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Abstract: In this paper, the hot tensile deformation of a GH3230 superalloy double-sheet was con-
ducted under deformation temperatures ranging from 1123~1273 K and strain rates ranging from
0.001~0.2 s−1. The flow behavior of the GH3230 superalloy double-sheet was analyzed in detail.
The hot tensile deformation process of the GH3230 superalloy double-sheet includes four stages
of elastic deformation, strain hardening, steady state and fracture. The true stress decreases with
the increasing deformation temperature and decreasing strain rate. The variation of the strain rate
sensitivity index and strain hardening index with processing parameters were discussed. The average
apparent activation energy for hot tensile deformation is 408.53 ± 46.96 kJ·mol−1. A combined
Johnson-Cook and Hensel-Spittle model considering the couple effect of strain hardening, strain
rate hardening and thermal softening was established to describe the hot tensile behavior of the
GH3230 alloy double-sheet. Compared to Johnson-Cook model and Hensel-Spittle model, this model
has the highest predicting accuracy. The average absolute relative error of true stress between the
experimental and the predicted is only 2.35%.

Keywords: superalloy sheet; hot tensile deformation; flow behavior; constitutive model

1. Introduction

Nickel-based superalloy is an unusual class of metallic materials with an exceptional
combination of mechanical properties, high temperature creep, fatigue and resistance to
degradation in corrosive or oxidizing environments [1,2]. It has been an essential material
for gas turbines in aero engines and power plants [3,4]. GH3230 superalloy is a typical
solid solution strengthening alloy with excellent properties. Its microstructure consists of
gamma phase, primary granular carbides of M6C and granular carbides of M23C6 at the
grain boundary [5]. It is widely used in to manufacture components with double-sheet
structure serving in high temperature environments, such as the inner wall of an engine
combustion chamber, turbine plate, cooling ring, and so on [6,7].

At present, these components are commonly thin-walled structures, of which the
forming methods are hot drawing or hot stamping. The hot tensile formability of the
superalloy sheet directly determines the forming quality and service reliability. The hot
tensile deformation process of the superalloy sheet is affected by various processing param-
eters such as deformation temperature, strain rate and strain. The deformation process is
complex and is highly nonlinear [8]. An accurate description of flow behavior is important
to develop a proper mental-forming process route [9,10]. Up to date, some efforts have
been made to understand the tensile deformation behavior of the superalloy sheet [11].
The influence of processing parameters on the flow stress was discussed in detail [12,13].
Some constitutive models have been developed to predict the hot tensile behavior of
metal sheets, including the Arrhenius model [14–16], the Johnson-Cook (JC) model [17–19],
the Hensel-Spittel (HS) model [20], the modified JC model [21–23], the combined JC and
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Zerilli-Armstrong model [24], and so on. These models consider different flow behaviors,
i.e., strain hardening, dynamic recovery and dynamic flow softening. The prediction
accuracies of these models are usually different for different metals.

Hence, in order to get a better understanding of the hot tensile formability of the
GH3230 superalloy double-sheet, the flow behavior under hot tensile is systematically
investigated. Different constitutive models to describe this behavior are established

2. Materials and Methods

The material used in this paper is the GH3230 superalloy double-sheet with a thickness
of 2 mm. Its chemical composition (wt%) was 22Cr, 14W, 2Mo, 0.65Mn, 0.35Al, 0.5Si, 0.1C
and the balance Ni. The GH3230 superalloy double-sheet was produced by transient liquid
phase (TLP) bonding of two cold rolled sheets using a commercial BNi2 filler at the bonding
temperature of 1323 K. The thickness of these two sheets is 1.2 mm and 0.8 mm, respectively.

