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Abstract: Cement-based sensors include conductive fillers to achieve a sensing capability based
on the piezoresistivity phenomenon, in which the electrical resistivity changes with strain. The
microstructural characterisation of cement-based sensors can be obtained using a promising non-
destructive technique, such as AC impedance spectroscopy (ACIS), which has been recently used
by many researchers. This paper reviews the fundamental concepts of piezoresistivity and ACIS in
addition to the comparison of equivalent circuit models of cement-based sensors found in the litera-
ture. These concepts include piezoresistivity theory, factors affecting piezoresistivity measurement,
resistance measurement methodology, strain/damage sensing, causes of piezoresistivity, theories
of conduction, AC impedance spectroscopy theory, and the equivalent circuit model. This review
aims to provide a comprehensive guide for researchers and practitioners interested in exploring and
applying different techniques to self-sensing concrete.

Keywords: piezoresistivity; self-sensing concrete; cement-based sensors; AC impedance spectroscopy
(ACIS); equivalent circuit model; structural health monitoring

1. Introduction

The measurement of a structure’s operating environment and signs of deterioration
affecting its functioning, serviceability, and safety is generally referred to as “structural
health monitoring” (SHM). It requires ongoing monitoring and technical data collection,
validation, and analysis to support life-cycle management choices [1]. SHM can be divided
into two main directions: traditional techniques and smart materials (Figure 1a), which
include cementitious composites that are referred to as “self-sensing concrete” (cement-
based sensors), as shown in Figure 1b,c. SHM approaches have been investigated using
traditional or more advanced methods that depend on embedded or surface-mounted strain
sensors. Fibre Bragg grating is an example of an advanced localised technique, whereas
time domain reflectometry in fibre optics is an example of a modern distributed technique
of SHM [2–8]. Previous investigators [9,10] have tried to insert optical fibres into the textile-
reinforced concrete (TRC) elements. This sensing system is commonly implemented in
structural elements, which necessitates physical adaptation in the load-bearing elements,
and as a result, the structural performance may be affected. However, the sensory system
is more expensive and more complicated, as it requires special workers. On the other hand,
more advanced technologies such as piezoelectric sensors, electrochemical sensors, wireless
sensing, and self-sensing concrete are of great importance to researchers [11]. “Self-sensing
concrete” refers to the ability of the concrete material to detect its internal stresses, strains,
and damage under different loading and environmental conditions without the need for
any internal or external sensors [12].
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bon black (CB), carbon nanotubes (CNT), graphene, etc.) [14]; the second is by conducting 
current, either alternating current (AC) or direct current (DC) [15], using electrodes. As a 
result, two approaches can be adopted: resistance-based self-sensing, which is based on 
resistivity measurements, and capacitance-based self-sensing, which is based on permit-
tivity measurements. The self-sensing approach based on resistance measurement has 
been frequently used in cement-based materials incorporating various electrically con-
ductive fillers, such as short carbon fibres [16–18]. Resistance-based self-sensing is appli-
cable in both low- and high-stress regimes. On the other hand, capacitance-based self-
sensing works well only under a low-stress regime [19]. 

Self-sensing concrete has been used in a variety of investigations to assess its perfor-
mance, including traffic monitoring [20], corrosion monitoring [21], strain sensing [22], 
and seismic damage monitoring [23]. Furthermore, numerous investigations have been 
conducted to determine the properties of self-sensing concrete, including various func-
tional admixtures such as carbon fibres [24], carbon nanofibers [25], carbon nanotubes [26–
28], graphene nanoplatelets [29], and steel fibres [30]. 

In 1993, Chung [31] was the first researcher of self-sensing cement-based materials. 
Following the publication of their report, Chung’s research group [32–38] and many other 
research groups [39–42] released a large number of publications. The self-sensing behav-
iour of the resistance-based concrete is based on the piezoresistivity theory [43,44], in 
which the concrete matrix should be conductive under a stimulus like stress or strain. In 
addition to short carbon fibres, other conductive additives that could be added to the ce-
mentitious matrix include carbon black [45–48], a combination of carbon black and carbon 
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Figure 1. (a) Structural health monitoring (SHM) directions; (b) Cement-based sensors embedded in
RC beams; (c) Cement-based sensors embedded in RC plates [13].

Generally, there are two conditions for attaining self-sensing concrete. The first is by
adding conductive admixtures such as carbon-based fillers (short carbon fibres (CF), carbon
black (CB), carbon nanotubes (CNT), graphene, etc.) [14]; the second is by conducting
current, either alternating current (AC) or direct current (DC) [15], using electrodes. As a
result, two approaches can be adopted: resistance-based self-sensing, which is based on
resistivity measurements, and capacitance-based self-sensing, which is based on permittiv-
ity measurements. The self-sensing approach based on resistance measurement has been
frequently used in cement-based materials incorporating various electrically conductive
fillers, such as short carbon fibres [16–18]. Resistance-based self-sensing is applicable in
both low- and high-stress regimes. On the other hand, capacitance-based self-sensing
works well only under a low-stress regime [19].

Self-sensing concrete has been used in a variety of investigations to assess its perfor-
mance, including traffic monitoring [20], corrosion monitoring [21], strain sensing [22],
and seismic damage monitoring [23]. Furthermore, numerous investigations have been
conducted to determine the properties of self-sensing concrete, including various functional
admixtures such as carbon fibres [24], carbon nanofibers [25], carbon nanotubes [26–28],
graphene nanoplatelets [29], and steel fibres [30].

In 1993, Chung [31] was the first researcher of self-sensing cement-based materials.
Following the publication of their report, Chung’s research group [32–38] and many other
research groups [39–42] released a large number of publications. The self-sensing behaviour
of the resistance-based concrete is based on the piezoresistivity theory [43,44], in which the
concrete matrix should be conductive under a stimulus like stress or strain. In addition to
short carbon fibres, other conductive additives that could be added to the cementitious ma-
trix include carbon black [45–48], a combination of carbon black and carbon nanotubes [49],
carbon nanofibers and carbon nanotubes [50], and steel fibres with micrometre-scale di-
ameters [51]. To describe the degree (sensitivity) of piezoresistivity, a gauge factor (GF) is
introduced. The greater the value of the gauge factor, the better the results [19]. It is worth



Materials 2023, 16, 768 3 of 29

mentioning that GF should be measured within the elastic range to obtain a good indicator
of the sensitivity of the conductive fillers used.

The methodology of electrical resistance measurement depends on the type of power
source (AC or DC) because of the presence of the polarisation phenomenon [38,52], the
configuration of electrodes used (2 or 4-probe) [36,40], and whether the electrodes are
embedded in or attached to the specimen [53–55]. Both strain (elastic range) and damage
(post-elastic range) can be monitored with a resistance-based self-sensing concept. This
is because both reversible and irreversible behaviours can be observed for samples under
loading [56].

