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Abstract: Failure due to cracks is a major structural safety issue for engineering constructions. Human
examination is the most common method for detecting crack failure, although it is subjective and time-
consuming. Inspection of civil engineering structures must include crack detection and categorization
as a key component of the process. Images can automatically be classified using convolutional neural
networks (CNNs), a subtype of deep learning (DL). For image categorization, a variety of pre-trained
CNN architectures are available. This study assesses seven pre-trained neural networks, including
GoogLeNet, MobileNet-V2, Inception-V3, ResNet18, ResNet50, ResNet101, and ShuffleNet, for crack
detection and categorization. Images are classified as diagonal crack (DC), horizontal crack (HC),
uncracked (UC), and vertical crack (VC). Each architecture is trained with 32,000 images equally
divided among each class. A total of 100 images from each category are used to test the trained
models, and the results are compared. Inception-V3 outperforms all the other models with accuracies
of 96%, 94%, 92%, and 96% for DC, HC, UC, and VC classifications, respectively. ResNet101 has the
longest training time at 171 min, while ResNet18 has the lowest at 32 min. This research allows the
best CNN architecture for automatic detection and orientation of cracks to be selected, based on the
accuracy and time taken for the training of the model.

Keywords: convolutional neural networks; orientation of cracks; cracks detection; deep learning;
pre-trained models

1. Introduction

A significant amount of money is spent each year to identify flaws in infrastructures,
primarily buildings, roads, and bridges [1,2]. These infrastructures are constantly under
stress due to natural and man-made hazards, such as earthquakes, blasts, and daily use.
These stresses cause a variety of deteriorations, one of which is crack development [3,4].
Automation detection of these defects can significantly reduce the time and cost associated
with inspection. A building’s occupants and structural integrity are better protected
by detecting and analyzing structural flaws before a significant earthquake. Structural
cracks may be detected early and remedied more effectively using low-cost monitoring
that delivers an early danger alert. Deep learning (DL) is a viable option for supervised
or unsupervised feature extraction and transformation, as well as pattern analysis and
classification. DL makes use of several layers of non-linear information processing [5].
For instance, an image comprises an array of pixel values. The output from the first layer
represents the presence of the edges in the image at a specific direction and location within
the image. The second layer can tell the pattern apart thanks to its ability to recognize
how the edges are arranged, even if there are small changes in where the edges are. In the
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third layer, different patterns combine to form a larger group that turns into an identifiable
component. Then, in the next layer, the item is recognized based on the combination of
these components [6].

A convolutional neural network (CNN) is a branch of DL that processes images to
prioritize unique picture attributes to differentiate between images. Initially, CNNs were
only used to solve fundamental issues, such as handwritten digit identification; however,
CNN-based techniques have become the industry standard for image classification, object
location, and picture segmentation [7].

CNN pre-trained architectures have been utilized by researchers for image identi-
fication and object detection. Krizhevsky et al. [8] trained a deep CNN named Alexnet
to classify 1.2 million images using the ImageNet dataset into 1000 classes. He et al. [9]
developed a residual learning framework (ResNet) that was trained with the ImageNet
dataset. Performance of ResNet was awarded first prize on the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2015 classification task. Howard et al. [10] de-
veloped models for mobile and embedded vision applications called MobileNets. The
performance of MobileNet was evaluated and compared with other popular models on
ImageNet classification. It was highly effective across many applications, such as object
identification, fine-grain classification, face characteristics, and large-scale geolocalization.
GoogLeNet model was proposed in ILSVRC 14, the quality of the architecture was assessed
based on classification and detection [11]. There are many other pre-trained neural net-
works, such as Inception-V3 [12], VGG16 and VGG19 [13,14], DenseNet [15], ResNet [16],
Inception-ResNet [17], DarkNet [18], Xception [18], EfficientNet [19], ShuffleNet [20], and
SqueezeNet [21].

The basic CNN architecture consists of convolution, pooling, fully connected, and
non-linearity layers. Several non-linear operations are the most commonly used: sigmoid,
tanh, and ReLU. Most of the previous research has been carried out on classifying cracked
and uncracked images. A little work has been conducted on classifying the images based
on the orientation. The orientation of cracks is important as it suggests causes of failures.

