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Abstract: In this paper, we investigate the structural, microstructural, dielectric, and energy storage
properties of Nd and Mn co-doped Ba0.7Sr0.3TiO3 [(Ba0.7Sr0.3)1−xNdxTi1−yMnyO3 (BSNTM) ceramics
(x = 0, 0.005, and y = 0, 0.0025, 0.005, and 0.01)] via a defect dipole engineering method. The complex
defect dipoles (Mn ”

Ti −V··O)· and (Mn ”
Ti −V··O

)
between acceptor ions and oxygen vacancies capture

electrons, enhancing the breakdown electric field and energy storage performances. XRD, Raman,
spectroscopy, XPS, and microscopic investigations of BSNTM ceramics revealed the formation of
a tetragonal phase, oxygen vacancies, and a reduction in grain size with Mn dopant. The BSNTM
ceramics with x = 0.005 and y = 0 exhibit a relative dielectric constant of 2058 and a loss tangent of
0.026 at 1 kHz. These values gradually decreased to 1876 and 0.019 for x = 0.005 and y = 0.01 due to
the Mn2+ ions at the Ti4+- site, which facilitates the formation of oxygen vacancies, and prevents a
decrease in Ti4+. In addition, the defect dipoles act as a driving force for depolarization to tailor the
domain formation energy and domain wall energy, which provides a high difference between the
maximum polarization of Pmax and remnant polarization of Pr (∆P = 10.39 µC/cm2). Moreover, the
complex defect dipoles with optimum oxygen vacancies in BSNTM ceramics can provide not only
a high ∆P but also reduce grain size, which together improve the breakdown strength from 60.4 to
110.6 kV/cm, giving rise to a high energy storage density of 0.41 J/cm3 and high efficiency of 84.6%
for x = 0.005 and y = 0.01. These findings demonstrate that defect dipole engineering is an effective
method to enhance the energy storage performance of dielectrics for capacitor applications.

Keywords: ceramic capacitors; donor–acceptor complex; defect dipole engineering; dielectric and
ferroelectric properties; energy storage density and efficiency

1. Introduction

Dielectric capacitors are key components of pulsed power applications, and are ex-
tensively used in microwave communications, electromagnetic devices, hybrid electric
vehicles, and high-frequency inverters [1–5]. Notably, dielectric capacitors display ultrahigh
power density, ultrafast charge–discharge rates, excellent fatigue resistance, and thermal
stability as compared to batteries [6–8]. However, their energy storage density performance
is lower than that of batteries because of their low breakdown strength (BDS), which limits
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their applications in energy storage devices [9–11]. It is thus necessary to develop new
dielectric capacitors with high energy storage density and high energy efficiency to meet
the increasing demands for energy storage devices.

The key parameters for energy storage in dielectric capacitors, such as the total energy
storage density (Wtot), recoverable energy density (Wrec), and energy efficiency (η) can be
calculated by the following equations [8,9,12]:

Wtot =
∫ Pmax

0
E dP (1)

Wrec =
∫ Pmax

Pr
E dP (2)

η =
Wrec

Wrec+Wloss

× 100% (3)

where E is the applied electric field, P is induced polarization, Pmax is maximum polariza-
tion, Pr is remnant polarization, and Wloss is hysteresis loss (Figure 1). According to these
equations, Wrec and η can be improved by increasing the difference between Pmax and Pr
(∆P = Pmax − Pr) and the BDS/breakdown electric field (EBD), which means that energy
storage mostly depends on the ∆P and EBD parameters, hence a larger EBD is the cause
of high energy storage density. Normally, high-dielectric-constant materials with a large
Pmax display high dielectric loss, which leads to low BDS and Wrec [13]. Researchers have
sought to enhance BDS by modifying extrinsic properties, such as reducing the thickness
of dielectric capacitors [14,15], porosity [16,17], and grain size [18,19], and adopting a
core–shell structure [20,21]. They have also modified intrinsic properties, including en-
hancing the bandgap energy [9,22], tailoring electrical homogeneity, and reducing electrical
conductivity [23].
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Figure 1. Schematic illustration for energy storage performance of Nd and Mn co-doped BST ceramics.
Defect dipoles (Mn ”

Ti −V··O)x between acceptor ions and oxygen vacancies capture electrons, reduce
grain size, and provide a high difference between Pmax and Pr, which improve the breakdown
electric field with Mn, resulting in a high energy storage density and high energy efficiency in
BSNTM ceramics.