The cause of piezoresistivity in cement-based materials is based on one or more of
these factors: the slippage of the fibre–matrix interface [57–62], the change in the intrinsic
resistance of the conductive admixtures [57,59,63,64], the change in the contact resistance
between the functional additives [57,65], the change in the tunnelling distance between the
conductive admixtures [57], and the change in the capacitance distance of the conductive
fillers [57,66].

The conduction mechanism within cement-based materials is based on one or more of
these conduction phenomena: the motion of ions (ionic conduction), which is an inherent
part of the water used in the matrix, and the motion of free electrons (electronic and/or hole
conduction), which is an inherent part of the conductive fillers added to the cement-based
materials to improve their electrical capability [67]. The latter can be divided into contacting
conduction, internal field emission conduction, and/or tunnelling conduction (quantum
tunnelling) [57]. Understanding the conduction mechanism aims to identify the precise
dosage of conductive fillers to attain the percolation threshold at which the conductivity of
cement-based materials is acceptable for achieving self-sensing behaviour under loading
conditions [57,68]. Moreover, there are many factors affecting the piezoresistivity measure-
ment, such as the filler type, aspect ratio, and dosage [69]; the dispersion of conductive
admixtures [70,71]; the type of cement-based matrix [16]; the water-to-cement ratio [72];
the loading type and its amplitude [73], and the ambient environment [16], which includes
temperature, relative humidity, and freeze–thaw cycles.

Understanding the microstructural behaviour of the cement-based material is of
paramount importance, especially when adding new materials to the concrete matrix to
improve its mechanical performance or electrical capability. This enhances the durability
and mechanical properties of cementitious materials [74]. Therefore, researchers are trying
to use destructive or non-destructive methods. Among non-destructive techniques, alter-
nating current impedance spectroscopy (ACIS) can be used as a real-time non-destructive
technique, and it is preferable to the other non-destructive methods [75].

Previously published review papers focused on different aspects of self-sensing con-
crete and the ACIS technique. For example, Taheri [11] focused on the fabrication of five
key sensors, including self-sensing technology; Tian [12] reviewed the materials and fab-
rication of self-sensing concrete; Baoguo [14] discussed potential structural applications
of self-sensing concrete; Dong [16] concentrated on the piezoresistive properties of self-
sensing concrete; Abedi [53] focused on the potential application of self-sensing concrete in
transport infrastructure; Han [54] reviewed the effect of different carbon-based conductive
fillers on self-sensing concrete; Wang [75] discussed the measurement limitations of the
ACIS technique; and Hu [76] concentrated on the equivalent circuit models for different
cement-based materials. Therefore, for new researchers and practitioners, a comprehensive
guide, including the basic principles, is required before going through the previously
published studies. This paper provides a comprehensive overview of the topics and the
significance of using AC impedance spectroscopy as a non-destructive technique to study
the microstructure of self-sensing concrete.

This paper aims to provide a comprehensive guide to both piezoresistivity and ACIS
theories proposed in the literature in an insightful way while paying more attention to
a deep understanding of their roles. Moreover, the use of AC impedance spectroscopy
as a non-destructive technique to study the microstructure of self-sensing concrete is
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summarised. The paper is divided into two main sections: resistance-based self-sensing
concrete and the equivalent circuit model. Section 2 explains the basics of self-sensing
concrete, including piezoresistivity theory, factors affecting piezoresistivity measurement,
resistance measurement methodology, strain/damage sensing, and conduction theories. On
the other hand, Section 3 covers the fundamental concepts of alternating current impedance
spectroscopy (ACIS) theory and its equivalent circuit model in light of cement-based
materials and sensors. Finally, in addition to the future aspect, a conclusion is drawn.

2. Resistance-Based Self-Sensing Concrete

This section will review piezoresistivity theory, factors affecting piezoresistivity measure-
ment, resistance measurement methodology, strain/damage sensing, and conduction theories.

2.1. Piezoresistivity Theory

Self-sensing behaviour is basically attained with piezoresistivity, which is an elec-
tromechanical phenomenon in which a material’s electrical resistivity varies with strain
in a reversible manner [43], as illustrated in Figure 2. To attain reversibility, the mate-
rial should be in the elastic range while the piezoresistivity is studied [43]. On the other
hand, irreversible behaviour refers to the occurrence of damage in concrete structures [43].
Piezoresistivity is used for strain sensing in scientific measurement. It does, however,
provide stress sensing due to the relationship between strain and stress.
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Figure 2. The difference between reversible and irreversible behaviours of electrical resistivity under
compressive loading: (a) reversible behaviour; (b) irreversible behaviour [73].

The relationship between the volume resistivity and the volume resistance is calculated
based on Equation (1).

R =
ρ l
A

(1)

where R represents the resistance of the specimen (volume resistance), ρ represents the
resistivity of the specimen (volume resistivity), l represents the distance between voltage
terminals, and A represents the cross-sectional area of contact between the electrode and
the specimen [43].

Both geometry and resistivity variations affect the change in resistance caused by the
applied loads. Note that the resistivity and strain may not be in the same direction [43].
For isotropic material in both directions, the relationship between the fractional change in
resistance (∆R/R), resistivity, and strain is defined based on Equation (2).

∆R
R

=
∆ρ

ρ
+
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(a) Reversible behaviour (b) Irreversible behaviour

) (2)

where (∆ρ/ρ) is the fractional change in resistivity,
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(a) Reversible behaviour (b) Irreversible behaviour

(= ∆l/l) is the strain,
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(a) Reversible behaviour (b) Irreversible behaviour

is the Poisson’s
ratio, and (1 + 2
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(a) Reversible behaviour (b) Irreversible behaviour

) is the geometric effect [44].
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As the change in resistivity (∆ρ/ρ) is normally far greater than the change in the strain
(∆l/l) in concrete samples [43], it can be assumed that (∆R/R) equals (∆ρ/ρ). Therefore,
many investigators reported the relationship between (∆R/R) and strain (
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(a) Reversible behaviour (b) Irreversible behaviour

) in cement-
based materials as an indication of piezoresistivity rather than (∆ρ/ρ).

The effectiveness of sensing can be represented by the gauge factor (GF), as illustrated
in Equation (3).

GF =
∆R/R
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(3)

The fractional change in resistance per unit strain represents the gauge factor (GF). It
describes the degree of sensitivity of piezoresistivity. Moreover, its sign depends on the
direction of applied loads: positive for uniaxial tension and negative in the case of uniaxial
compression. Even if the resistivity does not vary with the applied strain, the resistance
does because of the altered dimensions. The gauge factor is nearly two when the resistivity
does not change with the applied loads, as the exact number depends on Poisson’s ratio.
Conversely, the gauge factor can easily reach two and can exceed it when the resistivity
changes with strain [19].