This study applies seven well-known pre-trained CNN models and compares their
performance in detecting cracks. Each model’s training duration is recorded, and models
are evaluated using test images. In the end, the best model is suggested after comparing
model accuracy and training time. The following section summarizes previous research
works on crack detection, including image recognition and DL. Section 3 includes an
experimental study that explains the proposed methodology, data acquisition, training and
testing dataset, and pre-trained models. Section 4 discusses the results in detail, and the
conclusions of the study are reported in Section 5.

2. Literature Review

The safety and durability of structures are directly related to the ability to identify
cracks quickly and accurately [22]. Several variables affect the outcomes of manual crack
detection methods. The findings of such a manual examination are subjective and depend
on the inspector’s skill set, and such examinations are performed by analyzing cracks, i.e.,
their location and widths [23]. In the case of critical infrastructures, a manual inspection
might lead to inaccurate damage assessments [24,25]. Because of this, there is a pressing
need for automated procedures to overcome manual methods’ limits in detecting fractures
in civil engineering infrastructures.

Visual inspection is a traditional monitoring method for crack detection. Inspectors
must travel to inspect the bridges and other engineering structures, which can be tedious.
Therefore, automation can make the process smooth, economical, and timesaving. Abdel-
Qader et al. [26] used four techniques to detect the cracks, i.e., Fast Fourier Transform,
Fast Haar Transform, Sobel, and Canny. They found that the Fast Fourier Transform
outperformed the other methods. Prasanna et al. [27] utilized the support vector machine
(SVM) algorithm for crack detection with a linear kernel function. The effectiveness of this
classification method was evaluated using 118 images subdivided into two categories, one
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containing cracked images and the other with uncracked images. They found an accuracy
of 76%. Maniat et al. [28] used Google Street View images to test and train a VGG16 CNN
model with an accuracy of 98.6%.

Vu and Duc [29] trained the Inception-V3, VGG16, and ResNet classifiers using an
epoch value of 50 and a batch size of 16 for crack detection. For a dataset of 4000 im-
ages, the Inception-V3 and VGG16 models had a high accuracy of 99.9%, and ResNet had
an accuracy of 97.5%. Cha et al. [30] utilized a vision-based approach to detect concrete
cracks using a DL method. They took 40,000 images to train a CNN with a 98.22% ac-
curacy. Chaiyasarn et al. [31] employed a combined CNN and SVM for extracting crack
features from RGB images. They utilized the SVM as an alternative to the SoftMax layer
to enhance the classification ability and found an accuracy of approximately 86%. Abdel-
Qader et al. [32] applied an algorithm based on the principal component analysis (PCA) to
find fractures in a concrete bridge. They employed three different PCA approaches: PCA
with raw data, a linear structure modeling implemented before PCA with global informa-
tion, and local information instead of global information. They found an improvement in
the local detection with linear modeling compared with global detection. Wang et al. [33]
utilized the three AlexNet models, compared them with ChaNet to detect concrete cracks,
and found the ChaNet more reliable with an accuracy of 87.91%. Cha and Choi [34] ob-
tained a 98% accuracy when they applied a CNN architecture to predict cracks using a data
set of 40,000 images for training and validation. For the identification of fractures in hot-mix
asphalt (HMA) and Portland cement concrete (PCC) surfaces, Gopalakrishnan et al. [35]
used a single-layer neural net with the Adam algorithm on ImageNet pre-trained VGG16
DCNN features. Ehtisham et al. [36] took the four pre-trained models for the crack detection
and orientation for four classes and found the ResNet50 model had an 86.22% accuracy.
Ahmed et al. [37] employed the ResNet50 CNN model for pavement cracks detection at
the University of Engineering and Technology (UET), Taxila, with a 99.8% accuracy and
100% precision.

