

Article Network Structure and Luminescent Properties of ZnO-B₂O₃-Bi₂O₃-WO₃:Eu³⁺ Glasses

Aneliya Yordanova ¹, Margarita Milanova ^{1,*}, Reni Iordanova ¹, Margit Fabian ², Lyubomir Aleksandrov ¹ and Petia Petrova ³

- ¹ Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bld. 11, 1113 Sofia, Bulgaria; a.yordanova@svr.igic.bas.bg (A.Y.); reni@svr.igic.bas.bg (R.I.); lubomir@svr.igic.bas.bg (L.A.)
- ² Centre for Energy Research, 29-33 Konkoly Thege Street, 1121 Budapest, Hungary; fabian.margit@ek.hun-ren.hu
- ³ Institute of Optical Materials and Technologies "Acad. Jordan Malinowski", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bld. 109, 1113 Sofia, Bulgaria; petia@iomt.bas.bg
- * Correspondence: margi71@abv.bg

Abstract: In this study, we investigated the influence of Bi_2O_3 and WO_3 on both structure and optical properties of 50ZnO: $(49 - x)B_2O_3$: $1Bi_2O_3$: xWO_3 ; x = 1, 5, 10 glasses doped with 0.5 mol% Eu_2O_3 . IR spectroscopy revealed the presence of trigonal BO_3 units connecting superstructural groups, $[BO_2O]^-$ metaborate groups, tetrahedral BO_4^- units in superstructural groupings (O = Bridging oxygen atom), borate triangles with nonbridging oxygen atoms, $[WO_4]^{2-}$ tetrahedral, and octahedral WO_6 species. Neutron diffraction experimental data were simulated by reverse Monte Carlo modeling. The atomic distances and coordination numbers were established, confirming the short-range order found by IR spectra. The synthesized glasses were characterized by red emission at 612 nm. All findings suggest that Eu^{3+} doped zinc borate glasses containing both WO_3 and Bi_2O_3 have the potential to serve as a substitute for red phosphor with high color purity.

Keywords: glass structure; europium; IR; photoluminescence; density

1. Introduction

Currently, white-light-emitting diodes are being investigated extensively as the nextgeneration solid-state light source owing to the advantages they bring to the table, including safety, an environmentally friendly nature, high stability, low power consumption, and long operational lifetime [1]. One of the ways in which white light can be obtained is by combining tri-color phosphors, such as ZnS:Cu⁺, Al³⁺ (green) [2], BaMgAl₁₀O₁₇:Eu²⁺ (blue) [3], and Y₂O₂S: Eu³⁺ (red) [4], coated on InGaN-based LED chip, emitting around 400 nm (near-UV). However, the red-emitting phosphor shows lower efficiency (eight times lower) compared to the blue and green phosphors, as well as exhibiting chemical instability under UV radiation which may cause environmental pollution due to the release of sulfide gas. The other commercially applied red phosphors, such as Y₂O₃:Eu³⁺ and YVO₄:Eu³⁺, also cannot achieve high emission efficiency [5]. Therefore, red-emitting phosphor with chemical and thermal stability and high efficiency upon near-UV excitation remains to be found.

Europium (III) ion is being considered as a suitable activator for red emission, resulting from its ${}^{5}D_{0} \rightarrow {}^{7}F_{j}$ (j = 0–4) transitions in the visible range [6]. Unfortunately, Eu³⁺-doped materials cannot be efficiently excited by the present LED chips, because its excitation peaks are weak in nature due to parity-forbidden f–f transitions. Searching for host materials that can overcome the weak Eu³⁺ absorptions is important for achieving high excitation and emission efficiency of the red luminescence. A possibility is introducing sensitizers into the host composition, such as Ce³⁺, Bi³⁺, Tb³⁺, etc. [7,8]. It is well known that the luminescent

Citation: Yordanova, A.; Milanova, M.; Iordanova, R.; Fabian, M.; Aleksandrov, L.; Petrova, P. Network Structure and Luminescent Properties of ZnO–B₂O₃–Bi₂O₃–WO₃:Eu³⁺ Glasses. *Materials* **2023**, *16*, 6779. https://doi.org/10.3390/ ma16206779

Academic Editor: Francesco Baino

Received: 21 September 2023 Revised: 13 October 2023 Accepted: 16 October 2023 Published: 20 October 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). properties of Eu³⁺-doped materials can be modified by changing the host structure and composition. Glass materials are suitable matrixes for doping with lanthanide ions due to their chemical stability, high optical homogeneity, absence of absorbing particles, and low nonlinear refractive indices. Among many potential glass materials for luminescence applications, binary ZnO–B₂O₃ glasses have been attracting continuous scientific interest. Homogeneous binary zinc-borate glasses are formed in a very narrow range of compositions because of the existence of a very large region of immiscibility of two liquids in a $ZnO-B_2O_3$ system [9]. However, these glasses are characterized by good chemical and thermal stability, high mechanical strength, low dispersion, and low glass transition temperature. They possess high transparency (up to 90%) from the visible to mid-infrared region of the spectrum [10]. Eu^{3+} -doped zinc borate glasses yield very strong orange/red photoluminescence by UV excitation, especially for low europium concentrations ($<10^{19}$ cm⁻³) [11]. It has been reported that the addition of WO₃ and/or Bi₂O₃ to ZnO–B₂O₃ glasses induces the expansion of the glass-forming region and also lowers the phonon energy [12,13]. In our recent works, we reported, for the first time, the preparation of tungsten-containing $ZnO-B_2O_3$ glasses doped with Eu^{3+} active ion and their luminescent properties [14,15]. The obtained results from glass structure, physical, thermal, and optical properties indicate the suitability of the $50ZnO:40B_2O_3:10WO_3$ glass network for the luminescence performance of Eu³⁺ ions. The positive effect of the addition of WO_3 on the luminescence intensity is proven by the stronger Eu³⁺ emission of the zinc–borate glass containing WO₃ compared to the WO₃-free zinc-borate glass, a phenomenon engendered mainly by the energy transfer from tungstate groups to the Eu³⁺ ions (sensitizing effect). The most intense luminescence peak observed at 612 nm and the high-integrated emission intensity ratio (R) of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}/{}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions at 612 nm and 590 nm of 5.77 suggest that the glasses have the potential for red emission materials.

Another desirable component for luminescent glass hosts is Bi_2O_3 oxide, commonly used as an activator, emitting in the spectral region of 380–700 nm due to ${}^3P_1 \rightarrow {}^1S_0$ transition upon NUV excitation. Among many studies, the Bi^{3+} ion is also recognized as a favored sensitizer, which can greatly enhance the luminescence of the rare-earth ions $(Eu^{3+}, Sm^{3+}, Tb^{3+})$ through resonant energy transfer [16,17]. High bright red emission in Eu^{3+} containing zinc–borate glasses codoped with Bi^{3+} was observed, enhanced by 346 nm excitation (${}^{1}S_{0}{}^{-3}P_{1}$ of Bi^{3+} ions) due to the sensitization effect of Bi^{3+} codopant [18]. Zinc bismuth borate glasses doped with different Eu^{3+} concentrations (1, 3, 5, 7, and 9 mol%) were prepared, and the systematic analysis of the results suggested that the glass doped with a Eu^{3+} concentration of 5 mol% is suitable for LED and display device applications [19].

More recently, we prepared zinc–borate glasses modified with Bi_2O_3 . Bulk, transparent, dark brownish glasses with composition $50ZnO:(40 - x)B_2O_3:10Bi_2O_3:0.5Eu_2O_3:xWO_3$, x = 0 and 0.5, were synthesized. The obtained structural and optical data indicate that a zinc–borate glass network containing Bi_2O_3 provides highly asymmetric sites of Eu^{3+} ions, leading to high emission intensity. Moreover, the presence of WO₃ also leads to the increase in emission intensity of the rare-earth Eu^{3+} ion, as a result of the nonradiative energy transfer from the glass host to the active ion [20]. These data above show that the $ZnO-B_2O_3$ glass system containing both bismuth and tungstate oxides is a particularly interesting host for the europium ions in red phosphors applications.