The hot tensile experiments of GH3230 superalloy double-sheets were conducted on
CMT5105GL electronic universal testing machine based on the China National Standard
GB/T 228.2-2015 (Corresponding American standard ASTM E21-20). The specimens for
hot tensile with a gauge length of 36 mm and a width of 10 mm were machined along
the rolling direction. The diagram of the hot tensile specimen is shown in Figure 1. The
comparison between the original sample and the fractured sample deformed after hot
tensile deformation of the GH3230 superalloy double-sheet is shown in Figure 2. Prior
to loading, the specimen was heated to a given deformation temperature at a maximum
heating rate and then held isothermally for 20 min to eliminate the thermal gradient.
Subsequently, the specimen was stretched under a given strain rate until it was broken.
After tensile testing, it was air-cooled to room temperature. The deformation temperature
was selected in the range of 1123~1273 K and the strain rate was selected in the range of
0.001~0.2 s−1. During the hot tensile process, the variations of the force and the elongation
of the hot tensile specimen were automatically collected and recorded. The extensometer
to measure the dimensional change is equipped on the CMT5105GL electronic universal
testing machine in which the data gathering from a certain process is controlled by a
computer system. Therefore, the relationship between true stress and true strain can
be obtained.
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Figure 2. The comparison between original sample and fractured sample of the GH3230 superalloy
double-sheet.

3. Results and Discussion
3.1. The True Stress and True Strain

Figure 3 exhibits typical true stress−true strain curves of the GH3230 superalloy
double-sheet during tensile deformation under different deformation temperatures. It can
be seen from Figure 3 that the hot tensile deformation process of the GH3230 superalloy
double-sheet can be divided into four stages as follows: (1) the elastic deformation stage, in
which the true stress increases linearly with the true strain; (2) the strain hardening stage,
in which the true stress still increases with the increase of true strain until it reaches a peak
value and the increasing velocity is lower than that in the elastic stage; (3) the steady state
stage, in which the strain hardening and thermal softening effect are almost balanced and
the true stress does not change evidently with the increase in true strain; (4) the fracture
stage, in which the true stress decreases rapidly with the increase in true strain until the
specimen fractures.
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Figure 3. The true stress−true strain curves of the GH3230 superalloy double-sheet during tensile
deformation under different temperatures: (a) 1123 K; (b) 1173 K; (c) 1223 K; (d) 1273 K.
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In addition, it can be seen from Figure 3 that the processing parameters significantly
affect the flow behavior of the GH3230 superalloy double-sheet during hot tensile deforma-
tion. With the increase in deformation temperature, the true stress decreases evidently as
the strain rate and the strain are constant. It is because the higher deformation temperature
could promote the occurrence of dynamic recrystallization (DRX), which enhances the
contribution of thermal softening. With the increase of strain rate, the true stress increases
evidently as the deformation temperature and the strain are constant. It is because there
is not enough time for thermal softening to offset the contribution of strain hardening
induced by dislocation multiplication as the strain rate is higher.

3.2. Strain Rate Sensitivity Index

The strain rate sensitivity index is an important parameter to characterize the plastic
properties of metal and alloys during plastic deformation. It reflects the ability to resist
necking, which is related to chemical composition, microstructure and processing param-
eters. Generally, a higher strain rate sensitivity index is necessary to obtain good plastic
abilities. The strain rate sensitivity index m is defined as follows.

m = (d ln σ/d ln
.
ε)|ε,T (1)

where σ is the true stress (MPa), ε is the true strain,
.
ε is the strain rate (s−1), T is the

deformation temperature (K). To aid better reading of this article, a notation list is illustrated
in Appendix A.

