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Abstract: So far, unlike metal injection molding (MIM), conventional powder metallurgy technology
(PM) has not been regarded as a method for producing structural elements from 17-4 PH powders,
due to the problems of obtaining almost fully compacted shapes after sintering. Nevertheless, recent
research demonstrates that it is possible to manufacture sintered parts with high strength by pressing
and sintering. The purpose of the study was to determine the degree of densification of 17-4 PH
sintered stainless steel during sintering at different temperatures and atmospheres. As a result of the
study, it was pointed out that both the temperature and the sintering atmosphere play an essential
role in the process of densification of the studied powders during sintering. The formation of delta
ferrite and a more pronounced degree of spheroidization of the pores is activated by a higher sintering
temperature. Furthermore, after solution-annealed and age-hardened treatment, sintered 17-4 PH
stainless steel exhibits high strength with moderate ductility at a level that is difficult to achieve for
other sintered stainless-steel grades, such as austenitic, ferritic and martensitic. In turn, the largest
improvement in the pitting corrosion resistance in 0.5 M NaCl solution is reached by sintering at
1340 ◦C in hydrogen and after solid solution treatment.
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1. Introduction

Stainless steels can be classified into several groups. These include: austenitic, ferritic,
martensitic, precipitation hardening, dual-phase and duplex stainless steels. There are a
lot of commercially available stainless-steel powder grades. A wide range of them can be
produced by the water atomization process and then pressed and sintered. Precipitation-
hardening stainless-steel powder is a relatively new family of alloys. These are designated
to provide high strength and toughness by the submicroscopic precipitates in the ma-
trix [1]. Most of the published research papers on the manufacture of sintered 17-4 stainless
steel preferred injection molding technology, while there are few publications devoted to
the fabrication of parts by cost-effective energy and material-saving powder metallurgy
technology. However, recent published research works most clearly indicate that it is
possible to develop high-strength sintered parts by the traditional pressing and sintering
technique [2–7]. The addition of such elements as copper and niobium, which form in-
termetallic precipitates during aging, cause the strengthening of 17-4 PH stainless steels.
The presence of copper promotes the precipitation-hardening process, while niobium
contributes to reductions in hardness after solution annealing, thus, making machining
possible and hindering over aging.

To make it easier to complete phase transformation, the nickel and molybdenum
contents are limited. Water-atomized 17-4 PH stainless powders have martensitic struc-
tures. During solution annealing, the matrix forms with precipitates, forming elements
of supersaturated austenite solid solution, which is transformed into martensite during
cooling. Upon aging, second-phase precipitates nucleate uniformly throughout the matrix.
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Aging treatment is designed to ensure that the precipitates nucleate uniformly throughout
the matrix, limiting the displacement of dislocations and, thus, causing an increase in the
hardness and strength of sintered steel.

In the last study, it was confirmed that high-strength sintered stainless steels, such as
17-4 PH, achieving full or near-full density is essential to realize the full benefit of their
superior mechanical properties. It has been shown that in injection molding technology,
a properly conducted debinding process and appropriate selection of other technological
parameters, such as sintering temperature and sintering atmosphere, make it possible
to obtain a high sintered density that will ensure high tensile strength in sintered steels.
Further, the carbon remaining in the structure is crucial for the corrosion resistance and
strength properties of the sintered steel. From the literature review, it is clear that only a few
efforts have been undertaken to understand the densification and shrinkage mechanism
during the sintering of pre-alloyed 17-4 PH stainless-steel powder [8,9].

The conducted research aimed to study the impact of technological parameters in the
traditional process of pressing in rigid dies and sintering on the densification, mechanical
properties and pitting corrosion resistance in 0.5 NaCl solution of the 17-4 PH sintered
stainless steel, either in the as-sintered or heat-treated conditions.

2. Materials and Methods

Water-atomized 17-4 PH stainless-steel powder with the following chemical compo-
sition in % wt. (C-0.027; Si-0.73; Cr-16.28; Ni-4.28; Cu-4.04; Nb-0.32; Mn-0.05; P-0.015;
Fe-balance) provided by Ametek (Berwyn, PA, USA) was used. The average particle size of
the powders was 55 µm. The particle size distribution of the powder is shown in Figure 1,
its apparent density is 2.54 g/cm3 and the flow rate 31 (s/50 g).
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Figure 1. Laser measurements of particle size distribution of water-atomized 17-4 PH stainless-
steel powder.