Here, we continued our investigations by preparing such a glass composition with increasing WO₃ content and with the addition of low Bi₂O₃ concentrations (1 mol%) in order to meet the requirement of colorless glasses for optical application. The aim was to obtain bulk, colorless glasses with compositions $50ZnO:(49 - x)B_2O_3:1Bi_2O_3:xWO_3:0.5Eu_2O_3, x = 1, 5, and 10 mol%, and to establish the influence of Bi₂O₃ and WO₃ on glass formation, structure, and optical properties.$

2. Materials and Methods

2.1. Sample Preparation

Glasses of the compositions in mol% 50ZnO:(49 - x)B₂O₃:1Bi₂O₃:xWO₃; x = 1, 5, 10, doped with 0.5 mol% Eu_2O_3 were obtained by applying the melt quenching method, using reagent-grade ZnO (Merck KGaA, Amsterdam, The Netherlands), WO₃ (Merck KGaA, Darmstadt, Germany), B2O3 (SIGMA-ALDRICH, St. Louis, MO, USA), Bi2O3 (Alfa Aesar, Karlsruhe, Germany), and Eu₂O₃ (SIGMA-ALDRICH, St. Louis, MO, USA) as raw materials. B_2O_3 enriched with ¹¹B isotope (99.6%) was used in order to avoid the high neutron absorption cross-section of the ¹⁰B isotope. Further in the text, samples' names are abbreviated to ZBBW1:Eu, ZBBW5:Eu, and ZBBW10:Eu, where the number refers to the WO₃ content in the compositions. The homogenized batches were melted at 1200 °C for 20 min in a platinum crucible in air. The melts were cast into graphite molds to obtain bulk glass samples. Glasses obtained by us earlier with the same compositions $(50ZnO:(50 - x)B_2O_3:xWO_3; x = 1, 5, 10)$ doped with 0.5 mol% Eu₂O₃ without Bi₂O₃, and denoted as ZBW1:Eu, ZBW5:Eu, and ZBW10:Eu, were also included here in order to establish the influence of bismuth addition on the structure and luminescence properties of the new glass compositions. The glasses without Bi_2O_3 containing 1 and 5 mol% WO₃ were reported in the 6th International Conference on Optics, Photonics, and Lasers (OPAL' 2023), while the glass with the highest WO_3 amount of 10 mol% was represented in ref. [15].

2.2. Characterization Techniques

The phase formation of the samples was established by X-ray phase analysis with a Bruker D8 advance diffractometer, Karlsruhe, Germany, using Cu K_{α} radiation in the $10 < 2\theta < 60$ range. The thermal stability of the obtained glasses was examined by differential scanning calorimetry (DSC) with a Netzsch 404 F3 Pegasus instrument, Selb, Germany, in the temperature range 25–750 °C at a heating rate of 10 K/min in an argon atmosphere. The density of the obtained glasses at room temperature was measured by the Archimedes principle using toluene ($\rho = 0.867 \text{ g/cm}^3$) as an immersion liquid on a Mettler Toledo electronic balance of sensitivity 10^{-4} g. The IR spectra of the glasses were measured using the KBr pellet technique on a Nicolet-320 FTIR spectrometer, Madison, WI, USA, with a resolution of $\pm 4 \text{ cm}^{-1}$, by collecting 64 scans in the range 1600–400 cm⁻¹. A random error in the center of the IR bands was found to be $\pm 3 \text{ cm}^{-1}$. The EPR analyses were carried out in the temperature range 120-295 K in X band at frequency 9.4 GHz on a spectrometer Bruker EMX Premium, Karlsruhe, Germany. Optical absorption spectra (UV-VIS-NIR) in the range 190–1500 nm were obtained with an error < 1% using a commercial double-beam spectrometer (UV-3102PC, Shimadzu, Kyoto, Japan). Photoluminescence (PL) excitation and emission spectra at room temperature for all glasses were measured with a Spectrofluorometer FluoroLog3-22, Horiba JobinYvon, Longjumeau, France. Neutron diffraction measurements were carried out in the momentum transfer range, Q = 0.45-9.8 Å⁻¹, for 24 h using neutrons of de Broglie wavelength, $\lambda = 1.069$ Å, at the 2-axis PSD diffractometer of Budapest Neutron Centre. The powder glass samples were mounted in a thin-walled cylindrical vanadium can with a diameter of 8 mm for the neutron diffraction experiments. The neutron diffraction data were corrected for detector efficiency, background scattering, and absorption effects, and normalized with vanadium [21]. The total structure factor, S(Q), was calculated using local software packages.

2.3. The Reverse Monte Carlo Simulation

Reverse Monte Carlo (RMC) simulations were performed on neutron diffraction datasets of the experimental total structure factor, *S*(*Q*), to determine the short-range structural properties of glasses by using RMC++ software (https://www.szfki.hu/~nphys/rmc++/downloads.html, accessed on 15 October 2023) [22]. The RMC technique minimizes

the squared difference between the experimental S(Q) and the simulated one from a 3dimensional atomic configuration by using the following equations:

$$S(Q) = \sum_{i,j}^{k} w_{ij} S_{ij}(Q) \tag{1}$$

$$S_{ij}(Q) = 1 + \frac{4\pi\rho_0}{Q} \int_0^{r_{max}} r[g_{ij}(r) - 1] sinQr \, dr$$
⁽²⁾

$$w_{ij} = \frac{c_i c_j b_i b_j}{\left[\sum_{i,j}^k c_i b_j\right]^2} \tag{3}$$

where c_i and b_i are the molar fraction and coherent neutron scattering length for atoms of type i, the $S_{ij}(Q)$ denotes the partial structure factors, and w_{ij} are the neutron scattering weight factors for the 21 atomic pairs for the ZBBW:Eu series (explanation: k = 5, thus k(k + 1)/2 = 15 different atomic pairs are present). RMC simulations were used to generate partial atomic pair correlation function, $g_{ij}(r)$, and coordination number distributions. The simulation was started with an initial random configuration by building a box that contained 10.000 atoms of Zn, B, Bi, W, Eu, and O, with the atomic density, ρ_0 , values of 0.0947 Å⁻³, 0.0919 Å⁻³, and 0.0888 Å⁻³ for the samples ZBBW1:Eu, ZBBW5:Eu, and ZBBW10:Eu, respectively. The RMC model box lengths for the three samples were 23.63 Å, 23.87 Å, and 24.14 Å for ZBBW1:Eu, ZBBW5:Eu, and ZBBW10:Eu samples, respectively.

In the RMC simulation procedure, constraints were used for the minimum interatomic distances between atom pairs (cut-off distances) to avoid unreasonable atom contacts. For each sample, about fifty RMC configurations were obtained with more than 2,600,000 accepted configurations of atoms.

3. Results

3.1. XRD Analysis and DSC Studies

Bulk, transparent, slightly colored glasses (insets, Figure 1a) of 50ZnO: $(49 - x)B_2O_3$: $1Bi_2O_3$: xWO_3 : $0.5Eu_2O_3$, x = 1, 5, and 10 mol%, were obtained in this study. The measured X-ray diffraction patterns are shown in Figure 1a, and confirm the amorphous nature of the prepared materials. Glasses without Bi_2O_3 (50ZnO: $(50 - x)B_2O_3$: xWO_3 :0.5Eu, x = 1, 5, and 10 mol%) were obtained earlier. The XRD patterns of the glass samples having 1 and 5 mol% WO₃ were present in the 6th International Conference on Optics, Photonics, and Lasers (OPAL' 2023). The photograph of the glass with the highest WO₃ amount of 10 mol% was represented in ref. [15].

