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Abstract: Anti-icing coatings have provided a very good alternative to current, uneconomic, active
deicing methods, and their use would bring a number of significant benefits to many industries, such
as aviation and energy. Some of the most promising icephobic surfaces are those with hydrophobic
properties. However, the relationship between hydrophobicity and low ice adhesion is not yet
clearly defined. In this work, chemical modification of an epoxy gelcoat with chemical modifiers
from the group of double organofunctionalized polysiloxanes (generally called multifunctionalized
organosilicon compounds (MFSCs)) was applied. The anti-icing properties of manufactured coatings
were determined by means of measurements of shear strength between the ice layer and the modified
surface, conducted using a tensile machine. In the work, tests were also performed on the roughness,
wettability, and durability of the properties in an aging chamber. It was found that the performed
modifications of the coating’s chemical composition by the addition of polysiloxanes enabled us to
reduce ice adhesion by 51% and to increase the water contact angle by 14% in comparison to the neat
gelcoat. A reduction in ice adhesion was also observed with the increasing water contact angle and
with decreasing surface roughness. In addition, only one modification recorded an increase in ice
adhesion after exposure in the aging chamber.

Keywords: icephobicity; hydrophobicity; ice adhesion; epoxy resin; multifunctionalized silicone
compounds (MFSC); polysiloxanes

1. Introduction

There are several branches of industry where icing is undesirable, such as green power
energy, aviation, and aerospace [1,2]. One of the methods dealing with icing on surfaces
exposed to winter conditions described in the literature is the use of icephobic coatings.
The icephobic properties of the surfaces of solids are associated with several essential
parameters. These are as follows: the repulsion of over-saturated water droplets, a decrease
in the temperature of ice formation, a long water freezing time, and low ice adhesion
strength to a given surface [3]. Additionally, durability of properties is an important factor
for such surfaces, since they are usually applied on structures under difficult operating
conditions. They are exposed to, among others, abrasion, mechanical wear, the impact of
sand or droplets, chemical contaminants, changes in ambient temperature, and prolonged
exposure to sunlight [4]. The durability of icephobic surfaces is often tested by repeated
icing/deicing cycles, where deicing occurs either due to ice desorption [5] or melting [6].
Degradation is reported either in terms of an increase in ice adhesion with progressive
cycling [7], a decrease in wettability performance [5], or both [2]. Mobarakeh et al. proved
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that after cycles of icing and deicing, the icephobicity and hydrophobicity of the coatings
deteriorate [8,9]. There are also works in which durable hydrophobic coatings have been
produced that retain their properties even after abrasion with sandpaper [10,11].

There are various approaches to the design of icephobic coatings. The icephobic
coatings developed to date can be divided into several categories that differ in matrix
material and the mechanism of icing reduction [12]. These include siloxane [7], fluoropoly-
mer [13,14], biomimetic [15], nanotube [16], metallic [17,18], surface-texturing [19], or
liquid-filled coatings [15,20,21]. The most promising icephobic coatings include also a de-
pendence on hydrophobic properties [22,23]. However, the existing hydrophobic coatings
exhibit two main limitations in application: a lack of durability [24–27] and complexity of
manufacturing techniques [28–30] and not always ensuring icephobic properties.

Currently, there is no universal and direct correlation in the literature between the
strength of ice and the strength of water adhesion to the surface. The adhesion of ice
and water to the surface of the solid depends on the intermolecular forces that act on the
boundaries of the ice–solid and water–solid phases. It has been proven that obtaining only
hydrophobic/superhydrophobic properties can be insufficient to obtain icephobic proper-
ties in some cases [31]. The water contact angle (WCA) can be the dominating mechanism
for low ice adhesion on smooth surfaces but can fail on rough surfaces. Damage of surface
structures and its development by deicing and interlocking between ice and the surfaces can
lead to high ice adhesion. For this reason, the ice adhesion on hydrophobic surfaces should
not be taken for granted and should instead be investigated thoroughly. Therefore, most of
the research concerning icephobic coatings focuses, apart from hydrophobic properties, on
the aspects of freezing delay or ice adhesion, which should be as low as possible.

Other approaches known from the literature to improve hydro- and icephobic proper-
ties without the significant development of surface roughness are various modifications
of the chemical composition of the coating. In the present study, chemical modification
of the epoxy resin-based gelcoat was performed. Some of the main chemical modifiers
that are used to improve hydro- and ice repellency contain highly hydrophobic additives
such as fluorined or organosilicon compounds. These coatings, with low post-surface
energy, have been studied for years for minimizing ice deposition [32–35]. Kozera et al. in
2020 [36] showed that the chemical modification of a gelcoat based on unsaturated polyester
resin with compounds from the MFSC group (triple functionalized polyhedral oligomeric
silsesquioxanes (POSS) and double organofunctionalized polysiloxanes) enables one to
significantly increase the surface wetting angle and reduce the adhesion to ice compared to
the unmodified resin. Linear polysiloxanes (also called oligosiloxanes, depending on the
number of structural units) have a chain structure composed of D units, where the inert
group is usually the methyl group -OSiMe2O- (the most popular poly(dimethylsiloxane),
PDMS) or, less commonly, the phenyl group, and terminated groups of type T (usually
-OSiMe3) containing both inert and functional building units in the chain structure [37,38].
Methyl polysiloxanes and their copolymers usually occur in the form of oils, which greatly
facilitates their application. Additional advantages of their wide application are the low
price, high availability and wide range, good thermal stability, low surface energy, and
the ability to operate in a wide temperature range [39]. At present, on the market, there
are a variety of chemical components dedicated to specific classes of polymers, e.g., epoxy
resins, to improve the mechanical properties or flexibility of composites [40–42], as a blend
of epoxy and silicone resin compatibilizers [43], and as modifiers of polyester resins toward
icephobic properties [36,44], as well as hydrophobic [45] and mechanical properties and
impact strength [46]. The synergistic effect of the low surface energy of the functional
group bonds to the chain and the low elastic modulus can result in an effective and durable
improvement in the icephobic properties [12,47].