As piezoresistivity is an electromechanical phenomenon in which the material’s resis-
tivity alters reversibly under the applied strain, the gauge factor must be determined in the
case of reversible alterations in resistivity due to the applied loads. It should be calculated
within the elastic range, as the plastic deformations do not reflect the genuine gauge factor.
Additionally, it is preferable to measure the resistance under progressively rising strain
amplitudes rather than static loading up to the failure point, as the former state gives a
strong indication of the reversibility after unloading [19].

2.2. Factors Affecting Piezoresistivity Measurement in Self-Sensing Concrete

It is worth mentioning that there is a difference between resistivity and piezoresistivity.
The term “resistivity” describes the electrical resistance status of the cement-based material
without loading. Piezoresistivity, on the other hand, refers to the change in the electrical
resistance status of the cement-based material in response to a stimulus, whether stress
or strain. In other words, piezoresistivity correlates external loads with the resistivity
change in the cementitious matrix. Therefore, if the resistivity is affected by any factor, the
piezoresistivity will also be affected.

As summarised in Table 1, many factors may affect the sensitivity of piezoresistivity
and/or resistivity. To achieve reliable results from the self-sensing concrete, it is advisable
to consider as many factors as possible.

Table 1. Factors affecting resistivity and piezoresistivity measurement in self-sensing concrete.

Factor Description Key Findings Refs.

The filler type, the aspect
ratio, and the dosage

The type of conductive filler
(CF, CNT, CB, etc.), as well as

the geometry and dosage, affect
the resistivity of

cement-based composites.

The change in conductive fillers’
geometry and dosage affects the

formation of the conductive
passages, leading to an alteration

in the percolation threshold.

[69,77–88]

The dispersion of
conductive fillers

The dispersion of conductive fillers is
advisable to form the conductive

passages and improve the workability
of concrete.

Using supplementary
cementitious materials (silica
fume, fly ash, and slag) and
chemical admixtures (latex,

methylcellulose, and
superplasticisers) enhances the
dispersion of conductive fillers.

However, the impact on resistivity
and piezoresistivity is different.

[38,67,70,71,77,89–97]
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Table 1. Cont.

Factor Description Key Findings Refs.

The matrix type
The type of cementitious matrix

(cement paste, mortar, and concrete)
affects resistivity.

In the presence of conductive fillers,
cement paste is more conductive than
mortar and concrete; fine and coarse
aggregates hinder the formation of

conductive paths.

[16]

The water-to-cement ratio The water-to-binder ratio affects the
resistivity and piezoresistivity.

The piezoresistivity stability improves
when the water-to-cement ratio is

reduced. However, this may affect the
rheological properties of the

cement-based material.

[72,98,99]

The curing type and
its duration

The method of curing (moist or air) and
its duration affect cement-based

materials’ resistivity
and piezoresistivity.

Samples tested at 28 days showed
better reversibility compared to 7 and

14 days.
[25,100]

The loading type and
its amplitude

The loading type’s amplitude and
frequency affect the piezoresistivity.

The piezoresistivity is affected
differently by monotonic and cyclic,

uniaxial, biaxial, and multiaxial forces.
[73,101–104]

The electrode
configuration

The electrode configuration, such as
embedded, attached, two contacts,

four contacts, electrode material, and
electrode position, affect the resistivity

and piezoresistivity.

The four-probe technique is more
reliable than the two-probe technique;
embedded electrodes are better than
attached electrodes, and the distance

between electrodes does not
significantly impact the measurement.

Additionally, the resistivity
measurement does not depend on the

area of the voltage probes.

[36,40,99]

The power supply type
(DC or AC)

Current type (AC or DC), intensity, and
lasting time affect piezoresistivity.

An AC power source is generally better
than a DC power source, and a high

frequency is preferable to a
low frequency.

[25,99,105]

The freeze-thaw cycles

The damage to cement-based
materials due to the freeze-thaw cycles
is primarily caused by the freezing of

water inside pores. This damage can be
quantified using the change

in resistivity.

The impact on resistivity due to the
freeze-thaw cycles is minimal

compared to the temperature impact
on resistivity.

[106–109]

The temperature
The change in external temperature

affects the resistivity
and piezoresistivity.

Increasing the temperature leads to a
decrease in the resistivity of

cement-based materials.
[97,99,110]

The relative humidity and
the moisture content

The change in relative humidity and
moisture content affects the resistivity

and piezoresistivity.

At low dosage of conductive fillers, the
relative humidity and water content

affect the resistivity. Conversely,
increasing the dosage of conductive

fillers leads to a reduction in this
impact. Moreover, the presence of

water leads to a longer measurement
time as the polarisation is enhanced.

[58,81,111]

2.3. Resistance Measurement Methodology

The four-probe method is far more dependable for measuring the volume resistance
than the two-probe method [36]. Four electrical connections are utilised in the four-probe
approach, with the outer two for conducting current and the inner two for measuring the
electrical potential difference (voltage) [40], as shown in Figure 3. On the other hand, in the
two-probe approach, two electrical connections are utilised, with each probe used for both
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conducting current and measuring the voltage. Because the contact resistance is removed
from the measured resistance, the four-probe method is preferable [36]. Moreover, during
the application of strain, the contact resistance can be altered; therefore, a better sensing
solution can be achieved by using a grid of contacts, with the exterior for conducting
current and the interior for monitoring voltage [112]. Additionally, a two-dimensional or
three-dimensional grid of connections can achieve resistivity tomography [113].
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Figure 3. Different electrode configurations for resistance measurement in the cementitious matrix:
(a) two-probe technique; (b) four-probe technique.

Electrodes can be attached to or embedded in the sample. The latter case is preferable
to the former one because the apparent or measured resistance will be more accurate and
reflect the actual behaviour of the concrete specimen. This is because of the higher contact
between the conductive admixtures and the electrodes compared to the former case [53–55].

The power source can be DC or AC. The DC approach benefits from a higher degree of
current penetration, whereas the AC method benefits from less electric polarisation. Polarisa-
tion is the formation of an electric dipole by the mobility of charges (e.g., ions). Polarisation
happens during resistance measurement, which requires the measurement meter to provide
a small current for the measurement period. The longer the measuring time, the greater the
polarisation. When the current polarity is reversed, depolarisation occurs. Because the dipole
obstructs conduction, the measured (apparent) resistance is higher than the true resistance.
The measurement of electrical resistance within the first few seconds before the polarisation
becomes noticeable reveals the true resistance. Another method is to measure the average
resistance immediately before and after the polarity reversal [38,52]. Note that the contact
resistance should be excluded from the resistance measurement.