DSC curves of the glass samples $50\text{ZnO}:(49 - x)B_2O_3:1Bi_2O_3:xWO_3:0.5Eu_2O_3$, x = 1, 5, and 10 mol%, obtained are presented in Figure 2. Glasses are characterized with two humps corresponding to the two glass transition temperatures, T_{g1} and T_{g2} . The two glass transition effects observed are connected with the presence of two amorphous phases with different compositions in the investigated glasses. In the DSC curve of the glass having the highest WO₃ concentration of 10 mol%, an exothermic peak due to the glass crystallization at temperature $Tc = 683 \,^{\circ}C$ was observed. For the glasses containing lower WO₃ concentration of 5 and 1 mol%, glass crystallization effects did not appear, evidencing that these glasses possess higher thermal stability, which decreases with increasing WO₃ content. The DSC analysis shows that the thermal parameters of glasses present here do not differ significantly from those obtained for the glasses with the similar compositions without Bi₂O₃ reported in Ref. [15]. However, the thermal stability of glasses containing 1 mol% Bi₂O₃ was slightly lowered, most probably because of the increased structural heterogeneity and, hence, higher crystallization ability of the composition.

Figure 1. XRD patterns of (**a**) 50ZnO:(49 − x)B₂O₃:1Bi₂O₃:xWO₃:0.5Eu₂O₃, x = 1, 5, and 10 mol%; (**b**) 50ZnO:(50 − x)B₂O₃:xWO₃:0.5Eu₂O₃, x = 1, 5, and 10 mol%.

Figure 2. DSC curves of glasses 50ZnO:(49 - x)B₂O₃:1Bi₂O₃:xWO₃:0.5Eu₂O₃, x = 1, 5, and 10 mol%.

3.2. IR Spectral Analysis

Structural information of the studied glasses was obtained by comparative analysis of IR spectra of glasses with the same compositions without Bi_2O_3 and containing 1 mol% Bi_2O_3 , which are shown in Figure 3.

Figure 3. IR spectra of 50ZnO:(49 - x)B₂O₃:1Bi₂O₃:xWO₃:0.5Eu₂O₃, x = 1, 5, and 10 mol% (in red); and 50ZnO:(50 - x)B₂O₃:xWO₃:0.5Eu₂O₃, x = 1, 5, and 10 mol% (in black).

The IR spectra of Bi₂O₃-free glasses with the lower WO₃ concentration of 5 and 1 mol% were previously reported by us in the 6th International Conference on Optics, Photonics, and Lasers (OPAL' 2023), while the glass with the highest WO_3 amount of 10 mol% was discussed earlier in ref. [15]. The IR spectra of the glasses without Bi_2O_3 contain bands characteristic to the metaborate groups BO_2O^- (shoulder at 1460 cm⁻¹; band at 625–640 cm⁻¹), pyroborate dimmers, $B_2O_5^{4-}$ (weak band at 1110 cm⁻¹; band at 625–640 cm⁻¹), and superstructural groupings with BO_3 and BO_4^- species (bands at 1250 cm^{-1} and at $1040-1050 \text{ cm}^{-1}$, band at 680 cm^{-1}) [14,23-25]. There are also WO₆ (bands at 870 cm⁻¹ and at 680 cm⁻¹) and $[WO_4]^{2-}$ tetrahedra (band at 480 cm⁻¹) [23]. The addition of Bi_2O_3 to the glass compositions causes the $BO_3 \rightarrow BO_4$ transformation, resulting in the increase in the number of superstructural units (increased intensity of the bands at 1240 and 1045–1035 cm⁻¹ and band at 680 cm⁻¹) [23]. For both the glass series, a partial $[WO_4]^{2-} \rightarrow WO_6$ transformation with increasing WO₃ concentration occurs, manifested by the disappearance of the bands at 940 cm⁻¹ and 880 cm⁻¹ ($v_3[WO_4]^{2-}$), and formation of an intense and well-formed band at 860–870 cm⁻¹ (vWO₆). The tungstate octahedral species sharing common corners (W–O–W) and edges (W₂O₂) are supposed, having in mind the structural and IR data of crystalline Bi₂WO₆, Bi₂W₂O₉, and ZnWO₄ phases [26–31]. These compounds consist of corner- or edge-shared WO₆, whose IR spectra contain strong bands situated in the same spectral regions, from $870-800 \text{ cm}^{-1}$ and 700–600 cm⁻¹. Tungstate and borate species are charge-balanced by Bi³⁺, Zn²⁺, and Eu³⁺ ions via Bi-O-W, B-O-Bi, Zn-O-W, Zn-O-B, Eu-O-W, and Eu-O-B bonding. Additionally, the new high frequency band at 1350 cm^{-1} observed in glasses having higher WO₃ of 5 and 10 mol% (Figure 2, ZBBW5:Eu and ZBBW10:Eu) is attributed to stretching of B–O⁻ bonds in $BØ_2O^-$ triangles, and its presence suggests stronger interaction between Bi³⁺ ions and nonbridging oxygens [32]. Bi³⁺ ions are incorporated in the structure of investigated glasses as BiO₆ octahedra (bands at 640 and at 480 cm⁻¹). Thus, the addition of Bi₂O₃ to glasses

50ZnO: $(49 - x)B_2O_3$: xWO_3 : $0.5Eu_2O_3$, x = 1, 5, and 10 mol%, leads to the formation of more stable and reticulated glass structure, compared with the glasses with the same composition without Bi₂O₃. The Zn²⁺ ions generally participate in the borate glasses as ZnO₄ tetrahedra with characteristic Zn²⁺ motion at 225 cm⁻¹ [33]. The frequency of the Eu–O vibration, v(Eu–O), has been measured at about 280 cm⁻¹ for glasses (1 – 2x)Eu₂O₃ – $x(SrO – B_2O_3)$ [34].

The detailed assignments of the bands observed in the IR spectra of the present glasses are summarized in Table 1.

Table 1. Infrared bands (in cm⁻¹) and their assignments for glasses 50ZnO:(49 – x)B₂O₃:1Bi₂O₃: xWO₃:0.5Eu₂O₃, x = 1, 5, and 10 mol%.

Infrared Bands Position (cm $^{-1}$)	Assignment	Ref.
475	$v_4[WO_4]^{2-}$ + Bi–O vibrations in the BiO ₆ groups	[32,35]
680	Bending vibrations of B–O–B bonds in superstructural	[32]
640–625	Bending vibrations of B–O–B bonds in meta- and pyroborates + Bi–O vibrations in the BiO ₆ groups	[32]
860-870	vWO ₆	[14,23]
940; 880	$v_3[WO_4]^{2-}$ in distorted tetrahedra	[23]
1050–1035	$v_{as}BO_4^{-}$ involved in superstructural units	[14,23]
1100	v_{as} (B–O–B); B–O–B bridge in pyroborate units, B ₂ O ₅ ^{4–}	[24,35]
1245	$v_{as}(B-O-B)$; B-O-B bridges connect BO ₃ units + BO ₃ stretch in meta-, pyro-, orthoborate units	[15,36]
1350	ν (B–O [–]) stretch in BØ ₂ O [–] units charge balanced by Bi ³⁺	[32]
1460	ν (B–O ⁻) stretch in BØ ₂ O ⁻ units	[23]

3.3. Density, Molar Volume, Oxygen Packing Density, and Oxygen Molar Volume

A structural information of two series of glasses was also gained by density (ρ_g) measurement, on which basis the values of several physical parameters listed in Table 2 (molar volume (V_m), oxygen molar volume (V_o), and oxygen packing density (OPD)) are evaluated, using the conventional formulae [37]. Bi₂O₃ containing glasses are characterized with the higher density as compared with the respective Bi₂O₃-free glasses because of the replacement of lighter B₂O₃ (molecular weight 69.62 g/mol) with heavier Bi₂O₃ (molecular weight 465.96 g/mol). The V_m and V_o values of glasses having 1 mol% Bi₂O₃ are lower, while their OPD values are higher as compared with the values of the same parameters established for the glasses without Bi₂O₃, evidencing better packing and bonding in the Bi₂O₃-containing glass network and lower number of nonbridging oxygens (NBOs) [38].