Munawar et al. [38] proposed an architecture that utilizes a cycle generative adver-
sarial network in conjunction with 16 convolutional layers (CycleGAN). For their study,
images showing cracks in mid- to high-rise structures (five floors or more) in Sydney,
Australia, from the year 2000 were obtained employing UAVs and open-source images.
Conventionally, just the last convolution layer is used in a CNN network. However, in this
network, more than one layer was applied. Guided filtering (GF) and conditional random
fields (CRFs) are critical components of the proposed CNN architecture, since they help
refine the predicted outputs and produce accurate results. The suggested architecture was
tested using damage data from Sydney-based structures (600 images). They found that
the suggested deep hierarchical CNN architecture outperformed the other approaches, GF,
Baseline (BN), Deep-Crack GF, and SegNet, with a global accuracy of 99.9%. Additionally,
the class average accuracy, the mean intersection of overall union classes (IoU), precision,
recall, and F1 score were 93.9%, 87.9%, 83.8%, 87.9%, and 85.8%, respectively.

Özgenel and Sorguç [39] analyzed the performance of pre-trained networks, includ-
ing AlexNet, VGG16, VGG19, GoogLeNet, ResNet50, ResNet101, and ResNet152. They
considered the size of the training image database, the depth of the networks, the num-
ber of training epochs, and the expandability to other building material types. Guzman-
Torres et al. [40] used a DL algorithm to detect and classify micro and macro cracks images
of the concrete by selecting custom network architectures. After fine tuning, they investi-
gated the performance of different architectures, network depth, tuning techniques, and
transfer learning methods. The performance of the VGG16 model was improved with an ac-
curacy of 99.5% and F1 score of 100%. Qayyum et al. [41] classified cracked and uncracked
images of concrete and cracks in the diagonal, horizontal, and vertical directions using
GoogLeNet, MobileNet-V2, and Inception-V3. They found that Inception-V3 performed
better than the other two networks, with an accuracy of 97.2% for cracked and uncracked
images and 92%, 95%, and 96% for diagonal, horizontal, and vertical images, respectively.
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Machine learning (ML) may be used to solve various structural engineering problems.
Thai [42] reviewed ML application for: (1) structural analysis and design; (2) structural
health monitoring and damage detection; (3) structural fire resistance; (4) structural member
resistance to various actions; and (5) concrete mechanical properties and mix design. Thai’s
objective was to assist the non-ML structural engineering community in developing ML
models for practical applications by providing an overview of ML algorithms and basic
concepts, codes, ML libraries, and compiled datasets. Mishra et al. [43] discussed the
application of Internet of Things technology and the utilization of sensors for structure
monitoring. Their objective was to identify various factors that may influence the long-term
and short-term integrity of a structure. Additionally, they presented several case studies
on actual structures and laboratory testing for monitoring the structural health of civil
engineering structures. Nunez et al. [44] simplified the application of ML in concrete
technology by surveying and analyzing algorithms employed to calculate the compressive
strength of concrete mixes.

Jiang et al. [45] improved the objection detection method by using depth-wise dif-
ferentiable convolution, an inverse residual network, and a linear bottleneck structure.
They tested these models with 5000 images of damaged concrete, such as cracks, spots,
exposed rebar, and spalling damage. The inference speed increased by 24.1% for the
YOLO-V3 algorithm and 53.5% for the single shot detection (SSD) identification algorithm.
The accuracies of the upgraded YOLO-V3 and SSD algorithms were 64.81% and 64.12%,
respectively, which were 3.25% and 4.04% better than the original versions. Dung et al. [46]
used the VGG16 for the crack detection in gusset plate welded joints of steel bridges
with a dataset of 337 images having 64 × 64 pixels and achieved an accuracy of up to
98%. Liu et al. [47] utilized the U-Net- and DCNN-based methods for detecting cracks
in concrete with 512 × 512 × 3 features and found the U-Net to be more refined than the
DCNN method with high effectiveness, robustness, and accuracy. Ali et al. [48] applied
the CNN architecture for structural crack detection and segmentation. The encoder and
decoder architectures, such as SegNet, U-Net, and FCN are the more elegant for fine crack
segmentation. Asadi Shamsabadi et al. [49] developed a vision transformer (ViT)-based
technique for detecting cracks in concrete and asphalt surfaces applying DeepLabV3+ and
U-Net of CNN models.