The DC resistance is distinct from the AC impedance, as the latter includes more com-
plicated measurements such as inductance and capacitance along with the resistance, as
shown in Figure 4. Using an AC power source with a high frequency eliminates the effect of
capacitance caused by the presence of the two parallel electrodes [81], as shown in Figure 4c.
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2.4. Strain and Damage Sensing

The electrical resistivity behaviour is reversible in the case of elastic strain, whereas the
behaviour is irreversible in the case of fracture [25,56]. This is the idea behind the sensing
concept using electrical resistivity. The alteration in electrical resistivity under dynamic
tensile stress at the same amplitude is studied by Chung [114]. During the first cycle, minor
cracks occurred at the beginning of loading; therefore, an irreversible rise in the resistivity
was noticed. Nevertheless, in the subsequent loading cycles, the damage was not observed,
and hence the irreversible rise in the resistivity was not spotted [115]. This highlights the
precision of the sensing concept, as it detects even minor cracks. On the other hand, fatigue
damage is also reported by Chung [116] in cement mortar that contains short carbon fibres
as a conductive filler.

The strain-sensing capability is less adequate in the elimination of a conductive admix-
ture, as evidenced by Sun’s [73] use of nanographite platelets (NGPs) in the cementitious
matrix with different dosages, as shown in Figure 5, and the reduced signal-to-noise ratio
reported by Konkanov [117], using non-conductive additives. Without conductive ad-
mixtures, conductivity is dominated by ions rather than electrons, and humidity has a
significant impact on the resistance. Electrical conduction, on the other hand, is dominated
by electronic conduction with the addition of conductive admixtures at a volume percent-
age near the percolation threshold (see Section 2.5 for more information), significantly
lowering the humidity dependence [67]. Although the humidity reliance is not entirely
removed [58], the influence of humidity on the sensing performance is minimal [77].
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Figure 5. Effect of NGPs dosage on the fractional change in resistivity under compressive loading:
(a) without NGPs; (b) with 2% NGPs; (c) with 6% NGPs [73].

Piezoresistivity in a cement-based matrix containing short carbon fibres is caused
by a minor slippage of the fibre–matrix interface, as illustrated in Figure 6 [58,116], and
an accompanying increase in the interface resistivity [118,119]. There are other causes
of piezoresistivity in cement-based materials containing conductive fillers, such as the
change in intrinsic resistance of the conductive admixtures, the change in contact resistance
between the functional additives, the change in tunnelling distance between the conductive
admixtures, and the change in capacitance distance of the conductive fillers [57]. All the
previous causes are summarised in Table 2. It is worth mentioning that one or more reasons
contribute to the change in piezoresistivity [57].
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Table 2. Causes of piezoresistivity in cement-based sensors.

Cause Description and Key Findings Refs.

The slippage of the fibre–matrix interface The pull-out of crack-bridging fibres during crack opening
leads to an increase in the contact electrical resistivity. [57–62]

The change in intrinsic resistance of the
conductive admixtures

Under the externally applied loads on the concrete matrix,
deformations occur in the conductive fillers, leading to

changes in their intrinsic resistance.
[57,59,63,64]

The change in contact resistance between
the functional additives

Under the externally applied loads on the concrete matrix,
the position of the conductive fillers alters, leading to

direct contact or separation between them. As a result, an
increase or decrease in the contact resistance between

conductive fillers occurs.

[57,65]

The change in tunnelling distance between
the conductive admixtures

Under the externally applied loads on the concrete matrix,
the tunnelling distance, or the insulating distance, of the
cementitious layer between the functional fillers alters,

leading to an alteration in the electrical resistance of
the composite.

[57]

The change in capacitance distance of the
conductive fillers

At the microstructural level, carbon fibres may be
considered micro-capacitance plates because of the ionic

conduction between them in the concrete matrix.
Therefore, under the externally applied loads on the

concrete matrix, the distance between these
micro-capacitance plates alters, leading to a change in the

resistance of the composite.

[57,66]

2.5. Conduction Theories

There are two main methods of conduction in cement-based materials. The first
method is the motion of ions (ionic conduction), which is an inherent part of the water
used in the matrix. The second method is the motion of free electrons (electronic and/or
hole conduction), which is an inherent part of the conductive fillers added to cement-
based materials to improve their electrical capability. Furthermore, electronic and/or hole
conduction includes contacting conduction, internal field emission conduction, and/or
tunnelling conduction (quantum tunnelling) [57].

Contacting conduction results from the proximity of functional fillers, which creates a
conductive relationship. It is connected to the movement of electrons and/or holes along
the conductive channels made by in-contact conductive fillers [57,120]. When electrons in
a cement-based material cross the energy barriers (insulating zones between conductive
admixtures), tunnelling conduction occurs [57]. The transmission of electrons between
the dispersed but sufficiently close-by fillers is related to tunnelling conduction and field
emission conduction. It is believed that quantum tunnelling widely occurs in cement-based
materials with different conductive admixtures, as it requires a low electric field between
conductive admixtures compared to field emission conduction [57,121,122]. However,
some functional fillers with distinct morphologies might cause a localised rise in the electric
field at sharp ends, thus reducing the width of the barrier and permitting field emission
conduction [57,63,123,124]. Previous investigators theorised that quantum tunnelling and
field emission conduction were responsible for the conductive behaviour of self-sensing
composites [63,83,121,123]. While some investigators may consider internal field emission
conduction to be different from tunnelling conduction [57,121,125–127], other researchers
may consider tunnelling conduction a particular case of field emission conduction [128,129].

Concerning ionic conduction, in addition to calcium silicate hydrate (C-S-H) gel and
other solid phases, hydrated cement paste also includes a variety of voids. Ionic species
from the solid phases can be dissolved by the water filling these spaces or pores, which
causes some ionic conduction through the network of capillary pores. Ionic conductivity
varies greatly when cement contains a significant amount of free water because ionic
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conduction is linked to the migration of ions in the pore solution. The cement matrix
resembles an insulating substance as long as it is dried [57,130]. On the other hand, if the
concentration of fillers (conductive admixtures) is below the percolation threshold, ionic
conduction will dominate in the case of cement-based materials [57,67].

While cement-based materials can barely conduct electrical current based on ionic
conduction, they cannot achieve the piezoresistivity (as discussed in Section 2.1) required
for them to be used as cement-based sensors. Therefore, conductive fillers should be added
to the cement-based matrix. However, not all the dosages of the conductive fillers are
sufficient to induce self-sensing behaviour under a stimulus like stress or strain [57,68].
From this point, the percolation phenomenon is introduced to define the optimum dosage
of conductive fillers.