Table 2. Values of physical parameters of glasses 50ZnO: $(49 - x)B_2O_3$: $1Bi_2O_3$: xWO_3 : $0.5Eu_2O_3$, x = 1, 5, and 10 mol%: density (ρ_g), molar volume (V_m), oxygen molar volume (V_o), oxygen packing density (OPD).

Sample ID	$ ho_{g}$ (g/cm ³)	V _m (cm ³ /mol)	V _o (cm ³ /mol)	OPD (g atom/L)
ZBW1:Eu	3.475 ± 0.002	22.70	11.29	88.55
ZBW5:Eu	3.689 ± 0.002	23.14	11.51	86.86
ZBW10:Eu *	3.910 ± 0.002 *	23.91 *	11.73 *	84.27 *
ZBBW1:Eu	3.679 ± 0.001	22.57	11.20	89.28
ZBBW5:Eu	3.889 ± 0.005	23.01	11.42	87.57
ZBW10:Eu	4.175 ± 0.001	23.38	11.60	86.18

* The physical parameters of glass ZBW10:Eu were previously reported in Ref. [15].

3.4. RMC Modeling and Results

The RMC technique provided an excellent fit of the simulated structure factors (S(Q)-1) with the experimental one for $50ZnO:(49 - x)B_2O_3:1Bi_2O_3:xWO_3:0.5Eu_2O_3, x = 1, 5, and 10 mol%$ (Figure 4).

Figure 4. Experimental (color) and RMC (black line)-simulated neutron scattering structure factors for 50ZnO: $(49 - x)B_2O_3$: $1Bi_2O_3$: xWO_3 : $0.5Eu_2O_3$, x = 1, 5, and 10 mol% glasses.

From the RMC simulation, partial atomic pair-correlation functions, $g_{ij}(r)$, and average coordination number distributions, CN_{ij} , were revealed, with good stability and statistics. The Zn–O distribution functions show symmetrical peaks centered in the range of 1.95 ± 0.01 Å (Table 3).

Table 3. Interatomic X–O distances, $g_{ij}(r)$, obtained from RMC simulation. The errors are estimated from the reproducibility of various RMC runs.

Title 1	Zn–O $g_{ij}(r)$ (Å)	В-О g _{ij} (r) (Å)	Bi–O g _{ij} (r) (Å)	W–O g _{ij} (r) (Å)	Eu–O g _{ij} (r) (Å)	O–O g _{ij} (r) (Å)
ZBBW1:Eu	1.95 ± 0.01	$1.40/1.80 \pm 0.05$	2.00 ± 0.05	1.75 ± 0.05	2.20 ± 0.05	2.35 ± 0.03
ZBBW5:Eu	1.95 ± 0.01	$1.40/1.80 \pm 0.05$	2.00 ± 0.05	1.75 ± 0.05	2.20 ± 0.05	2.35 ± 0.03
ZBB10:Eu	1.95 ± 0.01	$1.40/1.80 \pm 0.05$	2.00 ± 0.05	1.75 ± 0.05	2.20 ± 0.05	2.35 ± 0.03

In function of $g_{ij}(r)$, we specify a range in r over which atoms are counted as neighbors. This can be understood as defining coordination shells. Introducing a *min* point (positions of minimum values on the lower) and *max* point (the upper side of the corresponding peak), these are presented in Table 4, where we present the average coordination numbers (summarized in Table 4).

Table 4. Average coordination numbers, CN_{ij} , calculated from RMC simulation. In brackets, the interval is indicated, where the actual coordination number was calculated.

Sample	Zn-O CN _{ij}	B–O CN _{ij}	W–O CN _{ij}	O–O CN _{ij}
ZBBW1:Eu	4.01 ± 0.05	3.90 ± 0.05	6.20 ± 0.1	5.63 ± 0.1
	(min: 1.80–max: 2.20)	(min: 1.20–max: 1.65)	(min: 1.65–max: 2.23)	(min: 2.20–max: 2.60)
ZBBW5:Eu	3.99 ± 0.05	3.52 ± 0.05	6.42 ± 0.1	5.32 ± 0.1
	(min: 1.80–max: 2.20)	(min: 1.20–max: 1.65)	(min: 1.60–max: 2.25)	(min: 2.20–max: 2.60)
ZBBW10:Eu	3.97 ± 0.05	3.48 ± 0.05	6.73 ± 0.1	5.54 ± 0.1
	(min: 1.80–max: 2.20)	(min: 1.20–max: 1.65)	(min: 1.60–max: 2.25)	(min: 2.20-max: 2.60)

The average coordination number of the Zn–O was obtained from the RMC analysis, and it was found that Zn⁴⁺ was tetrahedrally coordinated with oxygens in the glassy network for all studied samples (Table 4). The B–O distribution function showed a relatively broad first neighbor distance at 1.40 \pm 0.05 Å, and a slight shoulder at 1.80 \pm 0.1 Å appeared in function of concentration in the 50ZnO:(49 – x)B₂O₃:1Bi₂O₃:xWO₃:0.5Eu₂O₃, x = 1, 5, and 10 mol%, glass samples. The B–O coordination was in the range of 3.48 \pm 0.05 to

 4.00 ± 0.05 , and obtained the changes in BO₃/BO₄ ratio. The boron atoms were coordinated mostly by three and four oxygen atoms, forming trigonal BO₃ and tetrahedral BO₄ units, in agreement with coordination numbers in SiO₂–Na₂O–B₂O₃ glasses [39], in MoO₃–ZnO–B₂O₃ glasses [40], and in ZnO–B₂O₃–Li₂O–Al₂O₃ glasses [41]. The nearest W–O distances showed characteristic peaks at 1.75 ± 0.05 (Table 3) for both series. The average coordination number of W–O was in a wide range, from 6.20 ± 0.1 to 6.73 ± 0.1 (see Table 3) within the limits of experimental uncertainty. Based on the coordination numbers, we can predict that the W–O network consists of WO₄ and WO₆ units. The WO₄/WO₆ ratio changed with the WO₃ concentration, and samples with highest WO₃ concentration (10 mol%) had mostly WO₆ units with fewer WO₄ units. In the case of Bi–O and Eu–O, thanks to the very low Bi₂O₃ and Eu₂O₃ concentration, it was not relevant to obtain reliable numbers for the coordination.

3.5. EPR Spectroscopy

The EPR analyses of ZBBW5:Eu were carried out at 295 K and 120, and in Figure 5 the obtained spectra are shown. As seen, the spectra contain multiple signals with different intensities and g-factors. The most prominent features are assigned to impurities of isolated Fe^{3+} ions (the signal with g = 4.25) and isolated Mn^{2+} ions (six hyperfine structure lines marked with *, inset).

Figure 5. EPR spectra of ZBBW5:Eu, recorded at 120 and 295 K. The quartz tube background is represented at the bottom. EPR measurement conditions: Att = 16 (5 mW); MA = 20.

Eu²⁺ ions possess electron spin S = 7/2, and in their EPR spectrum seven signals were observed, corresponding to seven allowed transitions occurring between four Kramers' doublets (ms = $\pm 1/2$, ms = $\pm 3/2$, ms= $\pm 5/2$, and ms = $\pm 7/2$) according to the selection rule [42]. Depending on the zero-field splitting parameters (D, E) and crystal field symmetry, the EPR spectra of Eu²⁺ usually include a part of these signals. In the spectra of ZBBW5:Eu are discernable a set of not-well-resolved and low-intensive signals with g factors about 6.0, 4.7, 3.4, and 2.8 located in the range 0–300 mT. These signals could be assigned to Eu²⁺ ions [42,43] localized in a low-symmetry crystal field with large zero-field splitting (D > hv).