The effect of true strain on the strain rate sensitivity index of the GH3230 superalloy
double-sheet deformed under different deformation temperatures is shown in Figure 4. It
can be seen from Figure 4 that the variation of the strain rate sensitivity index of the GH3230
superalloy double-sheet with true strain is determined by the deformation temperature
and strain rate. At the strain rate of 0.001 s−1 and 0.01 s−1, the strain rate sensitivity
index almost does not change with the increase of true strain. In addition, the value of
strain rate sensitivity index is similar at different deformation temperatures. However,
the variation of the strain rate sensitivity index with true strain shows different trends at
different deformation temperatures as the strain rate is 0.1 s−1 and 0.2 s−1. With the increase
of true strain, the strain rate sensitivity index increases evidently at a lower deformation
temperature (1123 K and 1173 K), while it decreases at a higher deformation temperature
(1273 K). In addition, in the deformation temperature range of 1123~1223 K, the strain rate
sensitivity index is higher at the strain rate of 0.001 s−1 and 0.01 s−1 than at the strain rate of
0.1 s−1 and 0.2 s−1. As the deformation temperature increases to 1273 K, an opposite result
is observed. Analyzing the effect of deformation temperature by means of comparing the
strain rate sensitivity index ranging of 1123~1273 K, it can be concluded that at the strain of
0.001 s−1 and 0.01 s−1, the strain rate sensitivity index is less influenced by the increase
of the deformation temperature. In the deformation temperature of 1273 K, the strain
rate sensitivity index increases significantly, which is ascribed to improved homogeneous
deformability caused by the increase in deformation temperature. Therefore, the effect of
deformation temperature on the deformability of the GH3230 superalloy double-sheet at
a high strain rate is more significant. These results indicate that the GH3230 superalloy
double-sheet has a good plastic deformation ability at the deformation temperature of
1273 K. If the deformation temperature decreases, a lower strain rate is required to ensure
the plastic deformation.

3.3. Strain Hardening Index

The strain hardening index reflects the contribution of deformation resistance via the
strain hardening effect. The strain hardening index not only reflects the strain hardening
degree of metallic materials, but also reflects the uniform deformation abilities. In the
process of hot tensile deformation of the GH3230 superalloy double-sheet, the variation of
the strain hardening index is the competition result between the strain hardening effect
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and the thermal softening effect. The expression of the strain hardening index n is shown
in Equation (2).

n = (d ln σ/d ln ε)
∣∣∣ .
ε,T (2)

The effect of true strain on the strain hardening index of the GH3230 superalloy
double-sheet under different processing parameters is shown in Figure 5. It can be seen
from Figure 5 that the strain hardening index decreases evidently as the true strain increases.
When the true strain is smaller, the strain hardening index is mostly positive, while it is
mostly negative when the strain is higher. This indicates that the contribution of strain
hardening is dominant at the starting of hot tensile. As the deformation proceeds, the
contribution of thermal softening gradually exceeds the contribution of strain hardening.
When the deformation temperature is 1123 K, the increase of true strain has an obvious effect
on the strain hardening index at all strain rates. This indicates that the strain hardening is
significantly influenced by changes in true strain under a lower deformation temperature
(1123 K). When the deformation temperature is 1173 K and 1223 K, the strain hardening
index is less influenced by the increase of true strain under a higher strain rate (0.1 s−1 and
0.2 s−1) because the deformation process is longer when the strain rate is lower. When
the deformation temperature is 1123 K, 1173 K and 1223 K, the strain hardening index at
high strain rates is larger than that at low strain rates. However, when the deformation
temperature is 1273 K, the strain hardening index is the smallest at the strain rate of
0.2 s−1. On the one hand, with the increase of true strain, the dislocation density increases
continuously, resulting in strain hardening. On the other hand, in the process of hot tensile
deformation, because of the cross slip and climbing motion, some dislocations disappear
while others are rearranged, which results in the softening. In addition, the strain hardening
index is larger when the deformation temperature is lower, which indicates that the strain
hardening plays a leading role.
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Figure 4. Strain rate sensitivity index of the GH3230 superalloy double-sheet deformed under
different deformation temperatures: (a) 1123 K; (b) 1173 K; (c) 1223 K; (d) 1273 K.
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Figure 5. Strain hardening index of the GH3230 superalloy double-sheet deformed under different
deformation temperatures: (a) 1123 K; (b) 1173 K; (c) 1223 K; (d) 1273 K.

3.4. Apparent Activation Energy for Hot Deformation

One of the remarkable characteristics of hot plastic deformation is that the strain rate
is controlled by the thermal activation process. The apparent activation energy for hot
deformation represents the energy barrier that the atomic transition needs to overcome,
which is an important physical quantity to reflect the difficulty of plastic deformation. The
apparent activation energy for hot deformation is expressed as follows.