Polysiloxanes in resin systems can act as silane coupling agents, enabling the intro-
duction of appropriate functional groups compatible with the resin matrix and capable
of producing strong or weaker chemical interactions with it, as well as functional groups
oriented on the material’s surface, which may be reactive (e.g., bonding with the reinforce-
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ment (reinforcing medium)) or inert, giving the desired composite properties [48,49]. In
this study, the introduction of functional groups into the structure of poly (hydrosiloxane)
and hydrosiloxane took place in a catalytic hydrosilylation reaction due to the presence of
a reactive Si–H group [50].

In this work, an attempt was made to obtain a material with a surface exhibiting
hydrophobic and anti-icing properties by the modification of an epoxy gelcoat with original
in-house-synthesized chemical modifiers from the group of functionalized polysiloxanes
(generally called multifunctionalized organosilicon compounds (MFSCs)) and to test the
influence of various functional groups on the matrix performance. All organosilicon
modifiers have been designed in such a way that they contain in their structure non-polar,
hydrophobic alkyl groups and oxirane groups that are compatible with the polymer matrix
used. The icephobic properties of the modified gelcoats were determined by testing the ice
adhesion to the surface and the hydrophobic properties by water contact angle and contact
angle hysteresis. In this work, an attempt was also made to characterize the relations
between the roughness, wettability, and icephobicity. Additionally, special effort was made
to evaluate the durability of the properties of the samples, after aging chamber tests.

2. Materials and Methods
2.1. Matrix Material

The starting material used to fabricate the samples was an epoxy gelcoat, ZEC, from
Primson Composites. In industry, it is used as a protective coating for epoxy laminates,
which are used to manufacture, among other products, wind turbine blades. The ZEC
gelcoat is a high-quality white epoxy gelcoat consisting of a mixture of epoxy resin, obtained
from bisphenol A and epichlorohydrin and glycidyl ethers, and auxiliary substances. It is
characterized by increased scratch and UV resistance. The hardener used is a low-viscosity
HP 25 V, which enables curing of the gelcoat at room temperature; 100 g of gelcoat cures at
23 ◦C for 30–40 min.

2.2. Synthesis of Chemical Modifiers

The substances used in the modifier synthesis were silicon compounds (trimethylsiloxy-
terminated polymethylhydrosiloxanes (PMHS)) and olefins (hexene, octane, allyl-glycidyl
ether) purchased from Linegal Chemicals Warsaw, Poland; a solvent (toluene) from Avantor
Performance Materials Poland S.A. Gliwice, Poland; and chloroform-d, toluene-d8, and a
Karstedt catalyst from Sigma Aldrich Poland, Poznan, Poland. In the process, toluene was
dried and purified with the MB SPS 800 Solvent Drying System and stored under an argon
atmosphere in Rotaflo Schlenk flasks.

Mixtures of allyl-glycidyl ether (AGE) (0.168 mol) and hexene (HEX) (0.336 mol) in a
molar ratio of 1:2, and allyl-glycidyl ether (0.168 mol) and octene (OCT) (0.336 mol) in a
molar ratio of 1:2, were added to a solution of trimethylsiloxy-terminated polymethylhy-
drosiloxanes 992 or 991 (30 g, 0.504 mol) in toluene and allyl-glycidyl ether (0.100 mol) and
hexene (0.403 mol) in a molar ratio of 1:4. The mixture was constantly stirred and heated to
70 ◦C. Then, Karstedt’s catalyst solution (10−a eq Pt/mol SiH) was added. The reaction
mixture was heated in reflux and stirred until the full conversion of Si–H (controlled by
FT-IR). After confirming the complete conversion of the mixture, post-reaction evaporation
was performed on a slow-speed vacuum evaporator.

2.3. Analysis of Chemical Modifiers

The nuclear magnetic resonance (NMR) 1H, 13C, and 29Si spectra were recorded at
25 ◦C using CDCl3 as a solvent by means of the Bruker Ascend 400 and Ultra Shield
300 spectrometers (both from Bruker Poland). Chemical shifts were reported in pm for 1H
and 13C with reference to the residual solvent (CHCl3) peaks.

Fourier transform infrared (FT-IR) spectra were obtained as well. The machine used
was a Nicolet iS 50 Fourier transform spectrophotometer (Thermo Fisher Scientific, Wal-
sham, MA, USA) equipped with a diamond attenuated total reflectance (ATR) unit with
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a resolution of 0.09 cm−1. The reaction progress was controlled by FTIR spectroscopy
(disappearance of the Si–H absorption band at a wavelength of 2200–2100 cm−1).

2.4. Preparation of Samples

The fabrication method of samples containing MFSC was presented in a previous
paper [36]. The only difference is the type of polymer gelcoat matrix. The hardener
was added to the epoxy gelcoat at a ratio of 100:25. The chemical modifiers were added
in amounts of 2 wt.%. The composition of each prepared chemical modifier (core type,
functional groups, and their ratios to each other) and the fabricated gelcoat samples is
shown in Table 1.

Table 1. Compositions of the prepared epoxy gelcoat samples and their modifiers.