The compressibility of 17-4 PH powder was studied at 400–700 MPa compacting pres-
sures for 20 × 5 mm3 cylindrical specimens. As reference materials, AISI 316 L and AISI
410 L powders were also investigated. The dilatometer bar specimens 5 × 5 × 15 mm3, ten-
sile specimens for mechanical features and cylindrical specimens of size ∅20 × 5 (mm3) for
precipitation-hardening treatment and for corrosion behavior were uniaxially compacted
in rigid die at 600 MPa. All compacts were thermally debound at 450 ◦C for 40 min in pure
dry hydrogen before sintering.
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Dilatometric analysis was carried out in a horizontal NETZSCH 402 PC dilatometer
(Selb, Germany) under pure dry hydrogen, vacuum and nitrogen/hydrogen atmosphere
at two isothermal sintering temperatures of 1240 ◦C and 1340 ◦C for 60 min and 120 min
isothermal holding. The thermal cycle was heating to isothermal sintering temperatures at
rates of: 1, 5, 10 and 20 ◦C/min, followed by cooling at a rate of 20 ◦C/min.

Sintering for tensile bar specimens and cylindrical specimens were carried out in
Nabertherm® P 330 (Lilienthal, Germany) tube furnace at 1340 ◦C for 60 min. Then, some
specimens were subjected to a solution-annealing treatment at 1040 ◦C for 60 min in a
hydrogen atmosphere. Then, some of the tested samples after solution-annealing treatment
were subjected to an aging treatment at 480, 490 and 500 ◦C in a nitrogen atmosphere.

The Archimedes method was adopted to measure sintered density in the samples.
Metallographic characterization was carried out via light optical microscope (LOM) on
specimens polished and etched employing standard metallographic procedures. The
hardness (HV) was determined.

Tensile tests were carried out on a standard tensile machine at a crosshead speed of
1 mm/min, in accordance with the ISO 3928 test method.

The corrosion distinctive of the sintered stainless steels was tested using ATLAS
0531 EU&IA (ATLAS—SOLLICH) (Rębiechowo k/Gdańska, Poland) including reference
electrode, a counter electrode and a working electrode. The reference electrode was a
saturated calomel electrode (SCE) and counter electrode was a platinum electrode. The
specimen was a working electrode. The testing environment was a 0.5 M NaCl solution at
ambient temperature. The potentiodynamic polarization and open-circuit potential (OCP)
measurement tests were performed. Before corrosion test, the samples were degreased,
cleaned in distilled water and next in acetone and dried. The corrosion check began with
the OCP and the potential of the samples was registered and tracked as a function of time
until it obtained a steady value. After the OCP measurement, the potentiodynamic test was
performed at a rate of 1 mV/s, beginning from 200 mV below the OCP up to 1 V.

3. Results

The compressibility of 17-4 PH powder concerning conventional stainless-steel pow-
ders AISI 316 L and AISI 410 L is shown in Figure 2. In principle, the green density of
17-4 PH stainless steel is lower regarding other highly alloyed stainless steels; however, the
investigated powders exhibit reasonable compressibility to process them by conventional
compaction and sintering.
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For powder metallurgy technology and, in particular, in the case of stainless steels,
the most important parameters in the lubricant-removal process are the heating rate,
the temperature of the isothermal sintering and the time of isothermal holding. These
conditions are intended to ensure gradual, rather than rapid, decomposition of the lubricant
and its complete removal. Figure 3 provides an example of the TG curve for 17-4 PH powder
with a heating rate of 10 K/min in an argon atmosphere. At the same time, as a result of
tests in other atmospheres, it was further noted, in addition to the previously mentioned
parameters, that the type of gas used also affects the removal temperature of the lubricant.
The decrease in the removal temperature of a lubricant when helium or hydrogen is used is
related to the higher thermal conductivity of these gases compared to argon or nitrogen, for
example, which results in faster heating of the green compacts. In addition, helium atoms
or hydrogen molecules, due to their size, are much smaller compared to argon atoms or
nitrogen molecules, which causes them to enter the structures of the porous material more
quickly and transfer heat more quickly to the lubricant as well as the green compacts. For
manufacturers of sintered products made from stainless-steel powders, this phenomenon
is very important to ensure the gradual and total removal of a lubricant.
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Furthermore, as expected, the lower green density of 17-4 PH compacts transforms into
lower sintered density. As can be seen from Figure 4, the density of compacts sintered at
1240 ◦C is influenced not only by the green density but also by the sintering environment—
in a hydrogen atmosphere, higher densification occurs than in a vacuum [10].