In addition, the central region of the spectrum shows a signal with g = 2.00. The assignment of this signal is somewhat difficult, as it could derive both from Fe³⁺ ion impurities existing in the sample and Gd³⁺ ions in a highly symmetric environment. That is why its attribution remains unclear.

To summarize, the EPR spectra recorded for sample ZBBW5:Eu confirm the presence of Eu^{2+} ions, with their concentration being assessed as extremely low based on the comparison between the background spectrum and the analyzed spectrum.

3.6. Luminescent Properties

Figure 6 shows the photoluminescent excitation spectra of Eu³⁺-doped 50ZnO: $(49 - x)B_2O_3:1Bi_2O_3:xWO_3$, x = 1, 5, and 10 mol%, glasses monitoring the ${}^5D_0 \rightarrow {}^7F_2$ red emission of Eu³⁺ at 612 nm [6].

Figure 6. Excitation spectra of 50ZnO:(49 - x)B₂O₃:1Bi₂O₃:xWO₃:0.5Eu₂O₃ (x = 1, 5, and 10 mol%) glasses.

The low-intensive broad band below 350 nm is ascribed to the characteristic absorption of Bi³⁺ (${}^{1}S_{0} \rightarrow {}^{3}P_{1}$) [17], the charge transfer bands (CTB), resulting from energy transitions from O²⁻ to W⁶⁺ in WO₄ and WO₆ groups and O²⁻ to Eu³⁺, as well as the ground 4f state of Eu³⁺ to W⁶⁺ [6,44–48]. The existence of the excitation band of host lattice absorption at Eu³⁺ emission (612 nm) implies the existence of nonradiative energy transfer from Bi³⁺ and WO_n groups to the active rare-earth ion [48,49]. The sharp lines in 350–600 nm range correspond to the f \rightarrow f intraconfigurational forbidden transitions of Eu³⁺ from the ground state (⁷F₀) and from the first excited state (⁷F₁): ⁷F₀ \rightarrow ⁵D₄ (360 nm), ⁷F₀ \rightarrow ⁵G₂ (375 nm), ⁷F₁ \rightarrow ⁵L₇ (381 nm), ⁷F₀ \rightarrow ⁵D₁ (531 nm), and ⁷F₀ \rightarrow ⁵D₀ (576 nm) [6]. Among them, the electronic transition at 392 nm is the strongest one and was used as an excitation wavelength. Compared to the CTB, the intensity of the narrow f–f lines is stronger. This is favorable for Eu³⁺-doped luminescent materials, since, in general, the intensity of these Eu³⁺ transitions is weak due to the parity-forbidden law. Thus, the obtained glasses can be effectively excited by near-UV and blue light, which is compatible with the present LED chips.

The emission spectra of Eu³⁺-doped 50ZnO:(49 – x)B₂O₃: 1Bi₂O₃:xWO₃, x = 1, 5, and 10 mol%, glasses under the excitation of λ_{ex} = 392 nm consist of five emission peaks centered at 578, 592, 612, 651, and 700 nm, originating from ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0, 1, 2, 3, 4) intraconfigurational transitions of Eu³⁺ (Figure 7) [6].

Figure 7. Emission spectra of $50ZnO:(49 - x)B_2O_3$: $1Bi_2O_3:xWO_3:0.5Eu_2O_3$ (x = 1, 5, and 10 mol%) glasses.

The characteristic single broad band emission of Bi^{3+,} originating from ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ transition is located at 380–700 nm [50]. In the same spectral region, we also registered the broad emission band of the WO_n group [51]. The general requirement for energy transfer from both WO₃ and Bi₂O₃ to the rare-earth ion is satisfied, i.e., there exists a spectral overlap between the excitation peaks of Eu³⁺ (Figure 6) and the emission band of Bi³⁺ and WO₃ (Figure 7). As a result, both oxides can act as sensitizers, transferring the emission energy nonradiatively to the activator Eu³⁺ by quenching their luminescence. Moreover, an indication of energy transfer is the absence of characteristics of WO₃ and Bi₂O₃ emission bands [15,20,48]. As can be seen, with the increase of WO₃ up to 10 mol% (Figure 7) and with the introduction of Bi₂O₃ in the 50ZnO:40B₂O₃:10WO₃:0.5Eu₂O₃ glass composition (Figure 8), a significant enhancement of the emission intensities was achieved.

Figure 8. Emission spectra of $50ZnO:(40 - x)B_2O_3: xBi_2O_3:10WO_3:0.5Eu_2O_3$ (x = 0 and 1 mol%).

The most intensive emission peak, observed at 612 nm, corresponds to the hypersensitive to the site symmetry electric dipole (ED) transition ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, while the second-most intensive magnetic dipole (MD) ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ one is insensitive to the site symmetry and is considered almost constant [6,44,52,53]. The integrated emission intensity ratio (R) of

these two transitions ${}^{5}D_{0} \rightarrow {}^{7}F_{2}/{}^{5}D_{0} \rightarrow {}^{7}F_{1}$ is used to estimate the degree of symmetry around Eu³⁺ ions and the strength of covalence of the europium–oxygen bond. The higher R values indicate more site asymmetry of the rare-earth ion, a high covalency between Eu³⁺ and O²⁻ ions, and an enhanced emission intensity [6,54,55]. The intensity ratios, R, of the present glasses (R = 4.7–5.7) (Table 5) are higher than most of the other reported Eu³⁺-doped glasses and have close values to Eu³⁺:Y₂O₃ and Eu³⁺:Y₂O₂S, indicating that the synthesized glasses are characterized by a more distorted environment of the Eu³⁺ ion and a high covalent bonding between Eu³⁺ and the surrounding ligands, thus achieving an enhanced Eu³⁺ emission intensity [15,18,20,36,56–64].

Table 5. Comparison of the luminescence intensity ratio (R) of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ to ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition of Eu³⁺-doped oxide glasses.

Glass Composition	R Values	Ref.
50ZnO:48B ₂ O ₃ :1Bi ₂ O ₃ :1WO ₃ :0.5Eu ₂ O ₃	4.61	Present work
50ZnO:44B2O3:1Bi2O3:5WO3:0.5Eu2O3	5.04	Present work
50ZnO: 40B ₂ O ₃ :10WO ₃ :0.5Eu ₂ O ₃	5.57	[12]
50ZnO:39B ₂ O ₃ :1Bi ₂ O ₃ :10WO ₃ :0.5Eu ₂ O ₃	5.73	Present work
50 ZnO: $40B_2O_3$: $10WO_3$: xEu_2O_3 ($0 \le x \le 10$)	4.54-5.77	[15]
50 ZnO: $40B_2O_3$: $5WO_3$: $5Nb_2O_5$: xEu_2O_3 (x = 0, 0.1, 0.5, 1, 2, 5 and 10)	5.09-5.76	[36]
50ZnO: $(40 - x)$ B ₂ O ₃ :10Bi ₂ O ₃ :0.5Eu ₂ O ₃ :xWO ₃ , x = 0 and 0.5	3.58; 3.79	[20]
20ZnO:8Al ₂ O ₃ :(12 - x)Bi ₂ O ₃ :60B ₂ O ₃ :xEu ₂ O ₃	1.951-2.78	[56]
39.5Li ₂ O:59.5SiO ₂ :1Eu ₂ O ₃	3.20	[57]
4 ZnO: $3B_2O_3 0.5 \div 2.5 \text{ mol}\% \text{ Eu}^{3+}$	3.94-2.74	[58]
Eu ³⁺ : 45B ₂ O ₃ -5ZnO-49PbO	3.03	[59]
$15PbF_2:25WO_3:(60 - x)TeO_2:xEu_2O_3 x = 0.1, 0.5, 1.0 and 2.0 mol\%$	2.37-2.78	[60]
$\begin{array}{l} 40\text{ZnO:}(30-x) B_2\text{O}_3{:}30\text{P}_2\text{O}_5{:}x\text{Eu}_2\text{O}_3\\ (0.1 \leq x \leq 0.9) \end{array}$	2.96-3.65	[61]
60ZnO: $(40x)$ B ₂ O ₃ :0.2Eu ₂ O ₃ :xBi ₂ O ₃ (x = 0, 0.1, 0.2, 0.5, 1.0)	2.98	[18]
$(100 - x):(0.2Bi_2O_3-0.8GeO_2):xEu_2O_3$ (x = 0.5, 1, 1.5, 2 mol%)	3.94-4.21	[62]
Eu ³⁺ :Y ₂ O ₃	3.8–5.2	[63]
Eu ³⁺ doped Y ₂ O ₂ S	6.45-6.62	[64]