Sample No. MFSC Type PHS Olefin 1 Olefin 2 Molar Ratio

1 (REF) - - - - -
2 MFSC 1/2 wt.% PHS991 AGE HEX 1:2
3 MFSC 2/2 wt.% PHS991 AGE OCT 1:2
4 MFSC 3/2 wt.% PHS992 AGE HEX 1:2
5 MFSC 4/2 wt.% PHS992 AGE OCT 1:2
6 MFSC 5/2 wt.% PHS992 AGE HEX 1:4

2.5. Determination of Roughness

The roughness tests were performed using a non-contact 3D surface profilometer,
the Slynx Sensofar from Sensofar Metrology (Barcelona, Spain). Two parameters were
determined: the Sa parameter, i.e., the arithmetic mean height of the surface, and the Sz
parameter, i.e., the height of the highest point on the surface. The final values are the
average of three different measuring points on the surfaces.

In order to extend the roughness analysis, after exposing the samples in the aging
chamber, the roughness of the samples was examined using a Bruker Dimension ICON XR
for atomic force microscopy (AFM). Two parameters were determined: the Ra parameter,
i.e., arithmetic mean profile ordinate, and the RSm parameter, i.e., mean profile element
width. The final values are the average of three different measuring points on the surfaces.

2.6. Hydrophobicity Measurements

In the presented studies, the wettability of the surfaces was determined by measuring
the water contact angle (WCA) and the contact angle hysteresis (CAH). Measurements
were made using an OCA15 goniometer (DataPhysics Instruments, (Filderstadt, Germany)
with OCA software. The volume of the droplets used was equal to 5 µL. The computed
WCA values are the averages of three different measurement points on the surfaces.

2.7. Ice Adhesion Measurements

Ice adhesion (IA) measurement methods are not standardized, either in industry or in
the lab tests described in the literature. The IA measurement method used in this paper
was to measure the shear strength between the ice layer and the modified surface using the
universal testing machine, Zwick/Roel Z050. A detailed description of the measurement
method was presented in a previous paper [34]. The final IA values are the averages of
five measurements.

2.8. Climate Aging Test

The aging tests were conducted in a climate chamber adapted to rapid temperature
changes. The samples were exposed to 100 icing/deicing cycles over a temperature range
from −10 ◦C to 25 ◦C. After aging, the samples were retested for their hydrophobicity,
roughness, and icephobicity.
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2.9. Gloss and Color Measurements

Colorimetric measurements were performed using an EnviSense NR60CP colorimeter
for the L∗a∗b∗ parameters (also referred to as CIELAB). In the L∗a∗b∗ − L∗ system, it
represents the brightness, while a∗, b∗ are the chromaticity coordinates. The L component
describes the brightness (luminance), a: the color from green to magenta, b: the color from
blue to yellow.

The color difference can be calculated by using the formula

∆E =
√

∆L2 + ∆a2 + ∆b2 (1)

where ∆L = L1 − L2; ∆a = a1 − a2; ∆b = b1 − b2.
The gloss was measured based on the PN/EN ISO 2813/2014 standard. Depending on

the degree of gloss of the sample surface, the following measurement angles were established:

• 20◦ geometry for high-gloss surfaces;
• 60◦ geometry for semi-gloss surfaces;
• 85◦ geometry for matt surfaces.

The measurements were made with a 3Color GM30 Gloss Meter.

3. Results
3.1. Characterization of Polysiloxane Derivatives

Modifiers were prepared according to the synthesis procedure described in Section 2.2.
NMR and FT-IR were performed to prove the full conversion of substrates by observation
of the disappearance of the characteristic signal at 2141 and 889 cm−1, due to stretching and
bending of the Si–H group, respectively. Based on 1H NMR analysis, the conversion for all
compounds was >99%. The structure and purity of the modifiers were also confirmed by
1H NMR, 13C NMR, and 29Si NMR analysis.

The product structures were confirmed by NMR spectroscopy (Schemes 1–5); the
following signals were assigned:
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Scheme 1. The scheme of the structure of the MFSC 1 modifier.

1H NMR (400 MHz, CDCl3):δ (ppm) = 3.71–3.68 (m, position 3), 3.47–3.41 (m, position 3
and 4), 3.14 (m, position 2), 2.80–2.78 (m, position 1), 2.61 (m, position 1), 1.64–1.61 (m,
position 5), 1.32–1.28 (m, hexyl -CH2-), 0.90–0.88 (m, hexyl -CH3), 0.54–0.53 (m, SiCH2-),
0.13–0.06 (s, SiMe, SiMe3).

13C NMR (101 MHz, CDCl3):δ (ppm) = 74.23, 72.15, 71.53, 69.69, 50.95, 44.42 (AGE),
33.17, 31.77 (HEX), 23.35, 23.01 (AGE), 22.76, 17.70, 17.61, 17.46, 14.25 (HEX), 13.63, 13.51
(AGE), 1.98–1.51, −0.22–(−0.58) (SiMe, SiMe3).
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29Si NMR (79,5 MHz, CDCl3):δ (ppm) = −20.98–(−22.88) (SiMe, SiMe3).
1H NMR (400 MHz, CDCl3):δ (ppm) = 3.72–3.68 (m, position 3), 3.50–3.40 (m, position 3

and 4), 3.17–3.13 (m, position 2), 2.82–2.79 (m, position 1), 2.63–2.60 (m, position 1), 1.69–1.62
(m, position 5), 1.34–1.30 (m, octyl -CH2-), 0.93–0.89 (m, octyl -CH3), 0.57–0.51 (m, SiCH2-),
0.12–0.08 (SiMe2).