In Figure 5, the dilatometric dimensional changes during the sintering of 17-4 PH
stainless steel compacts at 1240 ◦C and 1340 ◦C for 60 min in hydrogen and a vacuum
are presented. As can be observed from the course of dimensional changes up to 900 ◦C,
thermal expansion prevails and then above 900 ◦C, contraction begins, which indicates the
beginning of mass transport phenomena. From the evaluation of dilatometric curves, it can
be deduced that shrinkage is influenced both by the sintering temperature and the sintering
atmosphere. With increasing sintering temperature, shrinkage increased for both sintering
atmospheres; however, the higher shrinkage is observed for hydrogen as compared with a
vacuum, in particular, for lower sintering temperatures. Further, metallographic studies
of sintered 17-4 PH stainless steels in the as-unetched state indicate that as the sintering
temperature increases, both in hydrogen and vacuum, a clear increase in the degree of the
spheroidization of pores can be observed, as can be seen in Figures 6 and 7.
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Detailed analysis of dimensional changes indicates that the shrinkage rate for sinter-
ing at lower temperatures is roughly stable during heating above 900 ◦C and isothermal
holding. On the contrary, for higher sintering temperatures, linear shrinkage is significantly
higher but the shrinkage rate starts to decrease during isothermal holding. During cool-
ing from sintering temperature, both in hydrogen and vacuum, at temperatures near to
200 ◦C, expansion can be observed, which is the result of the transformation of austenite
into martensite.



Materials 2023, 16, 760 6 of 15

Materials 2023, 16, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 5. Dimensional changes in 17-4 PH stainless-steel compact during heating to sintering at 1240 
°C and 1340 °C for 60 min in hydrogen and a vacuum. 

For a better understanding of the dimensional behaviour of the study material, the 
shrinkage rate versus temperature during heating up to 1340 °C for hydrogen and in vac-
uum are presented in Figure 8. During heating, three distinct peaks of the shrinkage rate 
can be observed. At a temperature near 750 °C, the first peak of shrinkage rate is associated 
with the bct martensite transformation to γ austenite. In a temperature range 1050–1200 
°C, a second peak can be observed and can be attributed to the offset of thermal expansion 
by initial sintering shrinkage. The third-most visible is the result of activated sintering, 
initiated by a sudden shrinkage beginning near 1250 °C and may be related to the fracture 
of silica [11], which covers the powder particles and, thereby, causes activated sintering 
in the solid state associated with probable initial particle rearrangement. 

 
Figure 6. Microstructure of sintered 17-4 PH stainless steel after sintering at 1240 °C for 60 min in 
pure dry hydrogen, no etched. 

Figure 6. Microstructure of sintered 17-4 PH stainless steel after sintering at 1240 ◦C for 60 min in
pure dry hydrogen, no etched.

Materials 2023, 16, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 7. Microstructure of sintered 17-4 PH stainless steel after sintering at 1340 °C for 60 min in 
pure dry hydrogen atmosphere, no etched. 

 
Figure 8. Shrinkage rate of 17-4 PH stainless-steel compact during heating to 1340 °C with the heat-
ing rate at 10 °C/min in hydrogen and a vacuum. 

Analysis of the microstructure indicates that during cooling, the transformation of 
austenite into a martensitic structure takes place. Thus, after sintering in vacuum and hy-
drogen, δ ferrite and martensite can be distinguished in the structure. Since the files from 
martensite and δ ferrite overlap in XRD studies, it was decided to carry out additional 
sintering in a nitrogen–hydrogen atmosphere to confirm that the δ ferrite affects the den-
sification of the compact during sintering. The analysis of the test results from the thermal 
analysis correlates well with the XRD results shown in Figure 9. On the other hand, in 

Figure 7. Microstructure of sintered 17-4 PH stainless steel after sintering at 1340 ◦C for 60 min in
pure dry hydrogen atmosphere, no etched.

For a better understanding of the dimensional behaviour of the study material, the
shrinkage rate versus temperature during heating up to 1340 ◦C for hydrogen and in
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vacuum are presented in Figure 8. During heating, three distinct peaks of the shrinkage
rate can be observed. At a temperature near 750 ◦C, the first peak of shrinkage rate is
associated with the bct martensite transformation to γ austenite. In a temperature range
1050–1200 ◦C, a second peak can be observed and can be attributed to the offset of thermal
expansion by initial sintering shrinkage. The third-most visible is the result of activated
sintering, initiated by a sudden shrinkage beginning near 1250 ◦C and may be related to
the fracture of silica [11], which covers the powder particles and, thereby, causes activated
sintering in the solid state associated with probable initial particle rearrangement.
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Figure 8. Shrinkage rate of 17-4 PH stainless-steel compact during heating to 1340 ◦C with the heating
rate at 10 ◦C/min in hydrogen and a vacuum.