The R values were found to increase from 4.61 to 5.73 (Table 5) as the WO₃ concentration raised from 1 to 10 mol%. The incorporation of small amounts of Bi₂O₃ (1 mol%) into the glass structure also led to an increase in the asymmetric ratio from 5.57 for the glass $50\text{ZnO}:40\text{B}_2\text{O}_3:10\text{WO}_3:0.5\text{Eu}_2\text{O}_3$ to 5.73 for the glass $50\text{ZnO}:39\text{B}_2\text{O}_3:10\text{WO}_3:0.5\text{Eu}_2\text{O}_3$. These R values were much higher as compared to the R value for glass with high Bi₂O₃ content (10 mol%) ($50\text{ZnO}:(40 - x)\text{B}_2\text{O}_3:10\text{Bi}_2\text{O}_3:0.5\text{Eu}_2\text{O}_3:x\text{WO}_3, x = 0$ and 0.5) (R = 3.79) [20]. This result shows that we have found an appropriate glass composition for hosting an active rare-earth ion that provide a high Eu³⁺ emission intensity.

4. Discussion

In this study, by analyzing the IR spectra of zinc–borate glasses containing 1, 5, and 10 mol% WO₃, with and without Bi₂O₃, it was found that 1 mol% Bi₂O₃ leads to an increase in the number of the BO₄⁻ involved in superstructural groupings and formation of Bi–O–B, Bi–O–W, Zn–O–B, Zn–O–W, Eu–O–W, and Eu–O–B cross-links in the glass structure. With WO₃ loading in the Bi³⁺-containing glasses, a partial $[WO_4]^{2-} \rightarrow WO_6$ transformation took place. The tungstate octahedra shared common corners and/or edges, forming W–O–W and W₂O₂ bonds. There were also B–O–B bonds with different numbers with the WO₃ content. The RMC modeling also revealed the presence of both WO₆ and WO₄ units and trigonal BO₃ and tetrahedral BO₄ units varying in amount with the composition. Thus, the bismuth-containing glasses were characterized by a more reticulated and rigid network

that ensures low symmetry sites of Eu³⁺ ions, which is favorable for the luminescence emission of the active Eu³⁺ ion. The structural features revealed by IR analysis agreed well with the measured density and calculated physical parameters. Bi₂O₃-containing glasses were characterized with the lower molar and oxygen molar volume and higher oxygen packing density, as compared with Bi₂O₃-free glasses with the same compositions, as a result of the formation of highly cross-linked structure and the presence of new mixed bonding with participation of Bi³⁺ ions. A significant enhancement of the Eu³⁺ emission was established in the glasses 50ZnO:(49 – x)B₂O₃:1Bi₂O₃:xWO₃:0.5Eu₂O₃, (a) x = 1 mol%, (b) x = 5 mol%, (c) x = 10 mol%, in the presence of low Bi₂O₃ content (1 mol%) and with the increase of WO₃ content (up to 10 mol%). The photoluminescent spectra of the new glasses showed an intensive red luminescence at 612 nm as well as a very large value of the luminesce ratio R (over 5), both evidencing that Eu³⁺ ions occupied distorted sites in the created glass network. Particularly, the glass with 10 mol% WO₃ showed the strongest emission of the active ions as a result of the structural features established and also because of an energy transfer from tungstate and bismuthate groups to the active ion.

5. Conclusions

The results of this investigation show that the zinc borate glass matrix with the simultaneous presence of both Bi_2O_3 and WO_3 is very suitable for implementing the active Eu^{3+} as it possesses a reticulated and rigid glass structure, ensuring a more asymmetrical local structure around Eu^{3+} sites, accordingly yielding a higher luminescence of the incorporated Eu^{3+} ions. On the other hand, both bismuth and tungsten oxides have a synthesizer effect by transferring the emission energy nonradiatively to the activator Eu^{3+} , which additionally improves its luminesce properties. This suggests that the obtained glasses are potential candidates for red-light-emitting phosphors.

Author Contributions: Conceptualization, A.Y., M.M. and R.I.; methodology, A.Y., M.M. and R.I.; software, A.Y., M.M. and M.F.; validation, A.Y., M.M. and M.F.; formal analysis, A.Y., M.M. and M.F.; investigation, A.Y., M.M., M.F., L.A. and P.P.; resources, R.I. and M.F.; data curation, A.Y., M.M., R.I. and M.F.; writing—original draft preparation, A.Y., M.M. and M.F.; writing—review and editing, R.I.; visualization, A.Y., M.M. and R.I.; supervision, R.I.; project administration, R.I. and M.F.; funding acquisition, R.I. and M.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Science Programme "European research network" under project TwinTeam Д01-272/02.10.2020 г. and by joint research project within the framework of an international scientific cooperation between BAS and MTA IC-HU/01/2022-2023.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Special thanks are due to R. Kukeva for EPR measurements.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Cho, J.; Park, J.H.; Kim, J.K.; Schubert, E.F. White light-emitting diodes: History, progress, and future. *Laser Photonics Rev.* 2017, 11, 1600147. [CrossRef]
- Chen, Y.Y.; Duh, J.G.; Chiou, B.S.; Peng, C.G. Luminescent mechanisms of ZnS: Cu: Cl and ZnS: Cu: Al phosphors. *Thin Solid Films* 2001, 392, 50–55. [CrossRef]
- Kim, K.B.; Kim, Y.I.; Chun, H.G.; Cho, T.Y.; Jung, J.S.; Kang, J.G. Structural and optical properties of BaMgAl₁₀O₁₇: Eu²⁺ phosphor. *Chem. Mater.* 2002, 14, 5045–5052. [CrossRef]
- 4. Trond, S.S.; Martin, J.S.; Stanavage, J.P.; Smith, A.L. Properties of Some Selected Europium-Activated Red Phosphors. J. Electrochem. Soc. **1969**, 116, 1047–1050. [CrossRef]
- Feldmann, C.; Jüstel, T.; Ronda, C.R.; Schmidt, P.J. Inorganic luminescent materials: 100 years of research and application. *Adv. Funct. Mater.* 2003, 13, 511–516. [CrossRef]
- 6. Binnemans, K. Interpretation of europium (III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [CrossRef]