13C NMR (101 MHz, CDCl3):δ (ppm) = 74.30, 71.53, 50.94, 44.39 (AGE), 33.63, 33.55,
32.11, 29.57, 29.50 (OCT), 23.37, 23.21 (AGE), 22.83, 17.65, 17.54, 14.22 (OCT), 13.54, 13.44
(AGE), 1.98, 1.60, −0.19, −0.29, −0.47 (SiMe, SiMe3).

29Si NMR (79,5 MHz, CDCl3):δ (ppm) = −21.28–(−23.45) (SiMe, SiMe3).
1H NMR (400 MHz, CDCl3):δ (ppm) = 3.68–3.65 (m, position 3), 3.47–3.34 (m, position 3

and 4), 3.13–3.11 (m, position 2), 2.78–2.76 (m, position 1), 2.59–2.58 (m, position 1), 1.64–1.60
(m, position 5), 1.33–1.26 (m, hexyl -CH2-), 0.88–0.86 (m, hexyl -CH3), 0.51–0.48 (m, SiCH2-),
0.13–0.03 (s, SiMe, SiMe3).

13C NMR (101 MHz, CDCl3):δ (ppm) = 74.31, 71.53, 50.97, 44.44 (AGE), 33.65, 33.57, 32.12,
29.58, 29.51, (HEX) 23.37, 23.23, 23.18, 23.10 (AGE), 22.85, 17.82, 17.66, 17.55, 14.25 (HEX).

13.66, 13.44 (AGE), 2.01, 1.61, −0.19, −0.29, −0.46 (SiMe, SiMe3).
29Si NMR (79,5 MHz, CDCl3):δ (ppm) = −20.99–(−21.26) (SiMe, SiMe3).
1H NMR (400 MHz, CDCl3):δ (ppm) = 3.70–3.67 (m, position 3), 3.47–3.41 (m, position 3

and 4), 3.14 (m, position 2), 2.79–2.78 (m, position 1), 2.61–2.60 (m, position 1), 1.66–1.60
(m, position 5), 1.34–1.27 (m, octyl -CH2-), 0.90–0.88 (m, octyl -CH3), 0.53–0.50 (m, SiCH2-),
0.15–0.05 (SiMe, SiMe3).

13C NMR (101 MHz, CDCl3):δ (ppm) = 74.35, 72.16, 71.53, 69.71, 50.96, 44.43 (AGE),
33.65, 33.58, 32.13, 29.58, 29.51 (OCT), 23.38, 23.23 23.11, (AGE), 22.85, 17.83, 17.55, 14.24
(OCT), 13.66 (AGE), 2.00, 1.61, −0.18, −0.29, −0.54 (SiMe, SiMe3).

29Si NMR (79,5 MHz, CDCl3):δ (ppm) = −21.24–(−22.95) (SiMe, SiMe3).
1H NMR (400 MHz, CDCl3):δ (ppm) = 3.70–3.67 (m, position 3), 3.51–3.40 (m, position 3

and 4), 3.15–3.13 (m, position 2), 2.80–2.78 (m, position 1), 2.62–2.60 (m, position 1), 1.68–1.62
(m, position 5), 1.34–1.30 (m, hexyl -CH2-), 0.92–0.89 (m, hexyl -CH3), 0.54–0.51 (m, SiCH2-),
0.11–0.07 (s, SiMe, SiMe3).

13C NMR (101 MHz, CDCl3):δ (ppm) = 74.35 (position 4), 71.52 (position 3), 50.95
(position 2), 44.41 (position 1), 33.29, 33.22, 31.81, 23.18, 23.06, 22.79, 17.84, 17.77, 17.57,
14.25 (-CH2-), 1.97, 1.61, −0.20, −0.31, −0.47 (SiMe, SiMe3).

29Si NMR (79,5 MHz, CDCl3):δ (ppm) = −21.28–(−21.36) (SiMe, SiMe3).

3.2. Roughness of Surface

In the design of icephobic surfaces, one of the most important parameters is the surface
roughness. The parameters determining the surface roughness of the gelcoat samples
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are presented in Table 2. The reference sample (non-chemically modified epoxy gelcoat)
obtained Sa equal to 55.43 nm and Sz equal to 1048 nm. Figure 1 shows a visualization
of the surface of the reference sample made with the profilometer. For the modified
samples, the Sa parameter values varied from 50.52 nm to 82.77 nm, while the range of Sz
parameter values was from 597 nm to 1213 nm. It should be noted that all samples were
fabricated to obtain the smoothest possible surfaces (samples were cast on foil-covered
glass). This technique was used to analyze, as accurately as possible, the effect of chemical
modification on wettability and ice adhesion and to eliminate the effect of roughness on
these properties. Despite this, some of the modified samples achieved a roughness value
that was different from the reference sample. This could be due to possible reactions or
insufficient compatibility between the matrix and the modifiers.

Table 2. The surface parameters of gelcoat samples.

Sample
No. MFSC Type Sa (nm) ±Sa (nm) Sz (nm) ±Sz (nm) WCA (◦) ±WCA (o) CAH (◦)

1 (REF) - 55.43 5.46 1048 55 88 1 31
2 MFSC 1/2 wt.% 82.77 8.31 1162 95 100 1 31
3 MFSC 2/2 wt.% 78.49 4.00 1213 61 91 1 34
4 MFSC 3/2 wt.% 50.52 2.50 597 24 91 2 32
5 MFSC 4/2 wt.% 60.68 3.89 979 48 100 0 28
6 MFSC 5/2 wt.% 62.42 3.12 840 38 96 1 38
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A visible increase in the value of the Sa parameter was recorded compared to the
reference sample for the two samples that were modified with MFSC 1 and MFSC 2
polysiloxanes. The increase in the value of this parameter occurred by 49% and 42%,
respectively. For the rest of the samples, the Sa values stayed within the ranges of
measurement deviation.