Analysis of the microstructure indicates that during cooling, the transformation of
austenite into a martensitic structure takes place. Thus, after sintering in vacuum and
hydrogen, δ ferrite and martensite can be distinguished in the structure. Since the files
from martensite and δ ferrite overlap in XRD studies, it was decided to carry out additional
sintering in a nitrogen–hydrogen atmosphere to confirm that the δ ferrite affects the densifi-
cation of the compact during sintering. The analysis of the test results from the thermal
analysis correlates well with the XRD results shown in Figure 9. On the other hand, in
Figure 10, thermodynamic calculations for the 17-4 PH sintered stainless steel are presented,
as a result of which a pseudo-double plot was developed.

To better understand the role of the atmosphere, an additional sintering in a 95%N2/5%H2
gas mixture was performed. The respective dimensional changes in comparison with hydrogen-
and vacuum-sintered compacts are presented in Figure 11. It is evident that sintering in a N2/H2
atmosphere gives incomplete densifications due to the stabilization of austenite by diffusion of
nitrogen and, in consequence, the transformation of austenite to δ ferrite does not occur.

In addition, the longer isothermal sintering time and different heating rate were ex-
amined to study the densification behaviour of the 17-4 PH stainless-steel compact. From
Figure 12, it is seen that prolonged isothermal sintering time from 60 to 120 min gives slightly
higher densification and the density of dilatometric samples increased from 6.95 g/cm3 to
7.12 g/cm3, respectively. As can be seen in Figures 13 and 14, the increasing heating rate
gives lower shrinkage and, for example, for heating rates 1 ◦C/min and 20 ◦C/min, the
sintered density of dilatometric samples is 7.16 g/cm3 to 7.09 g/cm3, respectively.
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In addition, the longer isothermal sintering time and different heating rate were ex-
amined to study the densification behaviour of the 17-4 PH stainless-steel compact. From 
Figure 12, it is seen that prolonged isothermal sintering time from 60 to 120 min gives 
slightly higher densification and the density of dilatometric samples increased from 6.95 
g/cm3 to 7.12 g/cm3, respectively. As can be seen in Figures 13 and 14, the increasing 

Figure 10. Thermocalc diagram for 17-4 PH powder, 1. ferrite (δ), 2. copper FCC precipitation, 3.
niobium Fcc precipitation, 4. austenite (γ), 5. liquid (5).

Precipitation-hardened stainless steels are subjected to heat treatments consisting of
solution annealing and aging to improve mechanical properties. Sintered 17-4 PH stainless
steels were subjected to solution-annealing treatments at temperatures of 1020–1040 ◦C and
then aged in a temperature range of 480–500 ◦C. The results of HV hardness measurements
are shown in Figure 15, while the mechanical properties of the tensile test are shown
in Table 1.
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Figure 12. Influence of isothermal holding time for shrinkage of 17-4 PH stainless-steel compacts
when sintering at 1340 ◦C with the heating rate at 10 ◦C/min in hydrogen for 60 min and 120 min
isothermal holding.

As a result of the study of the strength properties of sintered 17-4 PH stainless steels,
the results obtained show that it is possible to attain a tensile strength after solution
annealing (1040 ◦C) and aging of 1147 MPa and an elongation of 2.4%. If it is necessary to
increase plastic properties, the aging temperature should be increased to 550 ◦C, obtaining
an elongation of 3–4%. Increasing the plastic property results in decreasing the strength
properties to a level of 800–1000 MPa.

An example of the microstructure of the sintered 17-4 PH stainless steels in the non-
etched state is shown in Figure 16. The matrix of the sintered steel is martensite with a
small amount of delta ferrite and visible rounded pores. The presence of delta ferrite during
high-temperature sintering certainly promotes the spheroidization of pores and extensive
densification of the sintered material. In addition, the dispersive precipitates, as a result
of the heat treatment, significantly improve the mechanical properties. However, the fine
dispersive precipitates are not visible under an optical microscope.
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Table 1. Mechanical properties of sintered 17-4 PH stainless steel at 1340 ◦C and subsequent solution
annealing at 1040 ◦C and aging at 480 ◦C.

Treatment UTS {MPa] Elongation [%]

Sintering 883 2.1
Sintering and solution annealing 743 1

Sintering, solution annealing and aging 1147 2.4
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Figure 16. Microstructure of sintered 17-4 PH stainless steel at 1340 ◦C for 60 min in a pure dry
hydrogen atmosphere.