The use of DL is not limited to the detection of cracks in concrete. Yin et al. [50]
employed a CNN-based object detection algorithm named YOLO-V3 to detect defects in
drainage systems, including breaks, holes, deposits, cracks, fractures, and roots, and a
single type of construction feature—tap. The model was trained with a 4056-image dataset.
The framework’s performance had a mean average precision of 85.37%. The research led
to labeled closed-circuit television (CCTV) videos, where each frame showed the type of
defect and information about it. Hassan et al. [51] proposed a defect classification system
using CNN. The primary purpose was to combine CCTV video with the classification
system. A dataset of 4702 images for six defects, including longitudinal defects, debris silty,
joint faulty, joint open, lateral, and surface damage, was extracted from the CCTV videos.
The highest recorded accuracy was 96.33%.

Masonry structures are more earthquake-prone than non-masonry structures. In
developing countries, masonry structures are not reinforced to withstand the lateral force
produced by seismic loads. About 77% of the estimated damage is due to the collapse of
masonry structures. Wang et al. [52] proposed a DL technique to classify confined and
unconfined buildings. The dataset consisted of street view images gathered from streets
in the Oaxaca State, Mexico, using a 360-degree camera mounted on vehicles. The model
could be utilized on a large scale to find the buildings that need retrofitting. Kim et al. [53]
proposed a method for fine-tuning LeNet-5 with the METU dataset, which led to the
formation of OLeNet. The performance of the newly built model, VGG16, Inception, and
ResNet, was evaluated after training the model with 40,000 cracked and uncracked images.
The proposed model produced a validation accuracy of 99.8% with an epoch value of just
19. The training time was as low as 220 s. Nguyen et al. [54] developed a model consisting
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of two stages based on CNN architectures. The aim was to combine the detection and
segmentation of road crack images at a pixel level in a single framework. A double-stage
framework works significantly well on low-quality, noisy images, and imbalanced datasets.
The F1 score for the model was more than 90%. Ali et al. [55] proposed CNN models
that were customized for crack detection in concrete structures. The model’s performance
was compared with VGG16, VGG10, ResNet50, and Inception-V3 based on precision,
computational time, accuracy, results of crack localization, F1 score, and recall. VGG16 and
the proposed model performed better compared with other selected architectures. Different
methods based on image processing are adopted to detect cracks in a structure. Table 1 lists
a summary of these papers.

Table 1. Literature review.

Method Domain Dataset Image Features Results Reference

FFT, FHT, Sobel, and Canny edge detector Concrete Bridge 50 640 × 480 FHT more reliable
Accuracy = 86% [26]

SVM Bridge deck 118 - Accuracy = 76% [27]

VGG16 Street Images 48,000 200 × 200 Accuracy = 98.6% [28]

Fully Convolutional Network VGG16,
Inception-V3, and ResNet Concrete Cracks 40,000 227 × 227 VGG16

Accuracy = 99.9% [29]

Canny and Sobel Edge detection Concrete Cracks 40,000 256 × 256 Accuracy = 98.2% [30]

CNN and SVM Masonry Structure 6002 96 × 96 Accuracy = 86% [31]

AlexNet and ChaNet Concrete Cracks 125 256 × 256 ChaNet
Accuracy = 7.91% [33]

Deep CNN with eight layers Convolution,
Pooling, Relu, and SoftMax Concrete Cracks 40,000 256 × 256 × 3 Accuracy = 98% [34]

VGG16 Pavement Cracks 1056 3072 × 2048 Accuracy = 87% [35]

ResNet18, ResNet50, ResNet101, and
MobileNet-V2

Concrete and
Pavement Cracks 32,000 256 × 256 × 3 ResNet50

Accuracy = 86.2% [36]

ResNet50 Pavement Cracks 48,000 256 × 256 × 3 Accuracy = 99.8% [37]

AlexNet, VGG16, VGG19, GoogLeNet,
ResNet50, ResNet101, and ResNet152

Masonry walls and
Concrete Floors 40,000 224 × 224 VGG16

Average Accuracy = 96% [39]