- Setlur, A.A. Sensitizing Eu³⁺ with Ce³⁺ and Tb³⁺ to make narrow-line red phosphors for light emitting diodes. *Electrochem. Solid-State Lett.* 2012, 15, J25. [CrossRef]
- 8. Hong, J.H.; Zhang, Z.G.; Cong, C.J.; Zhang, K.L. Energy transfer from Bi³⁺ sensitizing the luminescence of Eu³⁺ in clusters embedded into sol–gel silica glasses. *J. Non-Cryst. Solids* **2007**, *353*, 2431–2435. [CrossRef]
- Spadaro, F.; Rossi, A.; Laine, E.; Hartley, J.; Spencer, N.D. Mechanical and tribological properties of boron oxide and zinc borate glasses. *Phys. Chem. Glas. Eur. J. Glass Sci. Technol. B* 2016, *57*, 233–244. [CrossRef]
- 10. Ehrt, D. Zinc and manganese borate glasses-phase separation, crystallization, photoluminescence and structure. *Phys. Chem. Glas. Eur. J. Glass Sci. Technol. B* 2013, 54, 65–75.
- Ivankov, A.; Seekamp, J.; Bauhofer, W. Optical properties of Eu³⁺-doped zinc borate glasses. J. Lumin. 2006, 121, 123–131. [CrossRef]
- 12. Taki, Y.; Shinozaki, K.; Honma, T.; Dimitrov, V.; Komatsu, T. Electronic polarizability and interaction parameter of gadolinium tungsten borate glasses with high WO₃ content. *J. Solid. State Chem.* **2014**, 220, 191–197. [CrossRef]
- 13. Ali, A.A.; Fathi, A.M.; Ibrahim, S. Material characteristics of WO₃/Bi₂O₃ substitution on the thermal, structural, and electrical properties of lithium calcium borate glasses. *Appl. Phys. A* **2023**, *129*, 299. [CrossRef]
- 14. Milanova, M.; Aleksandrov, L.; Iordanova, R. Structure and luminescence properties of tungsten modified zinc borate glasses doped with Eu³⁺ ions. *Mater. Today Proc.* 2022, *61*, 1206–1211. [CrossRef]
- Milanova, M.; Aleksandrov, L.; Yordanova, A.; Iordanova, R.; Tagiara, N.S.; Herrmann, A.; Gao, G.; Wondraczek, L.; Kamitsos, E.I. Structural and luminescence behavior of Eu³⁺ ions in ZnO-B₂O₃-WO₃ glasses. *J. Non-Cryst. Solids* 2023, 600, 122006. [CrossRef]
- 16. Yu, B.; Zhou, X.; Xia, H.; Chen, B.; Song, H. Novel Bi³⁺/Eu³⁺ co-doped oxyfluoride transparent KY₃F₁₀ glass ceramics with wide tunable emission and high optical temperature sensitivity. *J. Lumin.* **2021**, 239, 118366. [CrossRef]
- 17. Giraldo, O.G.; Fei, M.; Wei, R.; Teng, L.; Zheng, Z.; Guo, H. Energy transfer and white luminescence in Bi³⁺/Eu³⁺ co-doped oxide glasses. *J. Lumin.* **2020**, *219*, 116918. [CrossRef]
- Sontakke, A.D.; Tarafder, A.; Biswas, K.; Annapurna, K. Sensitized red luminescence from Bi³⁺ co-doped Eu³⁺: ZnO–B₂O₃ glasses. *Phys. B Condens. Matter* 2009, 404, 3525–3529. [CrossRef]
- 19. Kaewkhao, J.; Boonin, K.; Yasaka, P.; Kim, H.J. Optical and luminescence characteristics of Eu³⁺ doped zinc bismuth borate (ZBB) glasses for red emitting device. *Mater. Res. Bull.* **2015**, *71*, 37–41. [CrossRef]
- Aleksandrov, L.; Yordanova, A.; Milanova, M.; Iordanova, R.; Fabian, M. Doping effect of WO₃ on the structure and luminescent properties of Zno-B₂O₃-Bi₂O₃:Eu³⁺ glass. J. Chem. Technol. Metall. 2023, 58, 707–715.
- 21. Svab, E.; Meszaros, G.; Deak, F. Neutron powder diffractometer at the Budapest research reactor. *Mat. Sci. Forum* **1996**, *228*, 247–252. [CrossRef]
- 22. Gereben, O.; Jovari, P.; Temleitner, L.; Pusztai, L. A new version of the RMC++ Reverse Monte Carlo programme, aimed at investigating the structure of covalent glasses. *J. Optoelec. Adv. Mater.* **2007**, *9*, 3021–3027.
- Iordanova, R.; Milanova, M.; Aleksandrov, L.; Khanna, A. Structural study of glasses in the system B₂O₃-Bi₂O₃-La₂O₃-WO₃. J. Non-Cryst. Solids 2018, 481, 254–259. [CrossRef]
- 24. Kamitsos, E.I.; Patsis, A.P.; Karakassides, M.A.; Chryssikos, G.D. Infrared reflectance spectra of lithium borate glasses. *J. Non-Cryst. Solids* **1990**, *126*, 52–67. [CrossRef]
- Ouis, M.A.; El Batal, F.H.; Azooz, M.A. FTIR, optical and thermal studies of gadmium borate glass doped with Bi₂O₃ and effect of gamma irradiation. J. Aust. Ceram. Soc. 2020, 56, 283–290. [CrossRef]
- Islam, M.; Lazure, S.; Vannier, R.; Nowgorodski, G.; Mairesse, G. Structural and computational studies of Bi₂WO₆ based oxygen ion conductors. *J. Mater. Chem.* 1998, 8, 655–660. [CrossRef]
- 27. Buttrey, D.; Vogt, T.; White, B. High-temperature incommensurate-to-commensurate phase transition in the Bi₂MoO₆ catalyst. *J. Solid State Chem.* **2000**, 155, 206–208. [CrossRef]
- 28. Sleight, A.W. Accurate cell dimensions for ABO₄ molybdates and tungstates. Acta Cryst. 1972, 28, 2899–2991. [CrossRef]
- 29. Mączka, M.; Macalik, L.; Hermanovicz, K.; Kepinski, L.; Tomaszewski, P. Phonon properties of nanosized bismuth layered ferroelectric material—Bi₂WO₆. J. Raman Spectrosc. **2010**, *41*, 1059–1066. [CrossRef]
- Mączka, M.; Macalik, L.; Hanuza, J. Raman and IR spectra of the cation-deficient Aurivillius layered crystal Bi₂W₂O₉. J. Raman Spectrosc. 2009, 40, 2099–2103.
- Zhao, X.; Yao, W.; Wu, Y.; Zhang, S.; Yan, H.; Zhi, Y. Fabrication and photoelectrochemical properties of porous ZnWO₄ film. J. Solid State Chem. 2006, 179, 2562–2570. [CrossRef]
- 32. Varsamis, C.P.; Makris, E.N.; Valvi, C.; Kamitsos, E.I. Short-range structure, the role of bismuth and property-structure correlations in bismuth borate glasses. *Phys. Chem. Chem. Phys.* **2021**, *23*, 10006–10020. [CrossRef] [PubMed]
- Yao, Z.Y.; Möncke, D.; Kamitsos, E.I.; Houizot, P.; Celarie, F.; Rouxel, T.; Wondraczek, L. Structure and mechanical properties of copper-lead and copper-zinc borate glasses. J. Non-Cryst. Solids 2016, 435, 55–68. [CrossRef]
- 34. Winterstein-Beckmann, A.; Moncke, D.; Palles, D.; Kamitsos, E.I.; Wondraczek, L. Structure and Properties of Orthoborate Glasses in the Eu₂O₃–(Sr,Eu)O–B₂O₃ Quaternary. *J. Phys. Chem. B* **2015**, *119*, 3259–3272. [CrossRef] [PubMed]
- Iordanova, R.; Milanova, M.; Aleksandrov, L.; Shinozaki, K.; Komatsu, T. Structural study of WO₃-La₂O₃-B₂O₃-Nb₂O₅ glasses. J. Non-Cryst. Solids 2020, 543, 120132. [CrossRef]

