarios, including different sizes of training sets for surrogate
models. This analysis provides valuable insights into the trade-off between computational
cost and optimization accuracy.

Complexity of input parameters: The complexity of real-world engineering challenges
often entails a high number of input parameters. In this research, 17 input parameters are
considered, including geometrical parameters, material properties, and lamination angles.
The approach is designed to manage such complexities efficiently, enabling thorough design
space exploration.

Comparison with the Monte Carlo approach: To evaluate the effectiveness of our
proposed methodology, a comparison is made between results obtained from surrogate-
based multi-objective optimization and those derived from the classical Monte Carlo
(MC) approach. The comparison highlights the superiority of the approach in terms of
convergence and accuracy in capturing the Pareto fronts.
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Normalization of Pareto front indicators: In multi-objective optimization, comparing
Pareto fronts acquired from different problems can be challenging due to variations in the
scale and nature of the objectives. A normalization method for Pareto front indicators is
proposed to address this challenge, enabling fair comparisons and better decision-making.

This study demonstrates the successful application of surrogate models, mode shape
identification, and network ensembles in enhancing multi-objective optimization. By effi-
ciently handling a high number of input parameters, this approach provides more accurate
and reliable results. Incorporating mode shape identification significantly improves the
accuracy of the optimization process. We believe that these findings will have broad impli-
cations for various engineering applications, contributing to the development of efficient
and effective optimization methodologies.

2. Problem Formulation
2.1. Generalized Eigenproblem and Mode Shapes Identification

The current study deals with structural dynamics. If the dynamic characteristic of
the analyzed structure is investigated, the so-called generalized eigenproblem should be
studied. This problem establishes a connection between structural properties, such as
stiffness and mass matrices, and natural frequencies and vibration modes:

KΦ = MΦΩ2, (1)

where Φ matrix consists of the mode shapes of vibration φi (arranged in the columns of
the matrix Φ), and Ω is a diagonal matrix with natural frequencies fi =

ωi
2π adequate to the

eigenvectors φi. Typically, the natural frequencies are sorted in ascending order:

f1 < f2 < . . . < fn. (2)

The first and smallest natural frequency of vibration f1 is commonly referred to as the
fundamental frequency, since it plays a crucial role in analyzing the structure’s dynamic
behavior. However, in complex structures subjected to varying dynamic loads, the higher
natural frequencies become equally important.

The study of the mode shapes of the axisymmetric structure reveals that they can be
classified into several distinct families:

• Axial modes (Anm), where the circumferential wave form number n is n = 0, and the
longitudinal wave form number m takes on natural number values m = 1, 2, . . .. The
predominant displacement direction is along the axis of the structure;

• Torsional modes (Tnm), with n = 0 and m = 1, 2, . . ., where the displacements in
each cross-section have a direction perpendicular to the radius of the cross-section,
remaining within the cross-section plane;

• Bending modes (Bnm), with n = 1 and m = 1, 2, . . ., in which points on the same cross-
section of the structure exhibit very similar displacements, resembling the behavior of
an inextensible one-dimensional bar;

• Circumferential modes (Cnm), with n = 2, 3, . . . and m = 1, 2, . . ., specific to ax-
isymmetric structures, where displacements along the radius of a cross-section with
alternating signs dominate, forming characteristic waves.

The natural frequencies are assigned to appropriate mode shape families here, based
on an analytic analysis of the geometry of each mode shape. Instead of arranging them in
ascending order of increasing frequency, they are ordered according to the mode shape
family to which they belong:

fC21, fC22, . . . , fC31, fC32, . . . , fB11, fB12, . . . , fT01, . . . (3)

The subscripts next to the mode shape family name indicate the number of circum-
ferential (the first) or longitudinal waves (the second) in the considered mode shape. For
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example, fC21 represents the natural frequency corresponding to the C21 mode shape (the
second circumferential mode shape with the first longitudinal waveform).

In the present study, the authors use an analytical mode shapes recognition procedure
by analyzing the main component of displacement of the mode shape point with the highest
displacement magnitude (see [23]).

The proposed approach allows for a more accurate estimation of the values of the
eigenfrequencies. When the order of mode shapes belonging to different families (deter-
mined by the values of the corresponding natural frequencies) changes due to specific
changes in the structure parameters, the dependence of the value of the frequency on the
value of the changing parameter ceases to have a continuous derivative. This phenomenon
is known as mode shapes crossing [23], and is illustrated in Figure 1 for a simple case with
a simple model with two varying lamination angles λ1 and λ2 (lamination angles in two
outer layers of a three-layer composite cylinder).
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Figure 1. Mode shapes crossing for two varying lamination angles λ1 and λ2, frequencies correspond-
ing to the first bending mode B1 and to the first circumferential mode C21.

The points where the first derivative is non-continuous due to mode shapes crossing
are nearly impossible to be precisely assessed using any surrogate model built based on
the ascending order of natural frequencies. The advantages of using mode shape identi-
fication were presented in both single- and multi-objective optimization issues in [25,26],
where selected dynamic parameters of the analyzed structure were optimized, along with
optimizing its buckling behavior.

2.2. The Structure under Study

The investigated structure is a shell of revolution created by rotating a hyperbola
connecting three points A, B, and C (see Figure 2a). Points A and C are fixed, while point
B, situated in the middle of the hyperbola, moves along a line perpendicular to the axis
of revolution. This motion results in shells with varying geometries (see the two dashed
lines in Figure 2a and the corresponding extreme shapes of the hyperboloid in Figure 2b,d).
Depending on the position of point B concerning the straight line connecting points A and
C, the obtained shell of revolution can be a truncated cone, concave hyperboloid (if B is
closer to the axis of revolution), or convex hyperboloid (if B is further away).
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(a)

Rup=61.03cm Rdown=1.2Rupdaxis of
revolution

A
B

C

dmin

dmax

(b) (c) (d)

Figure 2. The structure under study: (a) hyperbola connecting points A, B, and C, (b) the most concave
hyperboloid, (c) the hyperboloid with depth d = 45 cm, (d) the most convex hyperboloid.