The resistivity of the testing material can vary by many orders of magnitude when
conductive particles, usually made of metal or carbon, are introduced to a non-conducting
matrix. The results obtained by previous investigators indicate that once the particle
concentration is raised above a particular threshold level, resistivity abruptly decreases.
At that concentration, the system begins to consist of limitless chains of particles. The
percentage of particles in the infinite conductive paths increases as the particle concen-
tration rises, thereby helping with the conduction process [131–133]. Figure 7 (zones 2,
3, and 4) shows that increasing the dosage of conductive fillers results in a precipitous
decrease in resistivity, and this range is called the percolation threshold. The volume
fraction at which the conductive fillers contact each other (contacting conduction) is called
the percolation threshold [134]. However, contacting conduction is not the only way to
attain the percolation threshold. If the conductive fillers are close enough to cross the
energy barriers (tunnelling conduction and/or field emission conduction), the percolation
threshold can also be achieved [135]. There is no identified dosage of conductive fillers to
attain the percolation threshold, as it depends on many variables such as the composite’s
microstructure, the type of conductive fillers, their aspect ratio, their orientation, and the
presence of externally applied loads [134,136].
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Based on the previous discussion, it can be inferred that the percolation threshold de-
pends not only on the contacting conduction but also on the quantum tunnelling and field
emission conduction. In other words, the percolation threshold describes the conduction at
the macro level, and both tunnelling and field emission conduction describe the conduction
at the micro level [137]. Figure 7 shows the relationship between the dosage of conduc-
tive fillers and the corresponding resistivity of an arbitrary cement-based matrix without
externally applied loads. Zone 1 reveals the domination of ionic conduction because the
dosage of fillers is very low. Zone 5, on the other hand, exhibits the control of contacting
conduction due to the high dosage of conductive fillers. In the meantime, the percolation
range (zones 2, 3, and 4) represents the alterations in conduction type (contacting and
tunnelling) with increasing the filler dosage, and this conduction mechanism is comparable
to Hui’s [83] results. If the fibre content is around the percolation threshold, the electrical
resistivity will be low, and the piezoresistivity will be strong; hence, the resistivity alters
significantly with strain. In the case of using fibre content above the percolation threshold,
the overall cost and sensing effectiveness may be affected [138–140].
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The relationship between the fractional change in resistance (∆R/R) and the externally
applied loads (strain or stress) within the elastic range is illustrated in Figure 8. It can
be noticed that increasing the dosage of fillers causes the pattern of fractional change in
resistance to coincide with the loading pattern. This is because of the effect of conductive
fillers that increase the number of conductive passages within the cement-based matrix.
Figure 8 can be correlated to Figure 7, depending on the pattern of fractional change in
resistance. For example, Figure 8a shows that the fractional change in the resistance pattern
is irreversible under loading; this can be correlated to zone 1 in Figure 7, which shows
the ionic conduction dominance. It is worth mentioning that the position and orientation
of conductive fillers change under loading, and this alteration affects the reversibility
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pattern of the fractional change in resistance depending on the loading type (tension or
compression) [141].

3. Equivalent Circuit Model

AC impedance spectroscopy has been suggested as a promising, non-destructive
method for examining self-sensing concrete. In other words, this method can be used to
study the microstructure composition of self-sensing concrete in terms of fibre orientation,
fibre dosage, etc. This section will discuss the fundamentals of AC Impedance Spectroscopy
(ACIS) in light of cement-based materials. Additionally, the equivalent circuit models of
different cement-based sensors will be summarised.

3.1. ACIS Theory

A more generalised version of electrical resistance is impedance. Impedance includes
the main components of electrical resistance, such as resistors, capacitors, and inductors, as
illustrated in Table 3. Both direct current (DC) and alternating current (AC) can be used
as an excitation voltage. However, it is preferable to use AC because it is more sensitive
and covers a wide range of chemical reactions inside samples by using small perturbation
signals compared to DC, which gives responses at a relatively large perturbation depending
on the composition of the testing materials [142,143]. Impedance spectroscopy (IS) can be
split into two major types depending on the frequency range. In the frequency domain
ranging from sub-m Hz to k Hz, the electrochemical reactions between electrodes and
liquids in batteries can be studied; in this case, such impedance spectroscopy can be called
electrochemical impedance spectroscopy (EIS). On the other hand, ACIS can be utilised
when the frequency domain ranges from Hz to MHz to study the solid-solid interface or
the solid-liquid interface in cement-based materials [144].

Table 3. Common electrical circuit components of AC circuits.

Symbol Description Impedance Variables
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inductor [145].
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ZCPE = 1
Q0(iω)α

ZCPE is the impedance due to a
complex circuit component, Q0 is a

pseudo-capacitive coefficient, and α is
an arbitrary constant with no physical
meaning and its value between 0 and

1 (0 ≤ α ≤ 1). If α = 1 then
ZCPE = ZC , and If α = 0 then

ZCPE = ZR [145,146].
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output current represents the total impedance, reflecting the internal properties of the
cement-based material [143]. Single or multi-sine waves with different frequencies and
phases can be applied simultaneously in the time domain. Then, using a Fourier transform
(FT), the current in the frequency domain can be resolved [142,145]. It is worth mentioning
that the applied perturbation should not be very high to ensure the linearity between the
voltage and current, as shown in Figure 9a [142,145,148]. Applying a wide frequency range
detects different physical and chemical phenomena within the testing sample [148].
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ACIS can be used to analyse a simple AC circuit with a resistor, a capacitor, and an
inductor in series, as shown in Figure 10a, in the time domain with a voltage perturbation
(v(t)= v0 sin(wt)).
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= −90◦ for an inductor).

The relationship between the different quantities and the applied perturbation in the
time domain can be deduced as illustrated in Equation (4) [143,145].

L
dI
dt

+ RI + C−1
∫

Idt = V(t) (4)

where I is the current, R is the resistance, C is the capacitance, and L is the inductance.
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Using the Fourier transform to change Equation (4) from the time domain to the
frequency domain, as shown in Equation (5) [143,145].(

iωL + R + (iωC)−1
)

Ĩ = Ṽ(ω) (5)

where ω is the angular frequency that equals 2πƒ (ƒ is the frequency of the AC source), i is
the square root of (−1).

It can be inferred from Equation (5) that the total impedance, as illustrated in Equation (6),
depends on the frequency domain rather than the time domain [143,145].

Zt =
Ṽ(ω)

Ĩ(ω)
(6)

For a series circuit of a resistor, a capacitor, and an inductor, the total impedance is
calculated as shown in Equation (7) [145].