In the case of the Sz parameter, only samples MFSC 3 and MFSC 5 showed a notice-
able change. The lowest value was achieved by the sample modified with MFSC 3; the
value decreased by as much as 43% in comparison with the unmodified sample. For the
remaining samples, there was no significant change and values stayed in the range of
standard deviation.
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3.3. Wetting Properties

Another important surface property that can affect the icephobicity of a surface is its
hydrophobicity. It has been proven in many works that surfaces that are poorly wettable by
water are able to minimize the contact time between the cooled droplet and the substrate.
The surfaces that exhibit a water contact angle (WCA) higher than 90◦ are considered
hydrophobic. Regarding the value of contact angle hysteresis (CAH), there is no clear
limit to determine the hydrophobicity, but the lower its value, the more hydrophobic the
surface is.

The reference sample, an epoxy gelcoat, obtained a WCA of 88◦. For the tested samples
that were chemically modified, the WCA value increased compared to the reference sample,
i.e., the surface hydrophobicity was improved. The range of WCA values was from 91◦

to 100◦. The highest increase in WCA value was recorded for the sample modified with
MFSC 1 and MFSC 4. Compared to the reference sample, the increase occurred by 14%.

The unmodified epoxy gelcoat obtained a contact angle hysteresis (CAH) value of 31◦.
The range of values of this parameter for the modified samples is from 28◦ to 38◦. Only one
modified sample (MFSC 4) showed a decrease in CAH in comparison with the reference
sample; the reduction was 10%. It is worth mentioning that these samples also obtained
the highest WCA values among the tested samples. The sample modified with MFSC 1
possessed the same values of CAH as the reference sample. The highest CAH value was
obtained by samples modified with MFSC 5; the increase was equal to 23% compared to
the reference sample.

3.4. Ice Adhesion Strength

Ice adhesion is one of the main parameters that describes the icephobicity of a surface.
The lower its value, the less force is needed for the ice to break away from the surface,
i.e., the surface is more icephobic. Epoxy coatings are among the surfaces where ice can
easily accumulate [51], and are commonly used as coatings for many structures exposed to
winter conditions, such as wind turbines. Thus, an important aspect is to improve their
icephobicity. Figure 2 presents the ice adhesion values.
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The reference sample, i.e., an unmodified epoxy gelcoat, achieved the IA value of
264 kPa. All chemical modifications yielded an improvement, namely causing a decrease
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in IA value. The range of IA values of the modified samples varied from 130 kPa to
251 kPa. The sample modified with polysiloxane MFSC 4 showed the highest decrease in
ice adhesion compared to the unmodified sample. The samples modified with MFSC 1,
MFSC 3, and MFSC 5 obtained similar values of IA. The MFSC 4 modifier reduced the IA
by as much as 51% compared to the reference sample. It is noteworthy that the sample that
obtained the best icephobic properties (the lowest IA) recorded one of the highest WCA
values among the tested samples. The lowest decrease in ice adhesion was recorded by the
sample modified with the MFSC 2 polysiloxane; the reduction was only 5% and stayed
close to the standard deviation value.

3.5. Durability of Surfaces

The samples that achieved the lowest ice adhesion values after chemical modification
were selected for aging tests, namely MFCS 1, 4, 5. The samples were placed in an aging
chamber and subjected to 100 cycles of icing and deicing to determine their durability.
After exposure in the chamber, parameters describing the icephobicity, hydrophobicity,
roughness, gloss, and color of the surface were again measured.

3.5.1. Ice Adhesion Strength

Figure 3 presents a comparison of values before (IA) and after the aging chamber
(IAa). A significant decrease in the IAa value after the aging chamber was observed for the
reference sample modified with MFSC 5. The reference sample had the highest decrease;
the IAa reduction was equal to 31%. In contrast, the samples modified with MFSC 1 and
MFSC 4 achieved a minimal decrease in IAa values. Considering the value of the standard
deviation, it can be concluded that both samples before and after the chamber obtained
the same IA value. Thus, it can be concluded that the sample modified with spherosilicate
MFSC 1 was the most stable and resistant compared to the other modifiers used in this
work. Only the sample modified with MFSC4 showed an increase in IAa values. However,
this increase was not significant and was within the range of measurement error. A possible
reason for the decrease in the ice adhesion of the reference sample after the aging chamber
is presented in the Discussion section.
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3.5.2. Wettability

Figure 4 presents a comparison of WCA values before and after (WCAa) the aging
chamber. All samples, both modified and reference, recorded a decrease in WCAa values
after exposure in the aging chamber. The lowest WCAa value was obtained for the reference
sample; the WCAa was equal to 79◦. The rest of the modified samples exhibited WCAa
values from 90◦ to 91◦.
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The sample modified with polysiloxane MFSC 5 obtained the lowest decrease in the
WCA value among the samples modified with polysiloxanes; the difference between the
WCA values was 5%. This sample exhibited one of the lowest IAa results after aging
and was one of two samples with the lowest IAa value after aging compared to the
reference sample.

3.5.3. Roughness

In order to characterize the surface topography and observe more accurate changes
in the arithmetic mean profile ordinate (Ra) and mean profile element width before (RSm)
and after aging (RSma), a study using atomic force microscopy (AFM) was carried out. The
determined roughness parameters for the tested samples are shown in Table 3.