The radii of the end circles of the shell of revolution are fixed distances from the
axis of revolution: Rup and Rdown. The distance of point B from the axis of revolution is
referred to as the depth of the hyperboloid, denoted as d (see Figure 2a). The geometric
parameters have the following values: the length of the hyperboloid (along the revolution
axis) L = 6.0 m, the upper radius Rup = 61.03 cm, the lower radius Rdown = 1.2Rup, and the
depth of the hyperboloid d, which varies between 30 cm (Figure 2b) and 110 cm (Figure 2d).
The shell thickness is t = 1.6 cm, divided into eight composite layers of equal thickness.
The end of the analyzed shell, formed by the rotation of point C, is fixed, meaning all its
displacements are constrained.

Each shell layer can be made of a different composite material, with different directions
of the composite reinforcement fibers. The study considers three materials: Carbon Fiber
Reinforced Polymer (CFRP), Glass Fiber Reinforced Polymer (GFRP), and a theoretical
material (tFRP) whose properties and cost are calculated as the average of CFRP and GFRP.
The introduction of tFRP aims to make the optimization problem, studied in the latter part
of the article, more complex by considering more options than just two distinctly different
materials. Table 1 provides a summary of all the applied materials properties (E(·): Young
moduli, ν(·): Poission ratios, G(·): shear moduli of orthotropic material; a is the direction
along the reinforcement fibers, b and c are the two directions perpendicular to the fiber
direction named a here).

Table 1. Material properties of layered composites applied in the investigated model.

Material µ Ea Eb Ec νab νac νbc Gab Gac Gbc Density Cost
Name [-] [GPa] [GPa] [GPa] [-] [-] [-] [GPa] [GPa] [GPa] [kg/m3] [-]

CFRP 1 120 8 8 0.014 0.028 0.028 5 5 3 1536 10.20
tFRP 2 80 6 6 0.020 0.036 0.036 4 4 3 1428 5.78
GFRP 3 40 4 4 0.026 0.044 0.028 3 3 3 1320 1.36

The investigated shell is described by seventeen varying parameters subjected to
further optimization. These variable parameters are as follows:

• d, the depth of the structure, with 30 cm ≤ d ≤ 110 cm;
• The material of each of the eight composite layers that constitute the structure shell,

denoted by µi, where i = 1, 2, . . . , 8, and µi ∈ {1, 2, 3};
• The lamination angle of the eight composite layers, represented by λi, with i =

1, 2, . . . , 8, and −90◦ ≤ λi ≤ +90◦ (with a step of 5◦).

The 17-element vector encompassing all the variable parameters of the investigated
structure is denoted as p and defined as follows:

p
17×1

= {d, µ1, µ2, . . . , µ8, λ1, λ2, . . . , λ8}′. (4)
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2.3. Finite Element and Surrogate Models

The Finite Element (FE) model (see Figure 2b–d) comprises quadrilateral, multilayered
shell 4-node MITC4 elements, employing the first-order shear theory. Each layer corre-
sponds to one composite layer with possibly different material properties and lamination
angles. The base size of the elements, denoted as h, is chosen to be nearly equal to h = 5 cm.
However, it slightly varies in the circumferential and longitudinal directions, as well as at
different locations along the axis of the entire shell. All the FE calculations are performed in
Adina code [31].

During the optimization process of the investigated structure’s dynamic properties,
the number of dynamic property calculations corresponding to different values of the
model parameters can reach several thousand. Utilizing the FE model leads to highly
time-consuming numerical simulations. To overcome this issue, a neural network-based
surrogate model is proposed.

The primary objective of the surrogate model is to promptly estimate, with satisfactory
accuracy, the values of a selected number of natural frequencies corresponding to specific
values of the investigated model parameters. For this purpose, DNN is employed as the
surrogate model.

Various DNN-based surrogate models are considered, including models assessing
11 natural frequencies corresponding to 11 selected mode shapes or to the first 11 natural
frequencies. The decision to choose 11 frequencies was based on the results of the authors’
previous studies [23]. Both preliminary analyses of the eigenfrequency spectrum for dif-
ferent values of the model parameters and test optimizations confirmed that expanding
the set of identified frequencies was unnecessary. The mode shapes for which the natural
frequencies are assessed by the DNN-based surrogate model are as follows: two bending
modes (B11, B12), eight circumferential modes (C21, C22, C23, C31, C32, C33, C41, C42), and
one torsional mode (T01). The surrogate model that assesses the first 11 natural frequencies
is DNNn f , while the model evaluating the natural frequencies corresponding to the selected
mode shapes is DNNid.

The task of the surrogate models is depicted as follows:

p→ DNNn f → f n f ,

p→ DNNid → f id,
(5)

where f n f comprises the first 11 natural frequencies, and f id consists of the natural frequen-
cies corresponding to the selected 11 mode shapes.

The surrogate models are applied either as single networks or in five-member teams
(called network ensembles). Each neural network ensemble comprises five separate DNNs
and returns the maximum value obtained among the ones calculated using the five single
networks during the calculation of the objective function. A single-neural network surrogate
model is denoted as DNNS (a scheme of a single-network surrogate model is presented in
Figure 3), while a surrogate model comprising five single networks is referred to as DNNE.