Zt = iωL + R + (iωC)−1 (7)

To obtain the effect of a resistor alone, make the other two quantities equal to zero
in Equation (7). Following the same pattern, the effects of a capacitor alone, an inductor
alone, a series circuit of a capacitor and an inductor, and a parallel circuit of a resistor and a
capacitor can be obtained, as shown in Table 3.

Solving Equation (5) for the whole frequency range is very complex from a mathe-
matical point of view and leads to complicated mathematical operations. As a result, it is
much easier to solve it using ACIS for a given frequency, ω, with only two variables: the
amplitude and the phase shift (illustrated in Figure 10b) [143]. A complex representation
(Nyquist plots) in the polar or rectangular form (the rectangular form used in the following
explanation, Figure 9b) can be used to display the two quantities as a single frequency. It is
worth mentioning that the imaginary part of the complex plane is just for mathematical
manipulations, and there is nothing fictitious about the physical quantity impedance [142].

A representation of the typical combinations of a resistor, a capacitor, and an inductor
in the complex plane is shown in Figure 11. Substituting ω with (0) and (∞) into each
equation in Figure 11 gives the graphic representation of each case. Besides substituting ω
with (0) and (∞), an additional value can be added at ω = (1/RC) in Figure 11e. This leads
to the highest value of ω, which in this situation will be called the characteristic frequency
ωC; the inverse of it is called the time constant, which is related to a particular phenomenon
within the testing material [143,145]. The semicircle depicted in Figure 11e is the foremost
representation of ACIS because it represents the case of a parallel capacitor and resistor,
from which the cement-based characteristics can be deduced, as illustrated in the following
section. Further reading on the basics of impedance spectroscopy has been interpreted in
detail [149].

Although physical and chemical phenomena may occur at various frequencies, the
time constant or the characteristic frequency can discriminate between them. The different
phenomena will emerge as distinct arcs, as illustrated in Figure 12, if their time constants
vary by at least two orders of magnitude [144]. Otherwise, there may be an overlap between
the two arcs, necessitating computational techniques to determine the values of R and C
(R is the electrical resistance, as illustrated in Equation (1), and C is the capacitance cal-
culated from the following relationship: C = k ε o A/L, where k is the relative permittivity
(dielectric constant), εo is the permittivity of free space (8.85 × 10−12 F /m), and A and
L are as defined in Equation (1)). As a result, the time constant of a particular material
depends more on its resistivity and relative permittivity (dielectric constant) than on its
geometry [144]. Since the behaviour of various circuit components may be used to under-
stand many physical processes, the equivalent circuit model, which is covered in greater
detail below, can simulate a system’s reaction.
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3.2. Equivalent Circuit Model and the Corresponding Physical Meaning

The required steps for applying the ACIS technique are illustrated in a flow chart, as
shown in Figure 13. The chart consists of six main steps. Step 1 includes preparing samples,
selecting the electrode type and configuration, and identifying the AC impedance analyser
range. Step 2 contains carrying out the test and collecting the preliminary results. As
shown in Figure 14a,b, step 3 represents error correction, which includes stray impedance
and contact resistance [75]. Step 4 incorporates the validity of the preliminary results to
ensure causality, linearity, and stability, followed by differential impedance analysis to
check the number of time constants. In step 5, the physical parameters and the equivalent
circuit model can be identified. Finally, step 6 contains the curve fitting and the system
characterisation [75,144,151–155].

The concept of the equivalent circuit model needs to be introduced to analyse the
resulting ACIS measurement obtained from a particular material. The equivalent circuit
model comprises resistors, capacitors, and inductors to simulate the resulting ACIS mea-
surement. In other words, the total impedance of the equivalent circuit model, which
contains the three elementary components, should match the resulting ACIS measurement
at every frequency [143].

To construct a proper equivalent circuit model, it is advisable to adopt a physical
model describing the different parameters (resistors, capacitors, and inductors) of the
ACIS measurement. Several models attempted to simulate the bulk and microstruc-
tural properties of cement-based materials, including the layer model [156], the brick
model [157], the T and I model [158], the barrier/hole model [159], and the conductive path
model [74,153,160–163]. It is worth mentioning that the conductive path model, which
represents the best model describing the actual composition of the cement-based materials,
can be used to construct the equivalent circuit model [75].

Most of the phenomena (the electrode/sample interface, cement hydration, and the
solid–liquid interface) can be represented in Figure 11f by a parallel resistor and capacitor,
forming the ideal semicircle (red colour). However, the resulting semicircle of the ACIS
measurement is, in most cases, depressed below the real axis by a depression angle (α),
as shown in Figure 11f (blue colour). This is because the ideal capacitor does not exist in
reality, and thus a non-ideal capacitor (a constant phase element, or CPE) is introduced, as
illustrated in Table 3 [143,144,150]. The constant phase element, including the depression
angle, can be affected by the dispersion of relaxation times and the pore size distribution of
cement paste [150,164,165].
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Figure 14. The equivalent circuit model and the corresponding physical meaning in the case of cement-
based materials: (a) the preparation of a cement-based sample; (b) the electrical representation of stray
impedance; (c) the simulation of DCP and CCP; (d) the equivalent circuit model; (e) the simulation of
closed pores.

The equivalent circuit model will simulate the bulk and microstructural properties
of the cement-based materials. Under the effect of the electrical field used to carry out
the ACIS measurement, the electrical response of most materials that contain different
compositions is heterogeneous [144]. This response at least includes both bulk material
and electrode/sample responses, as shown in McCarter’s model [150] in Figure 12. In this
model, in the low-frequency range, which may be excluded from the ACIS measurement if
the cut-off frequency is used [75], the electrode/sample interface is detected in the ACIS
measurement. This can be seen in the presence of the blue colour in Figure 12, which
contains the Warburg element (W) that represents the diffusion at the electrode/sample
interface (see Table 3), the constant phase element (CPE) that represents the spread of
relaxation times, and the charge transfer resistance (Rct). In the high-frequency region, the
bulk response of the cement-based sample appears as the red semicircle shown in Figure 12.
This semicircle includes the CPE and the resistance (Rio) that represents the resistance of
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ionic conduction. Note that (Re) means that the semicircle is not intersected with the origin
and does not refer to any physical meaning. McCarter [150] tried to study the properties
of the hardened cement-based material for 1, 10, and 100 days. Figure 15 reveals that
increasing the degree of hydration leads to a rise in both the capacitance and resistance
of the cement-based material. This is just one idea behind studying the microstructure of
cement-based materials using the ACIS measurement.
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Furthermore, more complicated properties, such as cement hydration and a solid/liquid
interface, can be detected, as shown in Figure 14a,c,e. The equivalent circuit model of Song [74]
is based on the conductive path model, which contains a continuous conductive path (CCP), a
discontinuous conductive path (DCP), and an insulator path (IS). Song considered that the
products of the hydration process, like the C-S-H gel, were isolating particles, the unconnected
pores were a discontinuous conductive path, and the connected pores were a continuous
conductive path, as shown in Figure 14c. Moreover, the continuous conductive path is
represented by a resistance (RCCP) because of the resistance of the ionic conduction, the
discontinuous conductive path with a resistance (RCP) as well as a double layer capacitor
(CDP) that emerged because of the existence of discontinuous points, and the bulk resistance of
the sample is represented by a capacitor (Cmat) because of the presence of the outer electrodes
and the dielectric material (cementitious matrix) in between [149], as illustrated in Figure 14d.