.
ε = A[sinh(ασ)]n exp

(
− Q

RT

)
(3)

where Q is the apparent activation energy for hot deformation (J·mol−1), R is the gas
constant (8.3145 J·mol−1·K−1), α is the material constant (MPa−1). The expression of Q can
be obtained by simplifying Equation (3) as follows.

Q = R
∂ ln

.
ε

∂{ln[sinh(ασ)]}

∣∣∣∣
ε,T

∂{ln[sinh(ασ)]}
∂(1/T)

∣∣∣∣ .
ε

(4)

Based on approximate values of α, the values of the residual sum of squares can be
calculated by fitting the experimental data through linear statistical regression, and the
residual sum of squares should be a parabola function of α. Figure 6 shows the relationship
between the residual sum of squares and α value at the true strain of 0.3, and the optimum
α value is 0.0023 MPa−1. In the same way, the optimum α values under different true
strains can be obtained.
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Figure 6. The relationship between the residual sum of squares and α value of GH3230 superalloy
double-sheet at the true strain of 0.3.

Figure 7 displays the relationship of ln[sinh(ασ)]− ln
.
ε and ln[sinh(ασ)]− (1000/T)

at the true strain of 0.3. The value of Q can be calculated according to the slope of
ln[sinh(ασ)] − ln

.
ε and ln[sinh(ασ)] − (1000/T). Combing with the calculated α value,

Equation (4) and Figure 7, the value of Q at the true strain of 0.3 is 410.8 kJ·mol−1. Figure 8
presents the effect of true strain on the value of Q of the GH3230 superalloy double-
sheet in hot tensile deformation. As seen from Figure 8, the value of Q of the GH3230
superalloy double-sheet slightly varies from 402.3 kJ·mol−1 to 411.2 kJ·mol−1 with the
increasing of true strain from 0.24 to 0.38. It can be regarded as a setting value, which is
408.53 ± 46.96 kJ·mol−1.
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ε; (b) ln[sinh(ασ)]− (1000/T) at the true strain of 0.3.
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Figure 8. Apparent activation energy for deformation of the GH3230 superalloy double-sheet in hot
tensile tests.

3.5. Constitutive Models
3.5.1. Johnson-Cook (JC) Model

The JC model can be expressed as follows.

σ = (A + Bεn)(1 + C ln
.
ε
∗
)(1− T∗m) (5)

where A is the yield stress at reference temperature and reference strain rate (MPa), B is the
coefficient of strain hardening, C is the material parameter.

.
ε
∗
=

.
ε/

.
ε0 is the dimensionless

strain rate (
.
ε0 is the reference strain rate (s−1)), and T* is the homologous temperature and

expressed as T∗ = (T − Tr)/(Tm − Tr), where T is the deformation temperature (K), Tm is
the melting temperature (K), and Tr is the reference deformation temperature (T ≥ Tr) (K).

In this study, the reference deformation temperature is 298 K and the reference strain
rate is 0.001 s−1. At the reference deformation temperature and the reference strain rate,
the JC model can be simplified to Equation (6).

σ = A + Bεn (6)

By fitting the true stress−true strain curves of GH3230 superalloy double-sheet at
reference deformation temperature and reference strain rate, the parameters A and B can
be obtained. At the reference strain rate, the JC model in the form of Equation (5) can be
simplified to the form of Equation (7), and the parameter m can be calculated.

σ = (A + Bεn)(1− T∗m) (7)

The parameter C can be calculated by combining the data of true strain−true stress in
different deformation temperatures and strain rates. The values of the JC model parameters
are shown in Table 1. The comparison result between the true stress calculated by the
model and the experimental values is shown in Figure 9. The correlation coefficient is
77.57%, which indicates that the present JC model can not to precisely describe the hot
tensile behavior of the GH3230 superalloy double-sheet.

Table 1. Parameters for the JC model for the GH3230 superalloy double-sheet.

A (MPa) B (MPa) n C m

354.1 2017 0.878 0.312 0.565
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Figure 9. The comparison between the true stress calculated by the JC model and the experimental results.