SVM and MDNMS Road Cracks 7250 4000 × 1000 Precision = 98.29% [56]

GoogLeNet, CNN, and FPN Concrete Cracks 128,000 6000 × 4000 Precision = 80.13% [57]

STRUM, SVM, AdaBoost, and
Random Forest Concrete Bridge 100 1920 × 1280 Accuracy = 95% [58]

SVM and CNN Pavement Cracks 500 3264 × 2448 Accuracy = 91.3% [59]

GoogLeNet, MobileNet-V2, and
Inception-V3

Concrete and
Pavement Cracks 48,000 256 × 256 × 3 Inception-V3

Accuracy = 97.2% [41]

3. Experimental Study
3.1. Overview of Methodology

Figure 1 outlines the five-step method utilized in this study. First, a dataset was
obtained from the open-source SDNET2018 [57]. Next, the images were divided into four
different groupings, diagonal crack (DC), horizontal crack (HC), uncracked (UC), and
vertical crack (VC). Then, the selected pre-trained CNN models were acquired, trained, and
validated on the dataset. Next, these models were validated on a crack dataset collected
from the UET Taxila. The final step was to compute the confusion matrix of each model
and measure its performance.
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3.2. Dataset Acquisition

In this study, the dataset was divided into three categories: training, validation,
and testing. A 32,000-image dataset with 227 × 227 × 3 resolution was gathered from
SDNET2018 [60], and another dataset of 400 images was collected from the UET Taxila.
The 32,000-image dataset was divided into the DC, HC, UC, and VC categories depending
on the orientation of cracks, as shown in Figure 2. Each category contained a dataset of
8000 images with equal resolution. The dataset containing 400 cracked and uncracked
images collected from the UET Taxila was also categorized into four categories depending
on the orientation of cracks. For testing, the 400-image dataset was divided into the DC,
HC, UC, and VC categories equally depending on the orientation of cracks.
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3.3. Training, Validation, and Testing Dataset

For CNN’s pre-trained models, 70% of the images in each category were selected
randomly from the dataset, while the remaining 30% were applied for validation. The ratio
of training and validation, 70–30%, was maintained for all the pre-trained models with
the same epoch value of 3. However, for testing, 400 images were employed. The training
option optimizer used was stochastic gradient descent with momentum, minimum batch
size = 10, maximum number of epochs = 3, initial learning rate = 0.003, and the training
data shuffled after every epoch.

3.4. Pre-Trained Models

CNN models have many fixed layers and convolutional blocks, consisting of convolu-
tions, batch normalization, activation, ReLU, pooling, max pooling, average pooling, fully
connected, soft-max layers, etc., as illustrated in Figure 3 [29]. While many pre-trained
CNN models are available, only the most widely regarded models, including ResNet18,
ResNet50, ResNet101, MobileNet-V2, GoogLeNet, Inception-V3, and ShuffleNet, were
used in this study. Intending to improve performance on mobile devices, MobileNet-V2
is a CNN architecture. This design relies on a backward residual architecture, in which
the bottleneck levels are the links between the residual layers. A source of non-linearity
is filtered out in the intermediate expansion layer by utilizing lightweight depth-wise
convolutions applied to features. MobileNet-V2’s overall structure consists of a 32-filter
fully convolutional first layer and then 19 layers of residual bottlenecks. Inception-V3 is
from the Inception family that uses Label Smoothing, factorized 7 × 7 convolutions, and an
auxiliary classifier to transport label information further down the network. ResNet models
introduce the idea of residual learning [61]. ResNets are trained to learn residual functions
by referencing the inputs to each layer in the network. Residual nets allow stacked layers
to match a residual mapping rather than assuming each layer directly fits a desired un-
derlying mapping. To create a network, they pile residual blocks one on top of another;
for instance, a ResNet50 has fifty layers. GoogLeNet is based on the Inception design. It
employs Inception modules, which let the network choose from various convolutional filter
sizes in each block. An Inception network stacks these modules on top of one other, with
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max-pooling layers with stride two to occasionally reduce the grid’s resolution. ShuffleNet
was developed specifically for use on mobile devices with minimal processing capacity.
The design applies two procedures, pointwise group convolution and channel shuffle, to
improve efficiency without sacrificing accuracy. All the pre-trained models have different
specifications, as summarized in Table 2. There are several layers in ResNet’s architecture,
which are indicated by the name. MobileNet-V2 is a CNN model with a minimal level
of complexity designed with on-device or embedded applications and limited resources
to consider [61]. More than one million images from the ImageNet dataset served as the
training data for these pre-trained networks. The trained networks can categorize images
into 1000 different categories, including numerous different animals, a keyboard, a mouse,
and a pencil. These networks have therefore acquired extensive properties that accurately
classify a variety of images.
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Table 2. Specifications of pre-trained models.