Generally, Song’s model is represented by three parallel branches only (Cmat, RCPCDP,
and RCCP), as shown in Figure 14d. However, it is imperative to remember that cement-
based materials commonly have closed pores ranging in size from nanometres to millime-
tres [152]. Therefore, one discontinuous conductive path is not sufficient to simulate the
actual case of the unconnected pores [75,158]. Consequently, the final representation of
the cement-based materials can be expressed as shown in Figure 14c–e, which satisfies
the Maxwell model that contains an infinite number of parallel branches [147]. The total
impedance of the Maxwell model can be calculated through Equation (8).

Zt =

{
R−1

ccp + iwCmat +
k=n

∑
k=2

[
RCPk + (iwCDPk)

−1
]−1
}−1

(8)

where w is the angular frequency, and i is the imaginary number.
It is worth mentioning that many models were developed to characterise the different

physical properties of cement-based materials based on the admixtures used, and each
model can be interpreted in various ways. Besides studying the effect of the hydration
process using ACIS measurement, as has been discussed earlier, other advantages of using
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the ACIS measurement in the case of cement-based materials include studying the effect
of the chloride diffusivity [76,166], the effect of various temperatures and humidity [167],
the effect of fly ash in blended OPC mortars [168], the effect of the influencing factors in a
novel repairing material [169], the effect of brick powders as a partial replacement for fine
aggregates [170], the effect of nanomaterials in cement-based mortars [171], and the effect
of mineral admixtures on the durability of prestressed concrete cylinder pipe [172].

3.3. Equivalent Circuit Models of Cement-Based Sensors

Based on the previous discussion of ACIS principles, the following different models
of cement-based sensors in Table 4 can be interpreted. The presence of conductive fillers,
which have many types and shapes, affects both the capacitance and resistance of the
equivalent circuit model. As a result, no identified model can be followed, and more
research is needed to reach a general model for cement-based sensors.

Table 4. Summary of equivalent circuit models related to different cement-based sensors.

Equivalent Circuit Model Parameters Specification Limitations Ref.
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R1 is the high-frequency resistance,
R2 is the resistance of solid/liquid

interface, and C2 is the bulk
capacitance. Rct is the charge

transfer resistance of the
cement/electrode interface, and

Cdl is the double-layer capacitance.

The model was used to
study the crack growth

of cement-based
composites reinforced
with polypropylene,

carbon fibre, and mica
flakes under a

compressive load.

The model can
characterise and detect

crack growth in
cement-based composites
containing polypropylene

fibres and mica flakes.
However, it did not reflect

the microstructure of
cement-based materials
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[173]
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Rox is the resistance due to the
oxide film formation on the

copper-mesh electrodes, and Cox is
the capacitance due to the

electrode films or double layers. Rc
and Cc are the resistance and

capacitance due to the fibre oxide
coating, respectively. Rsp and Csp
are the spreading resistance and

capacitance at fibre tips,
respectively. Rb

/ and Cb
/ are the

bulk resistance and the bulk
capacitance between adjacent

fibres, respectively. Rb and Cb are
the bulk resistance and capacitance

of the matrix, respectively.

The model was used to
study the non-linear
relationship between

current and voltage in
cement-based

composites containing
steel fibres.

The threshold of the
four-point DC resistance
measurement was ±50

mA, with a range of
frequencies of 11–100
MHz. Additionally,

measuring the resistance
for a long period of time
leads to the corrosion of

fibre tips.

[174]
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stricted to cement-
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[177] R3

C3

R2

C1

C2

Rs simulates the resistance of
electrolyte solutions. Q1 represents

the double-layer capacitance on
the surface of multi-walled CNTs,

Rct1 simulates the resistance
caused by charge transfer on the

surface of multi-walled CNTs, and
Zw1 simulates the Warburg

resistance due to charge diffusion
on the surface of multi-walled

CNTs. Q2 represents the
double-layer capacitance between

cement material and electrodes,
Rct2 simulates the resistance due to

charge transfer on the surface of
electrodes, and Zw2 represents the
Warburg resistance due to charge

diffusion on the surface
of electrodes.

The model was used to
study the fracture

toughness of
multi-walled carbon

nanotube/
cement composites.

The model was limited to
carbon nanotubes with

lengths and diameters of
10–30 µm and 10–20 nm,

respectively. The CNT was
up to 0.1 wt%.

[175]
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[177] R3

C3

R2

C1

C2

R1 simulates the bulk resistance of
conductive paths, and R2

represents the resistance of
partially conductive paths. C1
simulates the capacitance of

non-conductive paths, and C2
represents the capacitance of
partially conductive paths.

The model was used to
study the electrical

properties of
cement-based

composites containing
carbon black

nanoparticles and
PVA fibres.

The model was used to
simulate the

high-frequency region,
excluding the

electrode/sample
interface. It was restricted
to uncracked bulk samples
containing PVA fibres at

2% by volume and CB up
to 10%.

[176]

Materials 2023, 16, x FOR PEER REVIEW 22 of 31 
 

 

capacitance between adjacent fi-
bres, respectively. Rb and Cb are 
the bulk resistance and capaci-

tance of the matrix, respec-
tively. 

 

Rs simulates the resistance of 
electrolyte solutions. Q1 repre-
sents the double-layer capaci-
tance on the surface of multi-

walled CNTs, Rct1 simulates the 
resistance caused by charge 

transfer on the surface of multi-
walled CNTs, and Zw1 simulates 
the Warburg resistance due to 
charge diffusion on the surface 

of multi-walled CNTs. Q2 repre-
sents the double-layer capaci-

tance between cement material 
and electrodes, Rct2 simulates 
the resistance due to charge 

transfer on the surface of elec-
trodes, and Zw2 represents the 

Warburg resistance due to 
charge diffusion on the surface 

of electrodes. 

The model was 
used to study 
the fracture 

toughness of 
multi-walled 
carbon nano-
tube/cement 
composites. 

The model was limited 
to carbon nanotubes 

with lengths and diam-
eters of 10–30 µm and 

10–20 nm, respectively. 
The CNT was up to 0.1 

wt%. 