In recent years, lead-free dielectric capacitors have received significant attention, and
a great deal of research has been carried out to enhance energy storage properties due to
lead toxicity and environmental issues. Lead-free dielectrics, such as BaTiO3 (BT) [15,24,25],
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Bi0.5Na0.5TiO3 (BNT) [13,26–29], BiFeO3 (BFO) [1,23,30], and K0.5Na0.5NbO3 (KNN) [31,32]-
based materials/composites, afford improved energy storage performance and energy
efficiency for energy storage applications. In particular, BT-based ceramics are potential
candidates and are widely used for capacitor applications due to their high polarization,
high dielectric constant, and low Curie temperature (TC) [33,34]. Few oxide materials
(Al2O3, SiO2, and MgO) are used as additives to improve the BDS and energy storage prop-
erties of BT-based ceramics [35–37]. Kovbasiuk et al. [38] investigated the thermophysical
properties of PbO–ZnO–B2O3 with the doping of Al2O3, SiO2, and BaO oxides for dielectric
layers on film-heating elements. Rafik et al. [39] reported Sr substitution at the A-site of BT
(Ba0.7Sr0.3TiO3) ceramics and improved dielectric properties. However, oxygen vacancies
and conduction electrons can occur during the sintering process of BT-based ceramics at
high temperatures, resulting in a high dielectric loss [40].

Aliovalent doping is an effective method for tailoring the electrical properties of ox-
ide materials. The use of donor dopants, such as La and Nd, is an effective approach
to compensate for the formation of oxygen vacancies to improve the dielectric proper-
ties of BT ceramics. Morison and Shaikh et al. [41,42] reported La- and Nd-doped BT
ceramics with a high dielectric constant of 25,000 and 13,000 at TC, respectively. On the
other hand, acceptor (Mn2+ at Ti4+-site) doping in BT ceramics promotes the formation of
oxygen vacancies and minimizes the decrease in Ti4+ during the sintering process in low-
oxygen atmospheres. Therefore, Mn-doped BT decreases dielectric loss [43–45]. Recently,
Yueshun et al. [46] demonstrated defect dipoles via oxygen vacancies in acceptor-doped
(specifically Fe) Sr2Bi4Ti(5 − x)FexO18 (x = 0.04–0.12), and enhanced EBD and energy
storage properties.

In this paper, we present a defect dipole engineering method to improve the break-
down strength and energy storage performance by co-doping Nd and Mn in Ba0.7Sr0.3TiO3
(BST) ceramics that have been prepared via the traditional solid-state reaction method.
Nd-doped BST [(Ba0.7Sr0.3)1 − xNdxTiO3, BSNT] ceramics can compensate for the formation
of oxygen vacancies, improving the dielectric constant of BSNT ceramics. In contrast, Mn-
doped BSNT ceramics [(Ba0.7Sr0.3)1 − xNdxTi1 − yMnyO3, BSNTM] facilitate the formation
of oxygen vacancies, prevent a decrease in Ti4+, and yield low dielectric loss. Therefore,
simultaneously, a high dielectric constant and low dielectric loss can be expected with Nd
and Mn co-dopants in BST. Moreover, complex defect dipoles with uniform and small-
grained microstructure provide a high difference between Pmax and Pr (∆P~10.39 µC/cm2);
these show the improved breakdown strength of 110.6 kV/cm with Nd and Mn, which
results in a high energy storage density of 0.41 J/cm3 and high efficiency of 84.6% in
BSNTM ceramics, as schematically shown in Figure 1.