Table 3. The roughness parameters obtained by AFM before and after aging.

Sample No. MFSC Type Ra
(nm)

±Ra
(nm)

Raa
(nm)

±Raa
(nm)

RSm
(nm)

±RSm
(nm)

RSma
(nm)

±RSma
(nm)

1 (REF) - 33.38 5.41 25.15 2.06 43.40 6.92 32.02 2.73
2 MFSC 1/2 wt.% 39.96 5.73 39.83 8.40 51.16 6.98 49.90 10.76
5 MFSC 4/2 wt.% 25.21 2.65 31.54 6.97 33.20 3.35 42.25 10.07
6 MFSC 5/2 wt.% 41.99 3.06 35.54 4.41 55.28 4.00 44.87 4.63

The reference sample after 100 cycles of icing and deicing treatment indicated lower
surface roughness compared to the roughness before aging, where the Raa value decreased
by 25%. A similar tendency was recorded for the sample modified with the MFSC 5 additive.
The sample modified with the MFSC 1 polysiloxane remained unchanged before and after
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the aging chamber. In contrast, the sample modified with MFSC 4 recorded a slight increase
in roughness after exposure to the chamber. Similar changes as for the Ra were observed
for the values of the RSm parameter, where the reference sample presented a decrease of
26% compared to the state before aging.

To better illustrate the changes in roughness, Figures 5 and 6 show the visualization of
the surface of the samples before and after 100 icing/deicing cycles. Comparing images
of the surface of the reference sample, it can be seen that the surface has been smoothed,
and elevations and depressions have decreased. For the sample modified with MFSC 4, for
which the roughness parameters increased, the appearance after aging of larger and more
pronounced depressions and elevations can be observed.
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3.5.4. Gloss and Color

In the case of polymeric materials, one of the first visible effects of degradation is a
change in the color and the gloss of the surface; thus, these properties were tested before
and after exposure in an aging chamber.

The gloss results expressed in gloss units are shown in Table 4. The surface gloss was
measured at a 60◦ incidence angle. The addition of organosilicon modifiers resulted in a
decrease in surface gloss in comparison with the unmodified sample before exposure in
the aging chamber. The samples that showed the highest gloss reduction were modified
with polysiloxanes MFSC 1 and MFSC 5, while the samples modified with polysiloxane
MFSC 4 showed the lowest gloss reduction (not more than 3%) in comparison with the
reference sample.

Table 4. Gloss values of tested samples before and after exposure in the aging chamber.

Sample No. MFSC Type Before After

1 (REF) - 90.3 86.6
2 MFSC 1/2 wt.% 81.0 78.6
5 MFSC 4/2 wt.% 88.1 79.8
6 MFSC 5/2 wt.% 83.0 75.6

One hundred cycles of icing and deicing resulted in a general decrease in the surface
gloss values. The highest reduction of around 9% between the gloss values before and after
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exposure in the chamber was observed for samples modified with polysiloxanes MFSC 4
and MFSC 5. The decrease in the gloss value for the reference sample was equal to 4%. It
should be added, however, that despite differences in gloss values of several percent, these
are not large changes that would indicate significant surface degradation or be visible to
the naked eye.

The changes in the values of parameters L, a, b, and ∆E after chemical modifications
and after the aging chamber are given in Table 5. Parameter ∆E determines the total color
changes. Table 6 presents a scale of the ∆E value. ∆a, ∆b, and ∆L were calculated based on
the difference between the modified materials and the reference.

Table 5. ∆L, ∆a, ∆b values and color (∆E∗) changes before and after aging.

Sample No. MFSC Type Color before Aging Color after Aging

∆a * ∆b ** ∆L *** ∆E ∆a * ∆b ** ∆L *** ∆E

1 (REF) - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 MFSC 1/2 wt.% 0.74 −0.18 −0.07 0.76 −0.53 0.42 −0.04 0.68
5 MFSC 4/2 wt.% −0.30 0.36 −0.03 0.47 0.05 0.2 −0.58 0.62
6 MFSC 5/2 wt.% 1.62 −0.35 −1.10 1.99 −0.76 0.61 −0.26 1.01

* ∆a = a1 (sample 2, 5, or 6) − a (reference). ** ∆b = b1 (sample 2, 5, or 6) − b (reference). *** ∆L = L1 (sample 2, 5,
or 6) − L (reference).

Table 6. Scale of the ∆E value.

Delta E Perception

0 < ∆E < 1 Not perceptible by the human eye
1 < ∆E < 2 Perceptible through close observation

2 < ∆E < 3.5 Average color deviations, recognizable by an inexperienced observer
3.5 < ∆E < 5 Significant color deviations

∆E > 5 Noticeable at a glance

The sample modified with MFSC 4 before aging recorded ∆a < 0 with respect to the
reference, which means that this sample became greener (less red). Two modified samples
obtained ∆b < 0, which means that the proportion of blue color increased on the surface
(the proportion of yellow color decreased) compared to the unmodified sample. Parameter
∆L determines the lightness of the samples. All modified samples showed negative values
of this parameter (darkened in comparison to the reference sample), but two samples, i.e.,
MFSC 1 and MFSC 4 modified with polysiloxanes, darkened imperceptibly because ∆L
did not exceed the value of −0.1. The total color change is defined by parameter ∆E. The
highest value of this parameter was recorded for the sample modified with polysiloxane
MFSC 5. This sample achieved an ∆E value equal to around 2, which means a small color
change (perceptible through close observation). In conclusion, it can be said that chemical
modification does not result in a visible color change.