Network Image Input Size Parameters (Millions) Size (MB) Depth (Layers)

GoogLeNet 224 × 224 7.0 27 22

Inception-V3 299 × 299 23.9 89 48

MobileNet-V2 224 × 224 3.5 13 53

ResNet18 224 × 224 11.7 44 18

ResNet50 224 × 224 25.6 96 50

ResNet101 224 × 224 44.6 167 101

ShuffleNet 224 × 224 1.4 1.4 50

4. Results and Discussion

In this study, seven different pre-trained CNN models, including GoogLeNet, Inception-
V3, MobileNet-V2, ResNet18, ResNet50, ResNet101, and ShuffleNet, were trained, vali-
dated, and tested on a comprehensive dataset of images to detect and classify cracks. The
same dataset of images and computer specifications was used to evaluate these pre-trained
models with the same ratio of image division. The performance of each CNN for detect-
ing cracks and orientation was measured by computing the confusion matrix, accuracy,
precision, recall, and F1 score, and recording the computational time during the training
of each model with constant values for the number of epochs and other parameters. The
networks employed in this investigation were pre-trained using ImageNet data and were
taken from the MathWorks website [62]. All tests were run on a desk-top workstation with
an Intel Core i3 9th generation processor, 16 GB of RAM, and a Nvidia GTX 1650 super
4 GB graphics card using MATLAB 2020.
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Accuracy, precision, specificity, recall, and F1 score were the four statistical parameters
used to evaluate the four-class classification performance of pre-trained CNNs. Model
accuracy is a performance parameter for ML classification models that is defined as the
proportion of true positives and true negatives to the total number of positive and negative
observations. In other words, accuracy indicates how often we may anticipate that our
model would accurately predict an event, relative to the total number of times it has made
predictions. Accuracy [40] is the rate of all the actual predicted values to the total number
of predictions done and is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP is truly positive, TN is a true-negative, FP is a false-positive, and FN is a false-
negative prediction value.

Accuracy of GoogLeNet for predicting the DC, HC, UC, and VC was 92%, 93%, 88%,
and 92%, respectively. Similarly, the accuracy of MobileNet-V2 for predicting the DC, HC,
UC, and VC was 86%, 91%, 87%, and 84%, respectively; for Inception-V3 was 96%, 94%,
92%, and 96%, respectively; for ShuffleNet was 82%, 91%, 90%, and 96%, respectively; for
ResNet50 was 88%, 97%, 92%, and 86%, respectively; for ResNet101 was 95%, 95%, 92%,
and 94%, respectively; and for ResNet18 was 84%, 90%, 85%, and 89%, respectively. These
accuracies are compared in Table 3. These results demonstrated that Inception-V3 and
ResNet101 performed better than other models with accuracies greater than 90%. Further
pinpointing the best model, Inception-V3 performed well compared with ResNet101, with
accuracies for detecting DC and VC greater for Inception-V3. Accuracy for detecting UC
for both models remained the same. In contrast, accuracy for detecting HC for ResNet101
was 1% greater than Inception-V3.