2. Materials and Methods

(Ba0.7Sr0.3)1 − xNdxTi1 − yMnyO3 (BSNTM) (x = 0, 0.005, and y = 0, 0.0025, 0.005, and
0.01) lead-free ceramics were synthesized using the traditional solid-state reaction method.
The raw materials BaCO3 (Sigma-Aldrich, St. Louis, MO, USA, 99%), SrCO3 (Sigma-
Aldrich, 98%), Nd2O3 (Sigma-Aldrich, 99.9%), TiO2, (Sigma-Aldrich, 99%), and MnO2
(Sigma-Aldrich, 99%) were weighed in stoichiometric proportions and ball-milled for 24 h.
After drying the slurry, the BSNTM powder was calcined at 1150 oC for 3 h to obtain the
phase of BSNTM. Further, 3 wt.% of Li2CO3 (Junsei, London, UK, 99%) powder was added
to this calcined powder as a sintering aid, and the powder was again ball-milled for 12 h
to reduce the sintering temperature and increase its bulk density. Subsequently, 5 wt.%
of polyvinyl alcohol (Sigma-Aldrich, 99%) was added, and the powder was pressed into
pellets with dimensions of 10 mm in diameter and 0.5 mm in thickness at a pressure of
10 MPa, followed by sintering at 1050 ◦C for 2 h. Finally, silver paste (ELCOAT, Electro-
conductives) was applied on both surfaces of the prepared pellets of BSNTM to carry out
electrical characterizations.

The crystal structure of the BSNTM samples was tested using an X-ray diffractometer
(Rigaku, Tokyo, Japan, Ultima IV) with Cu-Kα radiation (λ = 1.5406 Å) and a Raman
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spectrometer (JASCO, Tokyo, Japan, NRS-5100) with 532 nm excitation. A scanning elec-
tron microscope (SEM, TESCAN, Brno—Kohoutovice, Czech Republic, VEGA II LSU)
equipped with an energy-dispersive spectrometer (EDS), and SE (secondary electron) ET
(Everhart–Thornley)-type detector (YAG crystal) was used to examine the surface mor-
phology, composition mapping, and elemental distribution at an accelerating voltage of
30 kV. Room-temperature (RT) dielectric properties were measured in the frequency range
of 100 Hz–100 kHz using an impedance analyzer (Hewlett Packard, Palo Alto, CA, USA,
4294A). Ferroelectric properties (P-E loops) were measured using a ferroelectric tester
(Aix ACT, TF Analyzer 2000). The chemical states of the BSNTM samples were measured
using X-ray photoelectron spectroscopy (XPS; KRATOS Analytical Ltd., Manchester, UK,
AXIS SUPRA).

3. Results and Discussion

3.1. Phase Formation and Crystal Structure

Figure 2a–e show the Rietveld refinement X-ray diffraction (XRD) patterns of BSNTM
ceramics for x = 0 and 0.005, and y = 0, 0.0025, 0.005, and 0.01, in the 2θ range of 20–80◦.
The Rietveld refinement XRD analysis was carried out to confirm the phase and peak
profiles by fitting the pseudo-Voigt function using full-proof software. All the samples
exhibited a tetragonal BSNTM phase (P4 mm) with a small secondary phase of triclinic
Li2O (P1). The phase fraction of the BSNTM phase initially decreased from 94.41 to 87.73%
for x = 0.005 and y = 0.0025, and further increased to 95.16% with the Mn concentration
(Table 1). At RT, Ba1 − xSrxTiO3 ceramics exhibit a tetragonal crystal structure for x = 0.3,
as reported by Rafik et al. [39]. From the XRD results, there is no peak splitting/merging
observed with the substitution of Nd and Mn into BST ceramics due to the lack of changes
in the tetragonal crystal structure and the very low doping concentration of Nd and Mn
(x = 0.005 and y = 0.0025–0.01). In Figure 2f, it can be seen that the position of the predomi-
nant (101) diffraction peak shifted towards higher angles with Nd for x = 0.005 and y = 0,
and it shifted back to lower angles with Mn into BST for x = 0.005 and y = 0.0025–0.01. The
shift towards lower and higher angles in the diffraction peak demonstrates an increase and
decrease in the lattice cell parameters due to the incorporation of Nd and Mn in the BST
system, respectively. The determined lattice cell parameters and lattice volume of all the
samples are listed in Table 1. For x = 0.005 and y = 0, the Nd3+ (1.27 Å) ions can be occupied
at the A-site of Ba2+ (1.61 Å) and Sr2+ (1.12 Å), whereas Mn2+ (0.66 Å) ions can occupied at
the B-site of the Ti4+ (0.60 Å) site of the BST system for x = 0.005 and y = 0.0025–0.01, due to
their mismatch of ionic radii and valences [39,47].
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Figure 2. Rietveld refined XRD patterns of (Ba0.7Sr0.3)1 − xNdxTi1 − yMnyO3 ceramics for (a) x = 0
and y = 0, (b) x = 0.005 and y = 0, (c) x = 0.005 and y = 0.0025, (d) x = 0.005 and y = 0.005, and
(e) x = 0.005 and y = 0.01. Figure (f) shows a shift in the (101) diffraction peak in the 2θ range from
30.7 − 33◦.
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Table 1. Rietveld refined XRD parameters of (Ba0.7Sr0.3)1 − xNdxTi1 − yMnyO3 ceramics (Note: Tetra:
tetragonal and Tri: triclinic).