The validation of the optimization process outcomes is conducted through FEA. For
the validation of outcomes stemming from five distinct approaches, each rooted in an
individual surrogate model DNNS, an allocation of fivefold FE calls is necessitated. In a bid
to circumvent this challenge, the proposition of network ensembles emerged, where each
ensemble amalgamates five separate individual networks and identifies the maximal value
from the set offered by these distinct networks. Ultimate testing is executed singularly for
outcomes obtained via the ensemble surrogate models DNNE.
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Figure 3. Single-network DNNS surrogate model, each of the ten depicted layers is composed of
50 neurones. The only exception is the 11-neurones output layer (nb 10).

To create the networks building each surrogate model, supervised learning is applied.
Teaching the network to reproduce the relationship between input and output data requires
preparing a set of examples and presenting them to the networks. A crucial aspect of
applying DNN-based surrogate models is to reduce the numerical effort (CPU time con-
sumption) constantly. The overall CPU time consumed during the necessary number of FE
calls, including generating examples for DNN-based model learning, must be significantly
smaller than the CPU time consumption in case the surrogate model is not applied.

3. The Optimization Procedure
3.1. Optimization Flowchart

The optimization approach involving the DNN surrogate model is illustrated in the
flowchart presented in Figure 4. The procedure commences with the construction of the
DNN surrogate model, and it includes the following steps:

• Generate several FEM-based examples with random parameter vectors (set P);
• Identify the mode shapes and associate the natural frequencies with particular mode

shape families (this step is omitted while creating the DNN f n surrogate model);
• Train five independent DNNid

S (or DNNn f
S ) surrogate models to assess the values of

natural frequencies, with an assumption of building a network ensemble DNNid
E (or

DNNn f
E ).

DNN: initial training
pattern set:      

Mode shapes
identification

FEM: random 
examples for DNN 

training:     

GA+DNN: 
optimisation

Optimal 
solution

FEM: verification
possible 

solutions:       

training
DNNidNS

training
DNNidNS

training
DNNidNS

training
DNNidNS

training
DNNidNS

DNNid

network ensemble
NE

Figure 4. The flowchart of optimization; colors coding is as follows: green—FEM tasks, yellow—the
optimization, blue—mode shapes identification, red—DNN tasks.
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3.2. Genetic Algorithms

The multi-objective optimization task is tackled using genetic algorithms, a metaheuris-
tic global optimization algorithm inspired by nature. Among various metaheuristic algo-
rithms tested (see [23]), GA has proven to deliver excellent results in optimization problems.

Genetic algorithms draw their inspiration from nature, specifically from a simplified
representation of the genetic basis of evolution and natural selection in living organ-
isms (see [32,33]). At each iteration step of the algorithm, a group of potential solutions
(chromosomes) is considered. The best solutions, determined by evaluating the objective
functions defining the optimization problem, are selected as parents for generating the
next-generation solutions. The offspring solutions are created using specialized genetic
operators, mainly involving pairing, crossover, and mutation. This iterative process of eval-
uating objective values for each possible solution, selecting the best solutions, and creating
offspring continues until a satisfactory solution is achieved. Genetic algorithms belong to
the group of zero-order algorithms, as they do not require the calculation of derivatives.

This study selects NSGA-II as the optimization algorithm, a well-established, efficient,
and dependable algorithm [34,35]. The GA calculations are implemented using Matlab
R2022b software [36].

3.3. Maximization of f1 with Cost Minimization

Two optimization examples are investigated in this study. The first example involves
a two-objective maximization of the fundamental natural frequency while minimizing the
cost of the materials used. This optimization can be formulated as finding an optimal vector
p∗ of model parameters p, which simultaneously minimizes the values of two objective
functions g f (p) and gc(p):

p∗ = arg min
p∈P17

{
g f (p), gc(p)

}
, (6)

where the objective functions are defined as follows:

g f (p) = − f1, (7)

gc(p) = cost(p). (8)

The objective function g f (p) corresponds to the negative value of the fundamental
natural frequency f1. This means that the optimization aims to maximize f1 in order to
achieve a higher fundamental natural frequency.

On the other hand, the objective function gc(p) represents the cost of the structure,
which is not calculated in any particular currency. The costs of the considered materials
(see Table 1) are relative to each other. The final cost indicates how much one structure is
more or less expensive than another, based on the relative material costs. This objective
function aims to minimize the cost of the materials used in the structure.

The two-objective optimization aims to find a balance between maximizing the funda-
mental natural frequency and minimizing the material cost, leading to optimal solutions
representing different trade-offs between these two objectives. The Pareto front obtained
from this optimization contains non-dominated solutions, representing the best possible
compromises between the competing objectives.

3.4. Maximization of Frequency Gaps with Costs Minimization

In the second optimization example, an optimal parameters’ vector p∗ is sought to
minimize the values of two objective functions gb(p) and gc(p):

p∗ = arg min
p∈P17

{gb(p), gc(p)}, (9)
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where the objective function gb(p) is defined in Equation (10):

gb(p) = −min(F− fi(p)). (10)

Equation (10) defines the objective function such that it maximizes the width of the fre-
quency band around an arbitrarily selected excitation frequency F, where F ∈ {50, 60, 70, 80}Hz.
In other words, the optimization aims to maximize the frequency range around the chosen exci-
tation frequency free from structures’ natural frequencies. Please note that the value maximized
is the distance from the center of the frequency band F to the nearest natural frequency fi of the
analyzed structure. It is important to clarify that this distance is not literally the width of the
frequency band itself—the actual width is at least twice as large, since it encompasses the space
extending from the center of the band F in both directions (not only to the closest fi). However,
throughout the rest of this paper, the term bandwidth refers to the distance from the center of
the frequency band F to the nearest natural frequency fi.

The second objective function, gc(p), remains the same as in the previous optimization
example, and represents the cost of the structure.

The optimization seeks to find the optimal values of the model parameters that result
in the widest frequency band around the selected excitation frequency while minimizing the
material cost of the structure. The Pareto front obtained from this optimization will provide
various solutions representing different trade-offs between maximizing the frequency band
and minimizing the material cost.