After exposure in the aging chamber, in comparison to the reference sample, samples
modified with polysiloxanes MFSC 1 and MFSC 4 obtained the lowest values of ∆E,
not exceeding 0.7 and indicating invisible color deviation. The sample modified with
the MFSC 5 polysiloxane obtained a higher ∆E value than the above samples, but not
significantly higher so as to induce a color change.

Table 7 shows the results of the color change after exposure in the aging chamber with
respect to the color before aging.

The reference sample obtained a value of ∆E = 1.67 (very small color change compared
to the reference sample before aging). The samples modified with MFSC 1 showed a
reduction in this parameter. The other two samples obtained a higher value for the ∆E
parameter compared to the reference sample, but the sample modified with MFSC 5 showed
very little increase. The sample modified with the MFSC 4 polysiloxane achieved an ∆E
value indicating a noticeable color change (∆E > 2). Thus, it can be concluded that the
MFSC 1 and MFSC 5 additives improve or do not deteriorate the degradation resistance of
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the epoxy gelcoat, and the MFSC 1 additive is the most stable under degradation during
variable temperatures among the organosilicon compounds used in this study.

Table 7. ∆L, ∆a, ∆b values and color (∆E∗) changes after aging.

Sample No. MFSC Type Color after Aging

∆a* ∆b** ∆L*** ∆E

1 (REF) - 0.93 −0.22 −1.37 1.67
2 MFSC 1/2 wt.% −0.34 0.38 −1.34 1.43
5 MFSC 4/2 wt.% 1.28 −0.38 −1.92 2.34
6 MFSC 5/2 wt.% −1.45 0.74 −0.53 1.71

* ∆a = a1 (sample after aging) − a (sample before aging). ** ∆b = b1 (sample after aging) − b (sample before aging).
*** ∆L = L1 (sample after aging) − L (sample before aging).

Summarizing the above, after 100 cycles of icing and deicing, the reference sample
showed virtually undetectable color deviation. The samples modified with MFSC 1 and
MFSC 5 indicated a very small color change, while the sample modified with MFSC 4
recorded a moderate color change.

4. Discussion
4.1. Roughness

The highest increase in roughness (Sa and Sz parameter values) compared to the
reference sample was observed for samples modified with polysiloxanes with a PHS991
core (MFSC 1 and MFSC 2). These modifiers were dual-functionalized with AGE, HEX,
and AGE, OCT functional groups, respectively. These groups have the same 1:2 molar ratio.
The roughness parameters of the above samples are similar to each other, being within their
error ranges. The modification with polysiloxanes that were functionalized with the same
functional groups at the same molar ratio, but with a PHS992 core, resulted in significantly
lower roughness parameter results. The Sa parameters differed by 39% and 23%, and the
Sz parameter by 49% and 20%, respectively. The significant difference is mainly seen with
modifiers with the HEX functional group, which resulted in the highest roughness, being
significantly higher than that of the reference sample. In conclusion, the polysiloxanes with
PHS992 cores showed significantly lower surface roughness than their counterparts with
PHS991 cores.

Another important aspect is that as the number of HEX functional groups at the
PHS992 core increases, the roughness of the samples increases. The sample with MFSC 5
with a molar ratio of AGE:HEX functional groups of 1:4 recorded an increase in the Sa
parameter by 24%, compared to the sample with MFSC 3 with a molar ratio of AGE:HEX
functional groups of 1:2. The Sz parameter also increased by as much as 41%. In summary,
the roughness of samples modified with polysiloxanes with a PHS992 core was higher for
the higher content of HEX functional groups.

4.2. Wettability

It cannot be clearly determined which core (PHS991 or PHS992) gives a better hy-
drophobicity improvement. However, it can be observed that functionalization with
AGE:HEX groups gives better results for samples modified with polysiloxanes with a
PHS991 core, and functionalization with AGE:OCT groups gives better results for samples
modified with polysiloxanes with a PHS992 core. In both cases, the obtained increase
in WCA values by modifiers having HEX and OCT functional groups compared to the
reference sample is 10%. Comparing the modifiers MFSC 3 and MFSC 5, which differ in
the molar ratio of AGE:HEX functional groups, it can be concluded that the modifier with a
ratio of 1:4 (MFSC 5) causes a higher increase in the WCA value than the modifier with a
ratio of 1:2 (MFSC 3). The wettability of a surface depends on its functionalization as well
as its chemical composition. An important factor determining wettability is the presence of
groups with different polarities [52]. Alkyl chains (e.g., hexyl or octyl groups) are non-polar,



Materials 2023, 16, 875 15 of 19

which increases the WCA value. Both the chain length and the percentage of non-polar
groups in relation to the total weight of the compound can affect the wettability properties.

4.3. Ice Adhesion Strength

A higher decrease in the IA parameter among samples modified with polysiloxanes
with a PHS991 core was achieved by the sample modified with polysiloxane functionalized
with AGE and HEX functional groups (MFSC 1); the decrease was 27% in comparison
to the reference sample. Functionalization of polysiloxanes with AGE and OCT groups
resulted in only a 5% decrease in IA (MFSC 2). An inverse correlation could be observed
for samples modified with polysiloxanes with a PHS992 core. A higher improvement in the
icephobicity parameter was observed for the sample that was modified with AGE and OCT
functional groups. The functionalization of polysiloxanes with a PHS992 core with AGE
and HEX groups resulted in a higher reduction in the IA value using a molar ratio of 1:4.
However, the IA value was not significantly different from that of the samples modified
with a molar ratio of 1:2 functional groups, and was within the range of measurement
deviation. By comparing the effect of the polysiloxane core type on the improvement
in icephobic properties, it can be generally concluded that the PHS992 core is the more
effective one. The sample modified with the PHS992 core polysiloxane with AGE and
OCT functional groups (MFSC 4) obtained significantly lower ice adhesion than the sample
modified with the PHS991 core polysiloxane with the same functional groups (MFSC 2). On
the other hand, the PHS992 core polysiloxane functionalized with AGE and HEX groups
(MFSC 5) resulted in a similar IA value as the PHS991 core polysiloxane (MFSC 3).