In addition, fracture findings on the SEM well correlated with the results of tensile
tests. After sintering (Figure 17) and solution-annealed treatment (Figure 18), the fracture
surface is ductile. In contrast, after aging (Figure 19), the fracture surface indicates some
brittle areas.
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subsequent solution annealing at 1040 ◦C.
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Figure 19. SEM fracture of sintered 17-4 PH stainless steel at 1340 ◦C for 60 min in hydrogen and
subsequent solution annealing at 1040 ◦C and aging at 480 ◦C.

Stainless steels are significantly resistant to general corrosion, but in aggressive en-
vironments (in particular, those containing chlorides), they are prone to various forms of
localized corrosion (pitting, crevice, intergranular, stress corrosion cracking). Pitting is
recognized as the most dangerous type of corrosion because it is very difficult to detect
and also to ensure adequate protection. Pitting is the most common type of corrosion in
stainless steel. It is manifested in the form of small pits on passive metal surfaces.

Open-circuit potential (OCP) changes were measured for all test steels immersed in
0.5 m NaCl solution and the results are shown in Figure 20. The description of a sample
designation applied in the following part of this article is given in Table 2.
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Table 2. Description of investigated samples.

Designation of
Sample A B C D E

Condition
of treatment sintering

Sintering,
Solution-
annealing

sintering,
solution-annealing,

aging (480 ◦C)

sintering,
solution-annealing,

aging (490 ◦C)

sintering,
solution-annealing,

aging (500 ◦C)

The potential of sintered steel shows the tendency to slightly reduce with time. After
30 min of exposure in 0.5 M NaCl solution, the sample almost reaches a steady state and
OCP potential is about −556 mV. The potential of solution-annealed steel is more positive
and equals −380 mV. From the analysis of the presented characteristic, it can be concluded
that solution-annealing treatment leads to a potential increase (shift to more positive values)
in comparison to the sintering process while, after aging, the treatment potential of 17-4 PH
sintered steels is reduced.

Figure 21 shows the polarization curves of the tested sintered 17-4 PH stainless steels.
As expected, sintered 17-4 PH stainless steel does not show typical anodic polarization
curves consisting of an active, passive and transpassive region. The typical maximum of
the active–passive transition does not appear. There is a rapid increase in current density
and destruction of the passive layer and transition to the pitting corrosion area.

In the case of the sample after solution-annealed treatment, the polarization curve is
different. An active–passive transition maximum and an active, passive and transpassive
region may be observed. Similar polarization curves were obtained for steel aging at a
temperature higher than 480 ◦C.

Results of the performed electrochemical test indicate that by applying a solution-
annealing treatment after the sintering process, resistance to pitting corrosion slightly in-
creases. Furthermore, the potentiodynamic polarization measurements reveal that solution-
annealing and aging treatment at 480 ◦C leads to optimum corrosion resistance in a 0.5 M
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NaCl solution, including higher OCP, polarization resistance and pitting potential. On the
other hand, aging at 500 ◦C results in the deterioration of corrosion resistance.
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4. Conclusions

Sintering temperature and atmosphere play a significant role in the densification dur-
ing the sintering of 17-4 PH stainless-steel compact. The increase in sintering temperature
results in an increase in density, which is related to the fact that a higher sintering tempera-
ture promotes the formation of delta ferrite, which affects the degree of pore spheroidization
and an increase in the degree of densification. In contrast, a longer isothermal sintering time
and higher heating rate slightly increased the sintered density of samples. Furthermore,
as expected, higher densification occurs in hydrogen than in a vacuum. Moreover, the
sintering in a N2/H2 atmosphere gives incomplete densifications since the nitrogen in
the solid solution prevents the formation of delta ferrite, which enhances the sintering
and densification.

After the solution-annealing and ageing treatment, the precipitating hardening sin-
tered 17-4 PH stainless steel shows high strength with reasonable ductility levels that are
hardly achievable for austenitic, ferritic and martensitic sintered stainless-steel grades.

The largest improvement in corrosion resistance of sintered 17-4 PH stainless steel is
achieved by sintering at 1340 ◦C in hydrogen after a solid solution-annealing treatment.
On the other hand, after solution annealing at 480 ◦C, the resistance to pitting corrosion
in a 0.5 NaCl solution (higher OCP, polarization resistance and pitting potential) is the
highest, as compared to solution annealing at 500 ◦C, where the corrosion resistance
decreases significantly.
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