3.5. Multi-Objective Optimization Accuracy Assessment

In multi-criteria optimization, assessing the quality of the obtained approach is more
complex than in single-criteria optimization. Instead of a single optimal solution, there is a set
of solutions known as the Pareto front, where each point represents a non-dominated solution.
A solution called A is non-dominated by solution B if the values of all objective functions
obtained for A are not worse than those obtained for B, and at least one value is better.

In the case of two-criteria optimization considered here, the Pareto front forms a flat
curve, with the axes of the coordinate system representing the two objective functions
under consideration.

When comparing two Pareto fronts, the better one can be easily identified if none of its
points is dominated by any point of the other front. However, determining the better one
becomes difficult and sometimes even impossible if the fronts intersect, especially when
comparing multiple fronts.

To aid in selecting a better front, performance indicators are employed [37]. From
numerous available indicators, a carefully selected set of popular ones [38] is applied here
to support the selection of the best option.

The Hypervolume indicator [39], denoted as IH , provides information about the area
covered by an investigated Pareto front and a reference point. When comparing several
Pareto fronts, a common reference point should be selected. The higher the value of the
Hypervolume indicator, the better. For direct comparison between two fronts, it can be
redefined as the difference of two values, namely IH(A)− IH(B). When one of the two Pareto
fronts being compared is the true Pareto front (TPF, the best possible Pareto front sought
during optimization), the indicator may be considered a unary IH2(A) = IH(TPF)− IH(A)
indicator (smaller values of IH2(A) indicate that the considered front is closer to the TPF).

The Generational Distance indicator [40], denoted as IGD, provides information on the
distance of each point of the Pareto front to its closest point on TPF. A lower value of the
Generational Distance indicator is desirable, as it signifies that the points on the front are
closer to the true Pareto front.

The Epsilon ε-indicator [41], denoted as Iε, is a binary indicator that facilitates direct
comparison between two Pareto fronts. The indicator Iε(A, B) is the minimum scalar ε that
scales Pareto front B in such a way that each point in ε · B is dominated by at least one
point in A. If Iε(A, B) < Iε(B, A), then Pareto front A may be considered better than Pareto
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front B. When the second Pareto front being compared is the true Pareto front, the indicator
may be considered a unary Iε1(A) indicator.

In the tables presenting summaries of indicator values calculated for the obtained
Pareto fronts, an arrow is employed to indicate the desired direction of change for a given
indicator: ↑ signifies that a higher value of the indicator denotes a more favorable outcome,
while ↓ signifies that a lower value corresponds to a more favorable result. This notation
has been introduced for the convenience of the reader in interpreting the results.

4. The Results—Algorithmic Perspective
4.1. Introductory Remarks

The optimization process explored various configurations and combinations of sur-
rogate models to find the most efficient and accurate approach. The following variations
were considered:

1. Single vs. ensemble surrogate model: Two types of surrogate models were compared,
namely a single neural network and an ensemble of neural networks. The single neural
network, DNNS, is trained on a limited number of examples, while the ensemble
of neural networks, DNNE, consists of five separate neural networks trained on the
same examples (patterns). The ensemble approach aims to increase the robustness
and generalization ability of the surrogate model;

2. Sorting or identifying natural frequencies: The natural frequencies obtained from the
finite element simulations can be sorted in two ways, namely in ascending order or
according to the corresponding vibration mode shape. The latter approach groups
the natural frequencies based on the mode shapes they represent. The mode shapes
provide valuable information about the structural behavior, which can be useful in
certain optimization scenarios;

3. Necessary number of FE calls: The number of FE calls is pivotal from a computational
burden standpoint. Estimating the minimum yet essential number of FE calls is crucial
to optimize the computational load.

For each configuration, the optimization was performed with two objectives: minimiz-
ing the cost of materials and either maximizing the fundamental natural frequency ( f1) or
maximizing the bandwidth around specific frequencies (50, 60, 70, or 80 Hz) free from any
natural frequency.

Five training sets were created to assess the impact of the number of patterns necessary
to train the surrogate models, each with a different number of elements. The surrogate
models trained using their sets were denoted as Vx, where x indicates the number of
thousands of elements in the learning set (e.g., V05 corresponds to 500 elements, V1 to
1000 elements, V2 to 2000 elements, and so on).

To assess the quality of the Pareto fronts obtained during optimization, indicators
requiring the use of TPF were used. Since there is no possibility to obtain the TPF (derive
analytically or obtain by any other method) in the considered task, its role throughout the
work is the envelope of all Pareto fronts obtained for the given problem by all methods
described in the work.

The main goal of the analysis was to find the optimal combination of surrogate model
configuration and learning set size that ensures accurate and efficient optimization results.
The trade-off between computational effort and optimization performance was carefully
evaluated, considering the quality of the obtained Pareto fronts and the convergence speed
of the optimization process.

4.2. Surrogate Model Being a Single Network or an Ensemble of Five Networks

The first step of the analysis focused on comparing the results obtained from a single
surrogate model, DNNid

S , with those obtained from network ensembles, DNNid
E . To conduct

this comparison, five DNNid
S surrogate models were created, each trained using the same

set of examples. The optimization was performed with two objectives: maximizing the
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fundamental natural frequency ( f1) or maximizing the frequency bandwidth, both with
cost minimization.