In the JC model, the item (A + Bεn),
(
1+C ln

.
ε
)

and (1+ T∗m) is used for describing the
strain hardening effect, the strain rate effect and the temperature effect, respectively. It is assumed
that the strain hardening effect, strain rate hardening effect and thermal softening effect are
independent. Based on these assumptions, the calculated σ/[(A + Bεn)(1− T∗m)] at the same
deformation temperature and σ/

[
(A + Bεn)

(
1+C ln

.
ε
)]

at the same strain rate will not change
with the change of true strain. The calculated σ/

[
(A + Bεn)

(
1+C ln

.
ε
)]

at the same strain will
not change with the change of deformation temperature. Figure 10 shows the relationship of
σ/[(A + Bεn)(1− T∗m)]− ε, σ/

[
(A + Bεn)

(
1+C ln

.
ε
)]
− ε, σ/

[
(A + Bεn)

(
1+C ln

.
ε
)]
−T for

hot tensile deformation of the GH3230 superalloy double-sheet. It can be seen that the results
predicted by the JC model do not fully reflect the experimental results. The main error of the
established JC model describing the hot flow behavior of a GH3230 superalloy double-sheet
mainly comes from the lack of consideration of the couple effect between strain hardening,
strain rate hardening and thermal softening.

3.5.2. Hensel-Spittel (HS) Model

The HS model with low computational complexity is also used to describe the flow
behavior of metals and alloys, which is given as Equation (8).

σ = AHSTm1Exp(m2T)εm3Exp(m4/ε)(1 + ε)m5Exp(m6ε)
.
ε
(m7+m8T) (8)

where AHS, m1, m2, m3, m4, m5, m6, m7 and m8 are material parameters.
Take the natural logarithm of both sides of Equation (8) to get the simplified Equation (9)

as follows.

ln σ = ln AHS + m1 ln T + m2T + m3 ln ε + m4/ε + m5 ln(1 + ε) + m6ε + (m7 + m8T) ln
.
ε (9)

Based on the true stress−true strain curves of the GH3230 superalloy double-sheet
in different deformation temperatures and strain rates, the independent variable matrix is
obtained by summarizing the data of true strain, deformation temperature and strain rate.
The coefficient matrix is solved by the least square method as follows:

θ =
(

XTX
)−1

XTY (10)
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where X is the independent variable matrix, XT is the transposed matrix of the independent
variable matrix, X−1 is the inverse matrix of the independent variable matrix, θ is the
coefficient matrix, Y is the dependent variable matrix. Solving the coefficient matrix, the
values of the HS model parameters are shown in Table 2. The comparison result between
the true stress calculated by the model and the experimental values is shown in Figure 11.
The correlation coefficient is 89.59%, which indicates that the prediction accuracy of this
model to describe the hot tensile behavior of the GH3230 superalloy double-sheet needs to
be further improved.
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Table 2. Parameters for HS model for the GH3230 superalloy double-sheet.

AHS/MPa m1 m2 m3 m4 m5 m6 m7 m8

2.7 × 10−4 −0.5321 −0.0039 −11.96 −1.000 105.8 −52.57 −0.0541 0.0002

3.5.3. The Developed Combined JC and HS Model

In this paper, combining the yield and strain hardening portion of the JC model with
the temperature, strain hardening and strain rate hardening portion of the HS model, a
combined JC and HS (JC-HS) model is developed as given in Equation (11).

σ = (A + B1ε + B2ε2)[1 + C(ε) ln
.
ε
∗
]Exp{T ∗[m1 + m2 ln(1 + ε) + m3 ln

.
ε]
}

(11)

where A, B1, B2, m1, m2, m3 are the material parameters, C(ε) = a+ bε+ cε2 + dε3 + eε4 + f ε5

is the material parameter associated with true strain, r.
.
ε
∗
=

.
ε/

.
ε0 is the dimensionless strain

rate, and T* is the homologous temperature and expressed as T∗ = (T − Tr)/(Tm − Tr).
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For this model, the reference temperature is 1123 K, the melting temperature is 1382 K
and the reference strain rate is 0.001 s−1. Under the reference deformation temperature and
strain rate, the JC-HS model can be simplified to the form of Equation (12), and the true
stress−true strain curve in reference temperature and strain rate is shown in Figure 12.