The model precision score quantifies the fraction of accurately predicted positive
labels. Precision is also referred to as the predictive value of the positive. Precision [40] is
calculated as:

Precision =
TP

TP + FP
(2)

Precision of MobileNet-V2 for predicting the DC, HC, UC, and VC was 92%, 88%,
47%, and 67%, respectively; for Inception-V3 was 98%, 96%, 67%, and 93%, respectively;
for GoogLeNet was 94%, 89%, 53%, and 95%, respectively; for ShuffleNet was 97%, 65%,
60%, and 95%, respectively; for ResNet50 was 98%, 91%, 69%, and 68%, respectively; for
ResNet101 was 86%, 99%, 71%, and 95%, respectively; and for ResNet18 was 98%, 74%,
40%, and 85%, respectively. These precisions are compared in Table 3. An interesting fact
can be observed in Table 3. The precision value for detecting UC images was the lowest for
each model compared with the other three classes. The lowest precision value was 40% for
ResNet18 to detect UC images and the highest was for ResNet101.

The model’s ability to properly predict positives out of actual positives was measured
by the model recall score. This differs from precision, which counts the proportion of
accurate positive predictions among all positive predictions given by models. Recall [40] is
calculated as:

Recall =
TP

TP + FN
(3)

Recall of MobileNet-V2 for predicting the DC, HC, UC, and VC was 65%, 77%, 100%,
and 68%, respectively; for Inception-V3 was 88%, 81%, 100%, and 89%, respectively; for
GoogLeNet was 79%, 84%, 100%, and 78%, respectively; for ShuffleNet was 58%, 97%,
100%, and 90%, respectively; for ResNet50 was 67%, 97%, 100%, and 75%, respectively; for
ResNet101 was 93%, 83%, 96%, and 83%, respectively; and for ResNet18 was 62%, 85%,
100%, and 75%, respectively. These recalls are compared in Table 3. Recall value for the
detection of UC class was 100% for all the models except ResNet101 for which its value
was 96%.
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F1 score represents the model score as a function of the recall and precision scores. F1
score is a performance metric for models that provides equal weight to precision and recall
when evaluating its accuracy. F1 score [40] is the harmonic mean of precision and recall,
and is calculated as:

F1 score = 2
(

Recall × Precision
Recall + Precision

)
(4)

F1 score of MobileNet-V2 for predicting the DC, HC, UC, and VC was 76%, 82%,
64%, and 68%, respectively; for Inception-V3 was 93%, 88%, 80%, and 91%, respectively;
for GoogLeNet was 86%, 86%, 69%, and 86%, respectively; for ShuffleNet was 73%, 78%,
75%, and 92%, respectively; for ResNet50 was 80%, 94%, 82%, and 71%, respectively; for
ResNet101 was 90%, 90%, 82%, and 88%, respectively; and for ResNet18 was 76%, 79%,
57%, and 79%, respectively. Table 3 provides these F1 scores for DC, HC, UC, and VC for
all the studied CNN architectures. Both Inception-V3 and ResNet101 had a greater value of
F1 score compared with others. For DC and VC classes, Inception-V3’s F1 score was greater
than ResNet101, while HC and UC’s F1 score value was greater for the latter.

Table 3. Results for accuracy, precision, recall, and F1 score.