The results obtained from different DNNid
S surrogate models and DNNid

E ensembles
are presented in Figure 5 (for the convenience of the reader, the data presented in these
charts are in their original form, without scaling or normalization). For the Pareto fronts
shown in Figure 5, various Pareto front indicators were calculated. Table 2 shows the values
of indicators calculated for Pareto fronts obtained from different optimization approaches in
the V05 learning set size case. Additionally, the table’s last row presents the data condensed,
indicating the number of cases where DNNid

S performed better than DNNid
E .
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Figure 5. Surrogate models: DNNid
S vs. DNNid

E ensembles, (a–c): f1 maximization, V05, V2 and V8
cases, respectively, (d–f): 60 Hz band maximization, V05, V2 and V8 cases, respectively, (g–i): 80 Hz
band maximization, V05, V2 and V8 cases, respectively.
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Table 2. Surrogate models: DNNid vs. DNNid
E ensembles, f1 maximization with V05 networks.

IH ↑ IH2 ↓ Iε1 ↓ IGD ↓

Ensemble DNNid
E 4.32 0.408 1.63 0.009

Single DNNid
S 4.04 0.691 1.59 0.023

Single DNNid
S 4.20 0.528 1.44 0.017

Single DNNid
S 4.40 0.326 1.30 0.012

Single DNNid
S 4.16 0.569 1.78 0.015

Single DNNid
S 4.10 0.634 1.43 0.021

The number of single models DNNid
S better than the ensemble DNNid

E 1 1 4 0

While it is straightforward to select the best-performing DNNid
S surrogate model based

on the results in Table 2, doing so requires running a series of FE verification for each
individual surrogate model, significantly increasing the computational effort. To avoid this
problem, DNNid

E network ensembles were introduced.
With the network ensemble approach, the calculation of the objective function, g f (p)

or gb(p), is modified. At first, five values are calculated using the five single surrogate
models, and the final value is chosen as the best among them. The finite element verification
is then performed only once, leading to significant computational savings.

The results presented in Table 3 demonstrate that the network ensembles effectively
fulfill their intended task. Among the five models built on individual networks, the ensem-
ble accurately selects the values to avoid the worst-case scenario. The average value from
the data in the table does not exceed 1.6, with a median value of 1.

The findings indicate that using DNNid
E ensembles successfully avoids the weakest

model without the need to verify all individual models. While ensembles may not yield
the absolute best results (see Figure 5), their purpose is to prevent obtaining the worst
results and provide a reasonable trade-off between computational efficiency and optimiza-
tion accuracy.

Table 3. The number of single networks (DNNid
S ) better than the ensemble (DNNid

E ) results.

V05 V1 V2 V4 V8

f1 1 1 4 0 1 1 0 2 1 1 3 2 1 1 2 0 2 2 3 2
50 Hz 3 3 4 3 0 0 0 0 0 0 4 1 1 1 1 1 2 2 1 3
60 Hz 4 4 5 5 4 4 5 2 0 0 1 1 0 0 0 0 1 1 3 2
70 Hz 1 1 1 3 1 1 4 1 2 2 1 1 0 0 0 1 3 3 3 3
80 Hz 2 2 0 3 2 2 0 0 0 0 2 0 0 0 2 1 2 2 2 2

4.3. Surrogate Model Based on Identified Mode Shapes

In a previous study by the authors [23–25], it was demonstrated that incorporating
mode shapes identification and analyzing natural frequencies with reference to the corre-
sponding mode shapes leads to an improvement in the accuracy of the surrogate model
and the overall optimization process. In the current research, this aspect was reevaluated,
but this time, the focus was broadened to network ensembles, four different frequency
bands, and fundamental natural frequency f1. Moreover, multi-objective optimization was
applied where besides the optimization of dynamic parameters also the cost of the structure
has been taken into account.

Thus, the second issue examined was a comparison of the results obtained from two
types of surrogate models: one working with identified mode shapes (DNNid

E ) and the other

with increasing values of natural frequencies without mode shape identification (DNN f n
E ).

The results are presented in Table 4 and in Figure 6.
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Figure 6. DNNid
E vs. DNN f n

E surrogate models: (a) f1 maximization, V4 case, (b) 60 Hz band maxi-
mization, V4 case, (c) 80 Hz band maximization, V4 case.

Table 4. Surrogate models: DNNid
E vs. DNN f n

E ; V4 case.

V4 IH ↑ IH2 ↓ Iε1 ↓ IGD ↓
f1 maximization

DNNid
E 4.57 0.156 1.29 0.004

DNN f n
E

4.41 0.318 1.14 0.011

50 Hz band
DNNid

E 1.15 0.518 1.25 0.054
DNN f n

E
0.96 0.706 1.60 0.060

60 Hz band
DNNid

E 1.02 0.091 1.22 0.048
DNN f n

E
0.88 0.232 1.43 0.129

70 Hz band
DNNid

E 1.91 0.154 1.26 0.034
DNN f n

E
1.39 0.673 1.54 0.097

80 Hz band
DNNid

E 3.69 0.235 1.21 0.022
DNN f n

E
2.88 1.048 1.50 0.075

Upon analyzing the results in the table, it becomes evident that surrogate models
based on natural frequencies assigned to identified mode shapes of vibration exhibit clear
advantages in most situations. This outcome highlights the importance of incorporating
mode shape identification in the analysis of natural frequencies, as it leads to more accurate
results and better optimization performance in the majority of cases.

Based on the results presented in the table, it is evident that mode shape identi-
fication plays an important role in enhancing the performance of the surrogate model
in optimization.

4.4. The Influence of the Number of Patterns on the Optimization Accuracy

A wide range of simulations was conducted, covering five different optimization
problems, each defined by two objective functions. In all cases, one common objective
function was minimizing material costs. The second objective function allowed for the
maximization of either:

• The fundamental natural frequency;
• The bandwidth around an arbitrarily chosen frequency, ensuring it was free from any

natural frequencies of the shell.
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Additionally, in each of the five described optimization problems, a surrogate model
was applied, constructed from five neural networks (network ensemble), and trained with
varying numbers of training samples (ranging from 500 to 8000 patterns). The number of
FE calls used in each case was precisely calculated (including FE calls for verification of the
obtained results), as one of the objectives of the proposed procedure was to minimize the
number of FE calls.