σ = A + B1ε + B2ε2 (12)
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Moreover, Equation (11) can be simplified to the form of Equation (13) under the
reference temperature. {

σ = (A + B1ε + B2ε2)[1 + C(ε) ln
.
ε
∗
]

C(ε) = a + bε + cε2 + dε3 + eε4 + f ε5 (13)

By combining Equations (12) and (13), C(ε) can be expressed by the slope of the plot
of σ = A + B1ε + B2ε2 vs. ln

( .
ε
∗). The relationship between C(ε) and strain is shown in

Figure 13. The individual parameters in the fifth polynomial of C(ε) can be calculated by
polynomial fitting, and the values of the parameters are shown in Table 3.
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Table 3. Reported parameters of the C(ε).

a b c d e f

1.696 −26.62 182.8 −612.4 1004 −646.5

The value of m1, m2 and m3 can be obtained and is respectively equal to −0.005094,
−0.002253 and 0.0002098. The comparison result between the true stress calculated by
the model and the experimental values is shown in Figure 14. The correlation coefficient
is 99.55%.

Figure 15 shows the experimental true stress and the calculated results by the JC
model, HS model and JC-HS model for describing the hot tensile deformation behavior of
the GH3230 superalloy double-sheet. It can be seen that the predicted true stress by the
JC-HS model is closest to the experimental results. The average absolute relative error of
true stress between the experimental and that predicted by the JC model, HS model and
JC-HS model is 24.60%, 13.51% and 2.35%, respectively.

These results indicate that the prediction accuracy of the JC-HS model is the highest.
The established JC-HS model can predict well the hot tensile flow behavior of a GH3230
superalloy double-sheet.
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Figure 15. The experimental true stress and calculated by the JC model, HS model and JC-HS model
of GH3230 superalloy double-sheet at different deformation temperatures: (a) 1123 K; (b) 1173 K;
(c) 1223 K; (d) 1273 K.

4. Conclusions

In this paper, the GH3230 superalloy double-sheet has been tensile deformed in
the deformation temperatures ranging from 1123 K to 1273 K, with strain rates ranging
from 0.001 s−1 to 0.2 s−1 until fracture. The hot tensile flow behavior was analyzed and
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a combined JC-HS constitutive model was proposed. The main conclusions are given
as follows.

(1) The hot tensile deformation process of the GH3230 superalloy double-sheet can be
divided into four stages, including the elastic deformation stage, the strain hardening
stage, the steady state stage and the fracture stage. The true stress decreases with an
increasing deformation temperature and decreasing strain rate.

(2) The effect of processing parameters on the strain rate sensitivity index and strain
hardening index is significant. The average apparent activation energy for hot tensile
deformation of a GH3230 superalloy double-sheet is 408.53 ± 46.96 kJ·mol−1.

(3) The combined JC-HS model considering the couple effect of strain hardening, strain
rate hardening and thermal softening on the flow behavior of the GH3230 superalloy
double-sheet was established. The average absolute relative error of true stress be-
tween the experimental and the predicted is only 2.35%. Compared with the JC model
and HS model, the JC-HS model has the highest predicting accuracy for describing
the hot tensile deformation behavior of the GH3230 superalloy double-sheet.
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Appendix A

To aid better reading of this article, a notation list is illustrated below.

σ True stress (MPa)
ε True strain
.
ε Strain rate (s−1)
T Deformation temperature (K)
m Strain rate sensitivity index
n Strain hardening index
Q Apparent activation energy (J·mol−1)
R Gas constant (8.3145 J·mol−1·K−1)
α Material constant (MPa−1)
A Yield stress (MPa)
B Coefficient of strain hardening
C, AHS, m1, m2, m3, m4, m5, m6, m7, m8, B1, B2 Material parameter
.
ε
∗ Dimensionless strain rate

.
ε0 Reference strain rate (s−1)
T* Homologous temperature
Tm Melting temperature (K)
Tr Reference deformation temperature (K)
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