Composition
Lattice Parameters (Å)

V (Å3)
Phase

Fraction (%) χ2
Tetragonal
(P4 mm)

Triclinic
(P1)

x = 0 and y = 0
a = b = 3.97377 ± 0.00007

c = 3.98820 ± 0.00023
α = β = γ = 90◦

a = 9.74235 ± 0.00045
b = 10.06442 ± 0.00025
c = 10.13491 ± 0.00020

α = 91.43◦, β = 91.31◦ and
γ = 96.38◦

VTetra = 62.977 ± 0.004
VTri = 986.928 ± 0.055

Tetra = 94.41
Tri = 5.59 1.95

x = 0.005 and y = 0
a = b = 3.97989 ± 0.00022

c = 3.94835 ± 0.00064
α = β = γ = 90◦

a = 9.71450 ± 0.00034
b = 10.045162 ± 0.00022
c = 10.12407 ± 0.00022

α = 91.41◦, β = 91.22◦ and
γ = 96.44◦

VTetra = 62.510 ± 0.011
VTri = 981.114 ± 0.046

Tetra = 92.92
Tri = 7.08 2.67

x = 0.005 and y = 0.0025
a = b = 3.97339 ± 0.00017

c = 3.97732 ± 0.00025
α = β = γ = 90◦

a = 9.72015 ± 0.00035
b = 10.06498 ± 0.00026
c = 10.13280 ± 0.00017

α = 91.46◦, β = 91.28◦ and
γ = 96.36◦

VTetra = 62.793± 0.005
VTri = 984.566± 0.047

Tetra = 87.73
Tri = 12.27 2.05

x = 0.005 and y = 0.005
A = b = 3.97485 ± 0.00016

C = 3.96880 ± 0.00032
A = β = γ = 90◦

a =9.71171±0.00039
b = 10.06801±0.00023
c = 10.13123±0.00022

α = 91.46◦, β = 91.26◦ and
γ = 96.38◦

VTetra = 62.705± 0.006
VTri = 983.839± 0.050

Tetra = 94.03
Tri = 5.97 2.02

x = 0.005 and
y = 0.01

a = b=3.97102 ± 0.00026
c = 3.97123 ± 0.00023

α = β = γ =90◦

a = 9.70581 ± 0.00027
b = 10.06558 ± 0.00018
c = 10.12693 ± 0.00017

α = 91.45◦, β = 91.25◦ and
γ = 96.38◦

VTetra = 62.622 ± 0.007
VTri = 982.577 ± 0.037

Tetra = 95.16
Tri = 4.84 1.77

Raman spectra of BSNTM ceramics in the range of 100–1000 cm−1 are shown in
Figure 3. The Raman bands of all samples indicate the tetragonal phase of the perovskite
structure in BST ceramics, which is similar to that in BST-based reports [39,47]. The spectral
parameters of the Raman modes, such as the Raman shift of the central position of each
peak and corresponding full width at half maxima (FWHM), are calculated by fitting the
Gaussian function. A total of nine Raman active modes were observed. The modes that
appeared around 135 and 168 cm−1 are associated with the vibration of A-site cations (A-O);
213, 271, and 351 cm−1 are related to the vibrations of B-O; 510, 539, and 565 cm−1 are
related to the vibrations of BO6; and 740 cm−1 corresponds to the A1 + E (LO) overlapping
modes [39]. The mode at 135 cm−1 is slightly shifted to a higher wavenumber of 138 cm−1