The results obtained from the optimization procedures using the neural surrogate
models were compared with the results from the classical random Monte Carlo approach.
Table 5 and Figure 7 present the results obtained in the maximization of f1 with simultane-
ous cost minimization.

Table 6 and Figure 8 present the complete results of maximizing the width of four
frequency bands, combined with cost minimization.

Table 5. Pareto front indicators for different number of surrogate model learning patterns,
f1 maximization.

FE Calls IH ↑ IH2 ↓ Iε1 ↓ IGD ↓
MC 1000 3.05 1.684 2.06 0.122
MC 2000 3.36 1.367 2.06 0.086
MC 3000 3.44 1.288 1.80 0.074
MC 4000 3.44 1.287 1.80 0.071
MC 5000 3.46 1.275 1.80 0.066
MC 6000 3.46 1.267 1.80 0.066
MC 7000 3.49 1.237 1.80 0.071
MC 8000 3.50 1.229 1.80 0.071
MC 9000 3.51 1.222 1.80 0.072
MC 10,000 3.51 1.221 1.80 0.070

V05 1500 4.32 0.408 1.63 0.009
V1 2000 4.40 0.335 1.18 0.011
V2 3000 4.44 0.290 1.34 0.008
V4 5000 4.57 0.156 1.29 0.004
V8 9000 4.56 0.171 1.08 0.005
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Figure 7. Pareto front indicators for different number of surrogate model learning patterns,
f1 maximization.

All the data presented in Tables 5 and 6 and Figures 7 and 8 indisputably demonstrate
the significant advantage of using the GA for optimization over the random Monte Carlo
method. This observation is consistent with expectations, but it is worth noting that a
tenfold increase in the number of FE calls does not confer any advantage to the Monte Carlo
method. The optimization approach proposed in this paper exhibits remarkable efficiency.

In all analyzed cases, a significant improvement in results was evident with an increase
in the number of patterns used to train the surrogate models, up to a value of about
2000 patterns (case V2). Subsequently, the improvement in results became marginal, and
in some instances, stagnation or even regression was observed. These findings suggest
that the optimal number of patterns is 4000 (case V4)—for each of the analyzed cases, V4
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consistently yielded either the best Pareto front indicator values or values close to the best.
Further doubling the number of patterns to 8000 (V8) no longer resulted in significant
improvement, and in certain cases, regression was observed.

Table 6. Pareto front indicators for different number of surrogate model learning patterns, fre-
quency bands.

Surrogate Model FE Calls IH ↑ IH2 ↓ Iε1 ↓ IGD ↓ Surrogate Model FE Calls IH ↑ IH2 ↓ Iε1 ↓ IGD ↓
50 Hz 60 Hz

MC 1000 0.28 1.392 2.32 0.395 MC 1000 0.28 0.835 2.22 0.467
MC 2000 0.28 1.392 2.22 0.419 MC 2000 0.28 0.835 2.22 0.354
MC 3000 0.52 1.146 2.22 0.357 MC 3000 0.28 0.835 2.22 0.441
MC 4000 0.52 1.146 2.22 0.476 MC 4000 0.28 0.835 2.22 0.373
MC 5000 0.56 1.105 2.22 0.558 MC 5000 0.28 0.835 2.22 0.321
MC 6000 0.59 1.080 1.86 0.485 MC 6000 0.32 0.795 2.22 0.256
MC 7000 0.59 1.080 1.86 0.485 MC 7000 0.32 0.795 2.22 0.252
MC 8000 0.59 1.080 1.86 0.485 MC 8000 0.32 0.790 2.22 0.228
MC 9000 0.59 1.080 1.86 0.485 MC 9000 0.34 0.779 2.10 0.223
MC 10,000 0.59 1.080 1.86 0.485 MC 10,000 0.34 0.779 2.10 0.223
V05 1493 0.00 1.668 2.84 0.218 V05 1082 0.33 0.786 3.23 1.071
V1 1839 0.70 0.966 1.64 0.074 V1 1226 0.79 0.320 1.74 0.110
V2 2732 1.05 0.613 1.52 0.055 V2 2307 0.91 0.203 1.41 0.097
V4 4802 1.15 0.518 1.25 0.054 V4 4283 1.02 0.091 1.22 0.048
V8 8776 1.12 0.551 1.31 0.058 V8 8394 1.03 0.085 1.41 0.052

70 Hz 80 Hz
MC 1000 0.78 1.289 2.16 0.485 MC 1000 1.17 2.753 3.38 0.258
MC 2000 0.80 1.269 2.00 0.414 MC 2000 1.65 2.272 2.79 0.249
MC 3000 0.82 1.246 1.84 0.374 MC 3000 1.83 2.097 2.79 0.222
MC 4000 0.82 1.246 1.84 0.374 MC 4000 1.89 2.034 2.79 0.199
MC 5000 0.82 1.243 1.84 0.370 MC 5000 1.90 2.021 2.79 0.193
MC 6000 0.96 1.104 1.84 0.337 MC 6000 1.97 1.954 2.77 0.182
MC 7000 0.99 1.075 1.84 0.276 MC 7000 2.07 1.858 2.77 0.164
MC 8000 1.06 1.010 1.84 0.288 MC 8000 2.07 1.857 2.77 0.155
MC 9000 1.06 1.010 1.84 0.267 MC 9000 2.07 1.855 2.77 0.152
MC 10,000 1.06 1.010 1.84 0.267 MC 10,000 2.15 1.771 2.61 0.148
V05 1397 0.92 1.143 1.95 0.149 V05 1433 2.46 1.464 2.80 0.089
V1 1733 1.66 0.407 1.64 0.070 V1 1946 2.89 1.039 1.35 0.062
V2 2720 1.72 0.349 1.34 0.037 V2 2810 3.49 0.439 1.22 0.028
V4 4848 1.91 0.154 1.26 0.034 V4 4821 3.69 0.235 1.21 0.022
V8 8610 1.94 0.121 1.18 0.018 V8 8801 3.67 0.255 1.20 0.020