4.4. Ice Adhesion/Wettability/Roughness

Figure 7 shows the correlation between the water contact angle and ice adhesion. It
can be concluded that as the value of WCA increases, i.e., as the hydrophobicity of the
surface increases, the value of ice adhesion decreases, i.e., the icephobic properties improve.
However, it should be added that the WCA value does not exceed 100◦ (the surface has
a slightly hydrophobic surface). The reference sample, which is the only one to achieve
WCA < 90◦, has the highest IA value. Interpreting the graph, it can also be seen that some
samples, despite achieving the same WCA value, obtained different IA values. This is
probably due to the influence of chemical groups present in the matrix. Figure 8 shows
the relationship between the water contact angle and roughness parameters for samples
that recorded the same water contact angle values but different ice adhesion. It can be seen
that samples that obtained lower values of the Sa and Sz parameters recorded lower values
of ice adhesion. In many works, the following relationship has been observed: higher
surface roughness leads to greater ice adhesion. The high roughness can affect the adhesion
strength of the ice by causing a mechanical interlock between the ice and the substrate [12].
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4.5. Durability
4.5.1. Ice Adhesion Strength

The two samples that achieved lower ice adhesion values after 100 icing/deicing
cycles compared to the reference sample were modified polysiloxanes with a PHS992 core.
The sample modified with polysiloxanes with a PHS991 core achieved a minimal increase
in ice adhesion values compared to the reference sample, within the range of measurement
error. The surfaces of these samples retained low surface energy after aging, resulting
in low ice adhesion values. The exposure in the aging chamber may have caused some
changes in the surface chemistry and consequently changed some properties that affected
the icephobicity of the surface.

4.5.2. Wettability

All tested samples after exposure in the aging chamber showed a decrease in the WCAa
values compared to the WCA values before exposure in the aging chamber. However, when
comparing the modified samples with the reference sample after exposure in the aging
chamber, it can be seen that the modified samples have higher WCA values than the
reference sample. Zhao et al. also observed a decrease in the water contact angle value
after icing/deicing cycles [35]. The study proved that after returning to room temperature,
the surface does not fully retain its hydrophobic properties and the cyclic temperature
variation (from 25 ◦C to −10 ◦C) effects a gradual decrease in the WCA value.

4.5.3. Roughness

A significant decrease in roughness after exposure in the aging chamber in addition to
the reference sample was observed for the sample modified with the polysiloxane with a
PHS992 core with AGE:HEX (1:4) functional groups (MFSC 5). This sample, as with the
reference sample, also showed a decrease in IA values after aging. Smoothing the surface
resulted in reduced ice adhesion (the explanation is given in Section 4.4). On the other
hand, the sample modified with the polysiloxane with a PHS992 core functionalized with
AGE:OCT functional groups (1:2) (MFSC 4) showed the highest increase in roughness
values after 100 icing/deicing cycles. The highest stability of surface roughness (slight
difference in Ra and RSm values before and after aging) was observed for the sample
modified with the polysiloxane with a PHS991 core with AGE:HEX functional groups in a
1:2 molar ratio. In summary, the type of core, the functional groups, and the molar ratio
may drastically affect the surface topography after aging.

5. Conclusions

• The highest surface roughness of the epoxy gelcoat after chemical modification was
obtained for samples modified with polysiloxanes with a PHS991 core functionalized
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with AGE, HEX and AGE, OCT functional groups, respectively, with the same molar
ratios. It is likely that the additive core and the presence of the AGE group significantly
increased the roughness of these samples, even though all of them were produced
within the same methodology. In general, the roughness of samples with modified
polysiloxanes was increased with higher content of HEX functional groups.

• The sample modified with the polysiloxane functionalized with AGE and OCT groups
with a molar ratio of 1:2 recorded the best icephobic properties. Moreover, this sample
was one of two that obtained the highest WCA value. The other samples achieved
a significantly lower reduction in IA values compared to the reference sample. It
can also be concluded that the PHS992 core improves the icephobic properties more
effectively compared to the PHS991 core.

• The following correlation was observed: as the value of the water contact angle
increases, the value of ice adhesion decreases. The conducted studies corroborated
the well-established assumption that ice adhesion closely depends on the surface
roughness, which can lead to the formation of a mechanical blockage between the ice
and the substrate.

• The highest stability of surface roughness after aging was observed for the sample
modified with the polysiloxane with a PHS991 core with AGE:HEX functional groups
in a 1:2 molar ratio. No noticeable color or visible gloss changes were observed.

• Cycles of icing and deicing caused a decrease in the value of the water contact angle.
However, the chemical surface modification enabled the retention of its hydrophobicity
after aging, despite a decrease in WCA.

• Exposure in the aging chamber did not increase ice adhesion, i.e., deterioration of
the icephobic properties, while, in some cases, e.g., the reference sample, which was
not chemically modified, we observed a decrease in IA after a decrease in WCA.
For the rest of the samples, despite the deterioration of the WCA, the IA remained
without significant changes, thus indicating the positive influence of modification on
the surface stability and the possible influence of a low WCA as the reason for the IA
decrease in the reference sample.
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