with Nd substitution for x = 0.005 and y = 0. This is caused by an A-site disorder, which
is attributed to the incorporation of Nd3+ at Ba2+ and Sr2+ ions. The modes around 271
and 539 cm−1 shifted towards a lower wavenumber with an increasing Mn concentration
from x = 0.005 and y = 0.0025 to 0.01. This is due to an increase in the B-site disorder in the
BSNTM related to the creation of lattice tensile stress due to lattice expansion [48]. These
results are well supported via XRD, dielectric, and ferroelectric properties.

3.2. Microstructural Properties

FESEM images of the BSNTM ceramics are shown in Figure 4. The x = 0.005 and
y = 0.01 sample shows a uniform microstructure and has a more compact grain size
distribution compared to that of pure BST and other samples of BSNTM (x = 0.005 and
y < 0.01). The density of BSNTM ceramics was estimated using the Archimedes principle to
confirm a dense and uniform microstructure. The estimated relative density was found to
be in the range of 91% to 98% of the theocratical density, thus verifying that all the samples
had a highly dense and uniform microstructure. The average grain size of the BSNTM
(x = 0 and y = 0) was found to be 3.59 µm and was reduced to 1.99 µm with the substitution
of Nd and Mn co-dopants in BSNTM for x = 0.005 and y = 0.01. The reduction in grain



Materials 2023, 16, 6753 6 of 13

size with a uniform microstructure was due to the formation of oxygen vacancies caused
by Mn2+ occupying Ti4+. Soo and Qiaoli et al. [47,49] reported that Sm and Yb, and Nd
and Mn co-doped BT ceramics with donor/donor–acceptor defect complexes via charge
compensation/oxygen vacancy exhibited a uniform and small-grained microstructure.
Smaller grains with uniform and dense microstructures can resist higher voltages, which
results in a high BDS and enhanced energy storage properties [50,51].
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Figure 4. FESEM images of (Ba0.7Sr0.3)1 − xNdxTi1 − yMnyO3 ceramics for (a) x = 0 and y = 0,
(b) x = 0.005 and y = 0, (c) x = 0.005 and y = 0.0025, (d) x = 0.005 and y = 0.005, and (e) x = 0.005 and
y = 0.01.
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SEM–energy-dispersive X-ray spectroscopy (EDX) elemental mapping was analyzed
to show the incorporation and distribution of doping elements. Figure 5 shows the typical
microstructure (a–e) and elemental mapping (a1–a4, b1–b5, c1–c6, d1–d6, and e1–e6) of
(Ba0.7Sr0.3)1-xNdxTi1-yMnyO3 ceramics for all samples. The elemental mapping results show
the existence of elements Ba, Sr, Nd, Ti, Mn, and O, suggesting that Nd and Mn elements
enter grains and are distributed homogeneously. The measured experimental volume
fraction of BSNTM composition is approximately equal to the theoretical volume fractions,
confirming the stoichiometry of BSNTM (Figure 6).
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e1–e6) of (Ba0.7Sr0.3)1 − xNdxTi1 − yMnyO3 ceramics for (a) x = 0 and y = 0, (b) x = 0.005 and y = 0,
(c) x = 0.005 and y = 0.0025, (d) x = 0.005 and y = 0.005, and (e) x = 0.005 and y = 0.01.
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3.3. Dielectric Properties