The next figure, Figure 9, also shows an analysis of the quality of Pareto fronts obtained
with different numbers of FE calls, but this time the normalized index IH2 was used to
assess the quality of Pareto fronts. This approach made it possible to present the results
obtained in different cases on a single chart. The value of IH2 indicator for a front named A
is obtained according to the following formula:

IH2(A) =
IH2(A)

IH(TPF)
=

IH(TPF)− IH(A)

IH(TPF)
. (11)

The results obtained from the V4 optimization case are highlighted in Figure 9 in blue.
It is clear that no further improvement is observed in the V8 case. All Pareto fronts obtained
from the V4 case, for all considered optimization cases (both f1 maximization and four
frequency bands width maximization), are collected in Figure 10. The maximal values of f1
or bandwidths (coordinates of the right end of each Pareto front) obtained from the V4 case
are collected in Table 7. It should be emphasized that the values given in the table cannot
be regarded as the best solutions to optimization problems. They are only indications of
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what the largest values of f1 and the widths of the intervals are found when performing
optimization tasks.
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Figure 8. Pareto front indicators for different number of surrogate model learning patterns: (a) 50 Hz
band maximization, (b) 60 Hz band maximization, (c) 70 Hz band maximization, (d) 80 Hz
band maximization.
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Figure 9. Normalized IH2, all optimization cases, the results obtained from the V4 optimization case
are highlighted in blue.

Table 7. Pareto fronts, highest frequency values.

V4 V4 TPF TPF
f1 or Bandwidth Cost f1 or Bandwidth Cost

[Hz] [-] [Hz] [-]

f1 44.55 3.36 46.19 3.55
50 Hz 22.97 4.42 23.04 3.90
60 Hz 23.29 1.11 23.93 1.11
70 Hz 27.32 2.16 28.02 1.71
80 Hz 30.99 1.86 31.64 2.31
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Figure 10. Pareto fronts, all optimization cases.

5. The Results—Optimization Perspective
5.1. Depth d of the Structure

The sole parameter that characterizes the geometry of the system under investigation
is the depth, denoted as d. As illustrated in Figure 11, the optimization process yielded a
range of values for the parameter d. For comparative purposes, the Pareto front acquired in
the V4 case is shown, along with the corresponding d values.
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Figure 11. Final values of depth d in conjunction with associated Pareto front, (a) maximization of f1,
V4 case, (b) maximization of f1, TPF, (c–f) maximization of bandwidth around frequencies 50–80 Hz,
respectively.

The interpretation of the results is particularly straightforward when considering the
maximization of f1 (see Figure 11a). In this scenario, the parameter d consistently hovers
around 45 cm. This shows that the optimal configuration for achieving the highest value
of f1 corresponds to a slightly concave hyperboloid shape (see Figure 2c). Notably, these
same deductions can be drawn from an analysis of the TPF (see Figure 11b), not limited to
the single front obtained through the earlier approach, denoted as V4. This emphasizes the
robustness of the conclusions drawn from the considered optimization framework.

Since in the following cases, the TPF analysis leads to conclusions analogous to those
that can be drawn from the analysis of a single V4 case, only the graphs for the V4 case
are included.

For the scenario involving the optimization of bandwidth around 50 Hz (see Figure 11c),
the parameter d follows a distinct trajectory. Initially, it assumes values slightly above its
minimum considered value of 30 cm. However, it rapidly surges to values exceeding 80 cm,
a range that corresponds to a configuration resembling a convex hyperboloid. Eventually,
the parameter undergoes a slight incremental rise, surpassing 90 cm. When optimizing
bandwidth around 60 Hz (see Figure 11d), the d parameter always reaches values very close
to 30 cm. For the optimization scenarios centered around 70 Hz and 80 Hz bandwidths (see
Figure 11e,f), the parameter d follows a distinct pattern. Initially, it adopts minimum values
in proximity to 30 cm. Subsequently, it experiences a period during which it stabilizes at
around 50 cm. However, for the 70 Hz cases, the parameter quickly reverts to its earlier
values close to 30 cm. In contrast, this reversion occurs later in the context of the 80 Hz cases.

By scrutinizing the values of parameter d in conjunction with the associated Pareto
fronts, a discernible pattern emerges. It becomes evident that significant distances between
points along the Pareto front correlate with alterations in the material of one or multiple
layers. Conversely, points situated in close proximity to one another on the front correspond
to minor adjustments in parameters, such as d. Additionally, this relationship extends to
lamination angles λi as well. This observation elucidates the intricate interplay between the
system’s geometry and material configuration in the context of multi-objective optimization.
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5.2. Materials Selected in the Optimization Process

To facilitate the examination of the chosen materials throughout the optimization
process, a parameter termed the material index (mi) is introduced. This index is defined by
the equation:

mi =
1
8

8

∑
i=1

µi. (12)

In the presented equation, the symbol µi corresponds to the material type linked with
the i-th composite layer (where the total number of layers is eight). A material index of
3 signifies that all composite layers consist of material nb 3 (GFRP, as detailed in Table 1).
Conversely, mi = 1 indicates the utilization of the strongest and costliest CFRP for all layers.
Notably, a material index of 2 indicates a balanced distribution, with an equal number of
layers constructed from GFRP and CFRP, while the remaining layers are composed of tFRP.

The material index offers a succinct representation of the material configuration choices
made during the optimization process, providing insights into the composition of the
composite structure.