[175] 

 

R1 simulates the bulk resistance 
of conductive paths, and R2 rep-

resents the resistance of par-
tially conductive paths. C1 sim-
ulates the capacitance of non-

conductive paths, and C2 repre-
sents the capacitance of par-

tially conductive paths. 

The model was 
used to study 
the electrical 
properties of 
cement-based 

composites con-
taining carbon 
black nanopar-
ticles and PVA 

fibres. 

The model was used to 
simulate the high-fre-

quency region, exclud-
ing the electrode/sam-
ple interface. It was re-
stricted to uncracked 
bulk samples contain-

ing PVA fibres at 2% by 
volume and CB up to 

10%. 

[176] 

 

R2 is a resistor representing the 
electrolyte filling the non-perco-
lating pores, and R3 is a resistor 
simulating the charge transfer 

across the fibre/electrolyte inter-
face. C1 is a capacitor represent-
ing the solid phase, C2 is a ca-
pacitor simulating the electro-
lyte filling the non-percolating 
pores, and C3 is a double-layer 

capacitor simulating the fi-
bre/electrolyte interface. 

The model was 
used to study 

the microstruc-
ture of cementi-
tious materials 
incorporating 

short carbon fi-
bres. 

The model was used to 
simulate the high-fre-

quency region, exclud-
ing the electrode/sam-
ple interface. It was re-

stricted to cement-
based samples contain-
ing carbon fibres with a 

length of 5.5 mm and 
up to 1% by weight of 

cement. 

[177] R3

C3

R2

C1

C2

R2 is a resistor representing the
electrolyte filling the

non-percolating pores, and R3 is a
resistor simulating the charge

transfer across the fibre/electrolyte
interface. C1 is a capacitor

representing the solid phase, C2 is
a capacitor simulating the

electrolyte filling the
non-percolating pores, and C3 is a
double-layer capacitor simulating

the fibre/electrolyte interface.

The model was used to
study the microstructure

of cementitious
materials incorporating

short carbon fibres.

The model was used to
simulate the

high-frequency region,
excluding the

electrode/sample
interface. It was restricted
to cement-based samples
containing carbon fibres
with a length of 5.5 mm
and up to 1% by weight

of cement.

[177]
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C1 is a capacitor representing the
insulating matrix, and R1 is a

resistor simulating carbon fibre
networks or connected solutions.

R2/ZQ is a resistor in addition to a
constant phase element to simulate

the complex unconnected pore
structure, and R3/Zw is a resistor

in addition to the Warburg element
to simulate the diffusion.

The model was used to
study the conductive

mechanisms of
cementitious materials

incorporating short
carbon and PVA fibres.

The model was restricted
to cement-based samples
containing carbon fibres

with a length of 9 mm and
up to 3% by weight

of cement.

[178]
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Rx1 is a resistor representing the
left intercept of the arc and the real
axis. Rsm/CPEsm and Rfm/CPEfm
simulate the responses from the

steel fibre/matrix interface and the
few-layer graphene/matrix
interface, respectively. The

Rem/CPEem/Ws circuit simulates
the response from the

electrode/matrix interface.

The model was used to
study the piezoresistive

behaviour of smart
ultra-high-performance
fibre-reinforced concrete
incorporating few-layer
graphene nanomaterials

as a conductive filler.

The cementitious matrix
was composed of cement,
quartz powder, and quartz
sand with proportions of

743, 250, and
1070 kg/m3, respectively.

[179]
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Model A represents cement-based
composites containing a low

percentage of expanded graphite.
This model contains two loops:
loop one includes a resistor (R1)
and a constant phase element

(CPE1) to simulate the
cement/graphite interface in the
high-frequency region; loop two
incorporates a resistor (R2) and a
constant phase element (CPE2) to

simulate the electrode/matrix
interface in the low-frequency

region. On the other hand, model
B represents cement-based

composites containing a high
percentage of expanded graphite.
It comprises a resistor (R) and an

inductor (L) in a series circuit.

The model was used to
study the percolation

threshold of
cement-based

composites containing
expanded graphite.

The model was restricted
to intercalated graphite

type EG 290 as the
conductive medium, with
bulk densities of 0.016 and

0.04 gm/cm3 at 500 and
1000 degrees Celsius,

respectively. The
percolation threshold
obtained from IS was

lower than
DC measurements.

[180]
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The model includes a resistor (Rp)
to simulate the bulk resistance of
the cement-based sensor between
electrodes and a capacitor (Cp) to

simulate the polarisation processes
in the same sample.

The model was used to
study the electrical
properties of smart

ultra-high-performance
concrete containing steel

fibres as
conductive fillers.

The model was for the
high-frequency region,

excluding the
electrode/sample

interface. It was restricted
to a cementitious matrix

containing copper-coated
steel fibres with a length
of 13 mm, a diameter of
0.22 mm and up to 2%

by volume.

[181]

4. Challenges and Future Aspects

Even though self-sensing concrete has been studied for more than three decades, more
investigations are required to facilitate its use in real-life applications. This is because the
technology depends on many factors, such as the type of conductive filler, the dosage, the
aspect ratio, and, most importantly, environmental impacts at the time of sensing. Therefore,
it is vital to narrow down the types of conductive filler that will attain the best performance
relating to piezoresistivity, behaviour under different environmental conditions, and cost-
effective dosage. On the other hand, ACIS is a promising non-destructive technique to study
the microstructural compositions of cement-based materials. However, more investigations
are required to identify a general equivalent circuit model to simulate cement-based sensors.

5. Conclusions

In this paper, the fundamental concepts required for new research in the field of
self-sensing concrete have been discussed, as well as how to study the microstructural
composition of cement-based materials and sensors using the ACIS technique. A review of
the relevant literature draws the following conclusions:

1. Piezoresistivity is a phenomenon that achieves self-sensing in cement-based sensors
by distinguishing between reversible and irreversible behaviours. Moreover, the
sensitivity of the piezoresistivity can be measured using the gauge factor (GF).

2. Piezoresistivity depends on many factors that affect its reliability.
3. The resistance measurement methodology depends on the properties of AC and DC

power sources in addition to the configuration of the electrode. Additionally, using
an AC power source with a high frequency is preferable to using a DC power source.

4. In general, the cause of piezoresistivity in cement-based sensors depends on the
orientation and displacement of conductive fillers included in the cement-based
matrix under loading.

5. The percolation threshold depends on the type of conductive filler, the dosage, and
the aspect ratio. It can be attained through contacting conduction and the quantum
tunnelling phenomenon.

6. The ACIS theory and the equivalent circuit model can effectively characterise the
microstructure of cement-based sensors as a non-destructive technique.
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