- Aleksandrov, L.; Milanova, M.; Yordanova, A.; Iordanova, R.; Nedyalkov, N.; Petrova, P.; Tagiara, N.S.; Palles, D.; Kamitsos, E.I. Synthesis, structure and luminescence properties of Eu³⁺-doped 50ZnO.40B₂O₃.5WO₃.5Nb₂O₅ glass. *Phys. Chem. Glas. Eur. J. Glass Sci. Technol. B* 2023, 64, 101–109.
- 37. El-Fayoumi, M.A.K.; Farouk, M. Structural properties of Li-borate glasses doped with Sm³⁺ and Eu³⁺ ions. *J. Alloys Compd.* **2009**, 482, 356–360. [CrossRef]
- 38. Villegas, M.A.; Fernández Navarro, J.M. Physical and structural properties of glasses in the TeO₂–TiO₂–Nb₂O₅ system. *J. Eur. Ceram. Soc.* **2007**, *27*, 2715–2723. [CrossRef]
- Fabian, M.; Araczki, C. Basic network structure of SiO₂-Na₂O-B₂O₃ glasses from diffraction and reverse Monte Carlo simulation. *Phys. Scrip.* 2016, *91*, 054004. [CrossRef]
- 40. Fabian, M.; Svab, E.; Krezhov, K. Network structure with mixed bond-angle linkages in MoO₃-ZnO-B₂O₃ glasses: Neutron diffraction and reverse Monte Carlo modelling. *J. Non-Cryst. Solids* **2016**, *433*, 6–13. [CrossRef]
- 41. Othman, H.; Valiev, D.; Polisadova, E. Structural and mechanical properties of zinc aluminoborate glasses with different content of aluminium oxide. *J. Mater. Sci Mater. Electron.* **2017**, *28*, 4647–4653. [CrossRef]
- 42. Brodbeck, M.; Iton, L.E. The EPR spectra of Gd³⁺ and Eu³⁺ in glassy systems. *J. Chem. Phys.* **1985**, *83*, 4285–4299. [CrossRef]
- 43. Nandyala, S.; Hungerford, G.; Babu, S.; Rao, J.L.; Leonor, I.B.; Pires, R.; Reis, R.L. Time resolved emission and electron paramagnetic resonance studies of Gd³⁺ doped calcium phosphate glasses. *Adv. Mater. Lett.* **2016**, *7*, 277–281. [CrossRef]
- 44. Blasse, G.; Grabmaier, B.C. Luminescent Materials, 1st ed.; Springer: Berlin/Heidelber, Germany, 1994; p. 18.
- 45. Hoefdraad, H.E. The charge-transfer absorption band of Eu³⁺ in oxides. J. Solid State Chem. **1975**, 15, 175–177. [CrossRef]
- 46. Parchur, A.K.; Ningthoujam, R.S. Behaviour of electric and magnetic dipole transitions of Eu³⁺, ⁵D₀→⁷F₀ and Eu–O charge transfer band in Li⁺ co-doped YPO₄:Eu³⁺. *RSC Adv.* 2012, 2, 10859–10868. [CrossRef]
- Mariselvam, K.; Juncheng, L. Synthesis and luminescence properties of Eu³⁺ doped potassium titano telluroborate (KTTB) glasses for red laser applications. *J. Lumin.* 2021, 230, 117735. [CrossRef]
- 48. Dutta, P.S.; Khanna, A. Eu³⁺ activated molybdate and tungstate based red phosphors with charge transfer band in blue region. *ECS J. Solid State Sci. Technol.* **2013**, *2*, R3153–R3167. [CrossRef]
- Thieme, C.; Herrmann, A.; Kracker, M.; Patzig, C.; Höche, T.; Rüssel, C. Microstructure investigation and fluorescence properties of Europium-doped scheelite crystals in glass-ceramics made under different synthesis conditions. *J. Lumin.* 2021, 238, 118244. [CrossRef]
- 50. Minquan, W.; Xianping, F.; Guohong, X. Luminescence of Bi³⁺ ions and energy transfer from Bi³⁺ ions to Eu³⁺ ions in silica glasses prepared by the sol-gel process. *J. Phys. Chem. Solids* **1995**, *56*, 859–862. [CrossRef]
- 51. Sungpanich, J.; Thongtem, T.; Thongtem, S. Large-scale synthesis of WO₃ nanoplates by a microwave-hydrothermal method. *Ceram. Int.* **2012**, *38*, 1051–1055. [CrossRef]
- 52. Shionoya, S.; Yen, W.M.; Yamamoto, H. Phosphor Handbook, 2nd ed.; CRC Press: London, UK; New York, NY, USA, 2018; p. 177.
- Gandhi, Y.; Kityk, I.V.; Brik, M.G.; Rao, P.R.; Veeraiah, N. Influence of tungsten on the emission features of Nd³⁺, Sm³⁺ and Eu³⁺ ions in ZnF₂–WO₃–TeO₂ glasses. J. Alloys Compd. 2010, 508, 278–291. [CrossRef]
- Devi, C.H.B.; Mahamuda, S.; Swapna, K.; Venkateswarlu, M.; Rao, A.S.; Prakash, G.V. Compositional dependence of red luminescence from Eu³⁺ ions doped single and mixed alkali fluoro tungsten tellurite glasses. *Opt. Mater.* 2017, 73, 260–267. [CrossRef]
- 55. Nogami, M.; Umehara, N.; Hayakawa, T. Effect of hydroxyl bonds on persistent spectral hole burning in Eu³⁺ doped BaO-P₂O₅ glasses. *Phys. Rev. B* **1998**, *58*, 6166–6171. [CrossRef]
- Swapna, K.; Mahamuda, S.; Rao, A.S.; Sasikala, T.; Packiyaraj, P.; Moorthy, L.R.; Vijayaprakash, G. Luminescence characterization of Eu³⁺ doped Zinc Alumino Bismuth Borate glasses for visible red emission applications. J. Lumin. 2014, 156, 80–86. [CrossRef]
- 57. Raju, B.D.; Reddy, C.M. Structural and optical investigations of Eu³⁺ ions in lead containing alkali fluoroborate glasses. *Opt. Mater.* **2012**, *34*, 1251–1260. [CrossRef]
- 58. Bettinelli, M.; Speghini, A.; Ferrari, M.; Montagna, M. Spectroscopic investigation of zinc borate glasses doped with trivalent europium ions. *J. Non-Cryst. Solids* **1996**, 201, 211–221. [CrossRef]
- 59. Lakshminarayana, G.; Buddhudu, S. Spectral analysis of Eu³⁺ and Tb³⁺:B₂O₃-ZnO-PbO glasses. *Mater. Chem. Phys.* **2007**, 102, 181–186. [CrossRef]
- Babu, A.M.; Jamalaiah, B.C.; Suhasini, T.; Rao, T.S.; Moorthy, L.R. Optical properties of Eu³⁺ ions in lead tungstate tellurite glasses. Solid State Sci. 2011, 13, 574–578. [CrossRef]
- 61. Bindu, S.H.; Raju, D.S.; Krishna, V.V.; Rao, T.R.; Veerabrahmam, K.; Raju, C.L. UV light induced red emission in Eu³⁺-doped zincborophosphate glasses. *Opt. Mater.* **2016**, *62*, 655–665. [CrossRef]
- 62. Gökçe, M. Development of Eu³⁺ doped bismuth germanate glasses for red laser applications. *J. Non-Cryst. Solids* **2019**, 505, 272–278. [CrossRef]

- 63. Kabir, M.; Ghahari, M.; Afarani, M.S. Co-precipitation synthesis of nano Y₂O₃: Eu³⁺ with different morphologies and its photoluminescence properties. *Ceram. Int.* **2014**, *40*, 10877–10885. [CrossRef]
- 64. Som, S.; Mitra, P.; Kumar, V.; Kumar, V.; Terblans, J.J.; Swart, H.C.; Sharma, S.K. The energy transfer phenomena and colour tunability in Y₂O₂S: Eu³⁺/Dy³⁺ micro-fibers for white emission in solid state lighting applications. *Dalton Trans.* **2014**, *43*, 9860–9871. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.