As anticipated in the context of multi-objective optimization, where one of the mini-
mized objective functions is the cost function, there is a notable correlation between the
increase in cost and the proportion of pricier materials (see Figure 12). Interestingly, how-
ever, this trend is observed exclusively in the task of maximizing f1, where the Pareto
front encompasses a wide spectrum of scenarios, spanning from the most economical to
the most costly alternatives (see Figure 12a). In contrast, within the realm of bandwidth
optimization, the outcomes tend to cluster around the cost range associated with more
economical materials. For instance, in the scenario of bandwidth optimization around
50 Hz, the attained results exhibit a range of mi values extending from 3 (representing the
most affordable option) to approximately 2.4, with the highest-cost solutions (characterized
by mi values close to 1) not being favored at all in this context (see Figure 12c).
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Figure 12. Final values of material index mi in conjunction with associated Pareto front obtained
from V4 case, (a) maximization of f1, (b–e) maximization of bandwidth around frequencies 50–80 Hz,
respectively.
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5.3. Lamination Angles

The analysis of lamination angles (see Figure 13a) presents a more intricate challenge,
and it does not readily yield overarching insights that can be applied across all the op-
timization scenarios under consideration. The chart in Figure 13a presents the values of
lamination angles for three selected layers: inner (layer 1), middle (layer 4), and outer
(layer 8). Each point on the chart corresponds to consecutive points on the Pareto front
obtained in the V4 case. The results directly read from the Pareto front were averaged for
several neighboring points to analyze trends and draw general conclusions regarding the
obtained lamination angle values. The values of the resulting moving average are depicted
in Figure 13b. Clear tendencies are visible, distinctly different for the inner/outer and
middle layers. Lamination angles of outer and inner layers tend to approach approximately
70 degrees (outer layer) or 50 degrees (inner layer) with increasing cost (and concurrently
increasing obtained f1 value). Lamination angles of middle layers tend towards values
close to zero.
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Figure 13. Lamination angles, (a) maximization of f1, original values, (b) maximization of f1, averaged
values, (c–f) maximization of bandwidth around frequencies 50–80 Hz, respectively, averaged values.

Only averaged data are presented for tasks related to the maximization of four bands.
In all cases, a phenomenon similar to the maximization of f1 can be observed: lamination
angles of the inner and outer layers tend to have significantly larger values than those of
the middle layers.

6. Summary of Main Research Findings

The effectiveness of single neural network surrogate models (DNNS) was compared
to network ensembles (DNNE), each consisting of five neural networks. The goal was
to ascertain which approach provided more reliable results. Although individual DNNS
models showed varying performance, DNNE ensembles proved effective in selecting
the best outcome without the need for extensive verification (Table 3). The ensemble
approach strikingly mitigated the risk of suboptimal results by combining the strengths of
multiple networks.
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The impact of mode shape identification on surrogate models was reevaluated, com-
paring identified mode shapes (DNNid

E ) with sorted natural frequencies (DNN f n
E ). Results

consistently favored the mode shape-based approach (Table 4, Figure 6), underlining the
importance of incorporating mode shape information to enhance surrogate model accuracy.

The influence of the number of training patterns on optimization efficiency was an-
alyzed across five optimization problems. Surrogate models trained with approximately
4000 patterns (V4) showed optimal performance, with diminishing returns observed be-
yond this point. The proposed method vastly outperformed the Monte Carlo approach,
affirming its computational efficiency and robustness.

The parameter d, representing the structure’s depth, played a pivotal role in the
optimization process. Depending on the objective, such as maximizing the fundamental
natural frequency ( f1), d consistently favored a certain value. Modeled as a slightly concave
hyperboloid, this configuration ensured maximum f1 (Figure 11).

The material index (mi) was introduced to characterize material composition choices.
For f1 maximization, a correlation between cost and material index was observed, ranging
from cost-effective to high-cost scenarios. In contrast, bandwidth optimization resulted in
solutions clustering around economical materials, highlighting the optimization’s economic
efficiency (Figure 12).

The analysis of lamination angles revealed intricate trends. Lamination angles for
inner and outer layers approached 70 and 50 degrees, respectively, with increasing cost,
while middle layers tended towards near-zero angles. This nuanced behavior underscores
the intricate interplay between material composition and geometric configuration.

In conclusion, the optimization process demonstrated the efficacy of ensemble sur-
rogate models, the significance of mode shape identification, and the efficient trade-off
between computational effort and optimization performance. The parameter d, material
composition, and lamination angles intricately influenced optimization outcomes. The ap-
proach showcases potential for various engineering applications, offering a comprehensive
framework for efficient and accurate optimization.

7. Final Remarks

This research addresses the challenges of multi-objective optimization with a high
number of input parameters in engineering applications. Through the use of surrogate
models, mode shape identification, and network ensembles, a novel, efficient approach has
been introduced to tackle complex optimization problems. Several key contributions and
avenues for future research are highlighted by these findings:

• The incorporation of surrogate models has proven to be a powerful technique for
approximating the behavior of complex simulations;

• The mode shapes identification step has emerged as an important step in enhancing
the precision of surrogate models;

• The utilization of network ensembles has significantly enhanced the robustness of the
optimization process, while also substantially decreasing the required number of FE
calls to validate the achieved optimization outcomes;

• The analysis of the number of finite element calls required for optimization has shed
light on the trade-off between computational effort and optimization accuracy;

• The complexity of input parameters has been addressed by handling 17 variables
encompassing geometrical parameters, material properties, and lamination angles;

• The comparison of the results with the classical Monte Carlo approach has solidified
the superiority of the methodology.

The integration of surrogate models, mode shape identification, and network ensem-
bles has proven to be a highly effective and efficient methodology. The findings are expected
to inspire further exploration and advancements in this field, and the application of the
approach in various real-world engineering challenges is eagerly anticipated.
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