The relative dielectric constant (εr) and the loss tangent (tanδ) of BSNTM ceramic
capacitors measured as a function frequency at RT from 100 Hz to 100 kHz are shown in
Figure 7. Pure BST (x = 0 and y = 0) exhibited a εr of 1868 and tanδ of 0.0218 at 1 kHz,
which increased to 2058 and 0.0266 with Nd substitution for x = 0.005 and y = 0. Further,
these values gradually decreased to 1876 and 0.0191 with Mn substitution into BSNTM for
x = 0.005 and y = 0.01. The Nd and Mn co-dopants in the BST matrix favored the formation
of donor–acceptor complexes. Nd3+ ions in a BST system can compensate for the formation
of oxygen vacancies, leading to the enhancement of the dielectric properties (εr and tanδ) of
BSNT ceramics. On the other hand, Mn2+ ions in the BSNT system facilitate the formation
of oxygen vacancies, prevent a decrease in Ti4+, and yield a low εr and tanδ [47].
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3.4. P-E Loops and Energy Storage Performance

P-E loops of BSNTM ceramics measured at RT under different electric fields at a
frequency of 10 Hz are shown in Figure 8. The ferroelectric BSNTM (x = 0.005 and y = 0)
ceramics displayed a large maximum polarization, Pmax, of 12.5 µC/cm2, a small remnant
polarization, Pr, of 3.35 µC/cm2 (i.e., ∆P = 9.15 µC/cm2), and a high coercive field, Ec, of
11.2 kV/cm. The Pmax, Pr, and Ec values gradually reduced, ∆P and EBD values increased
from 9.15 to 10.39 µC/cm2, and 70.6 to 110.6 kV/cm from x = 0.005 and y = 0 to x = 0.005
and y = 0.01, as shown in Table 2. The BSNTM sample for x = 0.005 and y = 0.01 (Figure 8e)
exhibits a slim saturated P-E loop, and the improved EBD is attributed to the decrease in
grain size and defect dipoles generated with the incorporation of Mn at the Ti site of the
BST host lattice; this can be understood via Kroger–Vink notation as follows [46,52]:

Mn2O3
(2TiO2)→ 2Mn′Ti + 3Oo + V··o (4)

MnO
(TiO2)→ → Mn′Ti + Oo + V··o (5)
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Figure 8. RT bipolar P-E loops of (Ba0.7Sr0.3)1 − xNdxTi1 − yMnyO3 ceramics measured under different
electric fields at 10 Hz for (a) x = 0 and y = 0, (b) x = 0.005 and y = 0, (c) x = 0.005 and y = 0.0025,
(d) x = 0.005 and y = 0.005, and (e) x = 0.005 and y = 0.01.

Table 2. Ferroelectric and energy storage parameters of BSNTM ceramics.

Composition Pr (µC/cm2) Pmax (µC/cm2) ∆P = Pmax−Pr Ec (kV/cm) EBD (kV/cm) Wrec (J/cm3) η (%)

x = 0 and y = 0 2.22 11.2 8.98 5.94 60.4 0.15 48.5

x = 0.005 and y = 0 3.35 12.5 9.15 11.2 70.6 0.19 38.8

x = 0.005 and y = 0.0025 2.87 11.9 9.03 9.34 76.6 0.22 48.9

x = 0.005 and y = 0.005 1.57 11.4 9.83 5.45 90.5 0.3 69.4

x = 0.005 and y = 0.01 0.81 11.2 10.39 3.09 110.6 0.41 84.6

This shows that the oxygen vacancies are generated by Mn3+ and Mn2+ replacing Ti4+

at the B-site. In Equations (4) and (5), 2Ti4+ needs four lattice oxygen Oo to maintain charge
neutrality, whereas 2Mn3+ requires 3Oo. When 2Mn3+ substitutes at 2Ti4+, 1Oo is released
as 1

2 O2, generating oxygen vacancies, V··o , with two positive charges. Thus, Mn2+ replaces
Ti4+ (Equation (5)) [46].

The Wrec and η values of BSNTM ceramic capacitors were derived from P-E loops
using Equations (2) and (3), as shown in Table 2. The Wrec and η values gradually increased
with the increasing Mn concentration, and the sample with x = 0.005 and y = 0.01 exhibited a
high energy density of 0.41 J/cm3 at an EBD of 110.6 kV/cm, and a high energy efficiency of
84.6%, as shown in Figure 9e. The enhancement in the energy storage properties is realized
using defect dipole engineering via the co-doping of Nd and Mn in BST (mostly governed
by Mn). (Mn ”