Sr. No. CNN Architecture Class Accuracy Precision Recall F1 Score

1 GoogLeNet

DC 92% 94% 79% 86%
HC 93% 89% 84% 86%
UC 88% 53% 100% 69%
VC 92% 95% 78% 86%

2 MobileNet-V2

DC 86% 92% 65% 76%
HC 91% 88% 77% 82%
UC 87% 47% 100% 64%
VC 84% 67% 68% 68%

3 Inception-V3

DC 96% 98% 88% 93%
HC 94% 96% 81% 88%
UC 92% 67% 100% 80%
VC 96% 93% 89% 91%

4 ResNet18

DC 84% 98% 62% 76%
HC 90% 74% 85% 79%
UC 85% 40% 100% 57%
VC 89% 85% 75% 79%

5 ResNet50

DC 88% 98% 67% 80%
HC 97% 91% 97% 94%
UC 92% 69% 100% 82%
VC 86% 68% 75% 71%

6 ResNet101

DC 95% 86% 93% 90%
HC 95% 99% 83% 90%
UC 92% 71% 96% 82%
VC 94% 95% 83% 88%

7 ShuffleNet

DC 82% 97% 58% 73%
HC 91% 65% 97% 78%
UC 90% 60% 100% 75%
VC 96% 95% 90% 92%

The confusion matrix plots based on testing images are indicated in Figure 4. The over-
all accuracies of Inception-V3, MobileNet-V2, GoogLeNet, ResNet18, ResNet50, ResNet101,
and ShuffleNet were 88.5%, 73.5%, 82.8%, 74.3%, 81.5%, 87.8%, and 79.3%, respectively.
These results indicate that Inception-V3 had the highest accuracy among all the models,
while MobileNet-V2 had the lowest overall accuracy value. From the confusion matrix for
all the models, it was observed that models did not perform well in detecting class UC.
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The best model for the right classification of the DC class was ResNet101, which rightly
identified 71 UC images out of 100.

Materials 2023, 16, x FOR PEER REVIEW 12 of 17 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

 
(g) 

Figure 4. Confusion matrix plots for selected architecture: (a) GooLeNet, (b) Inception-V3, (c) Mo-
bileNet-V2 (d) ResNet18, (e) ResNet50, (f) ResNet101, (g) ShuffleNet. 

The plot between the CNN model’s accuracy, time consumed on training, and model 
size is reported in Figure 5. The training time and size of the model of ResNet101 was the 
highest among all the other models under study, equal to 171 min for training and size of 
167 MB. ResNet18 took a minimum time to train, equal to 32 min. Inception-V3 provided 
the best result regarding the accuracy, model size, and time taken for training. As its train-
ing time was lesser than the model with the highest training time, its accuracy rate was 
the highest among all, and its size was also smaller than the one with a larger size. 

Figure 4. Confusion matrix plots for selected architecture: (a) GooLeNet, (b) Inception-V3,
(c) MobileNet-V2 (d) ResNet18, (e) ResNet50, (f) ResNet101, (g) ShuffleNet.



Materials 2023, 16, 826 12 of 16

The plot between the CNN model’s accuracy, time consumed on training, and model
size is reported in Figure 5. The training time and size of the model of ResNet101 was
the highest among all the other models under study, equal to 171 min for training and
size of 167 MB. ResNet18 took a minimum time to train, equal to 32 min. Inception-V3
provided the best result regarding the accuracy, model size, and time taken for training. As
its training time was lesser than the model with the highest training time, its accuracy rate
was the highest among all, and its size was also smaller than the one with a larger size.
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One image was randomly taken from each class from the testing dataset and tested
on the trained models. The results are presented in Figure 6. The figure elaborates that
Inception-V3, GoogLeNet, and ShuffleNet rightly identified the image according to the
class to which it belongs. MobileNet-V2 and ResNet101 were confused by the DC class and
identified as HC. ResNet18 detected the UC class image as HC, while ResNet50 confused
the VC image and detected it as DC. All the models rightly identified the HC image. None
of the models confused the HC image with the VC image and vice versa.



Materials 2023, 16, 826 13 of 16
Materials 2023, 16, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 6. Selected images and results after passing through trained models, red boxes show poor 
predictions against each model. 

Figure 6. Selected images and results after passing through trained models, while red boxes show
poor predictions against each model.



Materials 2023, 16, 826 14 of 16

5. Conclusions

This research investigated the classification of cracks using pre-trained CNN mod-
els. The performance of seven pre-trained models, including GoogLeNet, MobileNet-V2,
Inception-V3, ResNet18, ResNet50, ResNet101, and ShuffleNet were evaluated using the
same dataset, computer specifications, and other parameters. After comparing the perfor-
mance of CNN architectures for the classification of the crack images based on accuracy,
precision, recall, F1 score, size of models, and training time, the best model was suggested.

The Inception-V3 outperformed the analyzed CNN models with accuracies of 96%,
94%, 92%, and 96% for the DC, HC, UC, and VC classifications, respectively. From the
confusion matrix, it had the best overall performance of 88.5%.

From a practical point of view, it is important to detect whether the concrete surface is
cracked. Then, autonomously identifying the orientation of the crack could help predict
the cause of failure, i.e., flexural stress, shear stress, or combined.
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