Ti −V··O)· and (Mn ”
Ti −V··O

)
defect dipoles between acceptor ions and oxygen

vacancies can capture electrons and improve BDS. In addition, the defect dipoles act
as a driving force for depolarization, making it possible to design domain formation
energy and domain wall energy, which provides a high difference between Pmax and
Pr (∆P = 10.39 µC/cm2) [46]. Moreover, complex defect dipoles with optimum oxygen
vacancies can provide not only a high ∆P, but also reduce grain size, which together
improve breakdown strength with Mn and lead to a high energy storage density and high
energy efficiency in BSNTM ceramics. It is well known that ∆P and EBD are key factors
for energy storage performance, i.e., higher ∆P and EBD values account for huge energy
storage density and efficiency [53].
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X-ray photoelectron spectroscopy (XPS) measurement was carried out to show the 
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BSNTM ceramics. Twelve peaks in terms of binding energy were detected, which corre-
spond to those of Ba, Sr, Ti, O and C elements. Among these, C may arise from carbon 
pollution in the air and instruments. However, no peaks were detected for Nd and Mn 
elements due to the very low doping concentration (x = 0.005 and y = 0.0025–0.01). The 
inset of Figure 10 shows the high-resolution XPS spectra of O 1s, which was divided into 
two distinct peaks: the first peak (OI) found at 529.08 eV indicates an oxygen lattice, and 
the second peak (OII) at 531.16 eV is related to oxygen vacancies [54]. The relative intensity 
of the BSNTM ceramics increases with Mn doping, and the x = 0.005 and y = 0.01 sample 
shows much a stronger relative intensity than that of other samples, which clearly indi-
cates that the sample processes high oxygen vacancies (inset Figure 10) [55,56]. 

Figure 9. RT unipolar P-E loops of (Ba0.7Sr0.3)1 − xNdxTi1 − yMnyO3 ceramics measured at 10 Hz for
(a) x = 0 and y = 0, (b) x = 0.005 and y = 0, (c) x = 0.005 and y = 0.0025, (d) x = 0.005 and y = 0.005, and
(e) x = 0.005 and y = 0.01.

X-ray photoelectron spectroscopy (XPS) measurement was carried out to show the
chemical states of Nd- and Mn-doped BST ceramics. Figure 10 shows the XPS spectra
of BSNTM ceramics. Twelve peaks in terms of binding energy were detected, which
correspond to those of Ba, Sr, Ti, O and C elements. Among these, C may arise from carbon
pollution in the air and instruments. However, no peaks were detected for Nd and Mn
elements due to the very low doping concentration (x = 0.005 and y = 0.0025–0.01). The
inset of Figure 10 shows the high-resolution XPS spectra of O 1s, which was divided into
two distinct peaks: the first peak (OI) found at 529.08 eV indicates an oxygen lattice, and
the second peak (OII) at 531.16 eV is related to oxygen vacancies [54]. The relative intensity
of the BSNTM ceramics increases with Mn doping, and the x = 0.005 and y = 0.01 sample
shows much a stronger relative intensity than that of other samples, which clearly indicates
that the sample processes high oxygen vacancies (inset Figure 10) [55,56].
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4. Conclusions

In summary, we demonstrated a defect dipole engineering method to improve the
breakdown strength and energy storage properties by co-doping Nd and Mn in BST
ceramics, which are fabricated via a traditional solid-stated reaction method. The XRD and
Raman spectra of all samples revealed a tetragonal crystal structure. FESEM images of
BSNTM ceramics exhibit a uniform and dense microstructure, whereas the average grain
size decreases with an increasing Mn concentration. In addition, the dielectric properties
decreased with Mn due to the formation of oxygen vacancies, which were confirmed
via XPS analysis. Moreover, the complex defect dipoles with smaller grain sizes and
lower dielectric losses provided a high difference between Pmax and Pr, and improved the
breakdown strength with Mn, leading to high energy density and efficiency in the BSNTM
ceramics. These features suggest that defect dipole engineering is an effective approach to
enhance energy storage performance for pulsed-power capacitor applications.
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