
Citation: Fei, Z.; Liang, S.; Cai, Y.;

Shen, Y. Ensemble Machine-Learning-

Based Prediction Models for the

Compressive Strength of Recycled

Powder Mortar. Materials 2023, 16, 583.

https://doi.org/10.3390/ma16020583

Academic Editor: Karim Benzarti

Received: 29 November 2022

Revised: 27 December 2022

Accepted: 4 January 2023

Published: 6 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Ensemble Machine-Learning-Based Prediction Models for the
Compressive Strength of Recycled Powder Mortar
Zhengyu Fei, Shixue Liang * , Yiqing Cai and Yuanxie Shen

School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
* Correspondence: liangsx@zstu.edu.cn

Abstract: Recycled powder (RP) serves as a potential and prospective substitute for cementitious
materials in concrete. The compressive strength of RP mortar is a pivotal factor affecting the me-
chanical properties of RP concrete. The application of machine learning (ML) approaches in the
engineering problems, particularly for predicting the mechanical properties of construction mate-
rials, leads to high prediction accuracy and low experimental costs. In this study, 204 groups of
RP mortar compression experimental data are collected from the literature to establish a dataset
for ML, including 163 groups in the training set and 41 groups in the test set. Four ensemble ML
models, namely eXtreme Gradient-Boosting (XGBoost), Random Forest (RF), Light Gradient-Boosting
Machine (LightGBM) and Adaptive Boosting (AdaBoost), were selected to predict the compressive
strength of RP mortar. The comparative results demonstrate that XGBoost has the highest prediction
accuracy when the a10-index, MAE, RMSE and R2 of the training set are 0.926, 1.596, 2.155 and 0.950
and the a10-index, MAE, RMSE and R2 of the test set are 0.659, 3.182, 4.285 and 0.842, respectively.
SHapley Additive exPlanation (SHAP) is adopted to interpret the prediction process of XGBoost and
explain the influence of influencing factors on the compressive strength of RP mortar. According to
the importance of influencing factors, the order is the mass replacement rate of RP, the size of RP, the
kind of RP and the water binder ratio of RP. The compressive strength of RP mortar decreases with
the increase in the RP mass replacement rate. The compressive strength of RBP mortar is slightly
higher than that of RCP mortar. Machine learning technologies will benefit the construction industry
by facilitating the rapid and cost-effective evaluation of RP material properties.

Keywords: recycled powder mortar; compressive strength; machine learning; SHAP

1. Introduction

During the rapid process of the urbanization of the world, a large amount of con-
struction and demolition (C&D) waste has been generated; for example, United States and
China produce 700 and 1800 million tons of C&D waste each year, respectively [1]. C&D
waste is usually disposed of by dumping and landfilling, which not only causes air and
soil pollution but also enforces enormous pressure on limited landfills [2]. Since most of
the C&D waste can serve as replaceable materials to aggregates and mortar, the recycling
of C&D waste is a promising method of conserving natural resources [3].

There have been massive researches on the resourceful reuse of C&D waste, which
can be generally divided into two categories: recycled aggregate concrete (RAC) and
recycled powder concrete (RPC). At present, there are substantial experimental, numerical
and theoretical studies on the strength of RAC. Researchers proposed methods based on
aggregate skeleton theory, gray correlation analysis, finite element analysis and so on to
predict the compressive strength of RAC and analyze its influencing factors [4–7].

Recycled powder (RP) is a by-product of recycling C&D waste. The process of recover-
ing RP from C&D waste can be divided into three stages: collecting C&D waste, sorting
the raw materials and grinding into powder. Figure 1 shows the RP preparation flow
chart. The research of RP is still in the initial stage, and there are few empirical formulas
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for mortar strength. The research on RP is mainly about recycled concrete powder (RCP)
and recycled brick powder (RBP) [8]. Researchers have performed various experiments
to study the physical and mechanical properties of RCP and RBP in cement to explore
the potential of RP as a cementitious material for the preparation of concrete [9–13]. A
summary is that, although there are relevant experimental studies, the prediction accuracy
and generalization performance on the strength of RPC are still unsatisfactory [14].
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Spurred by the constantly challenging requirements of the construction industry, re-
searchers used machine learning (ML) to predict the compressive strength of new types of
concrete, such as bio-concrete [15], recycled aggregate concrete [16] and fiber concrete [17].
In addition, ML can be applied to predict the mechanical properties and durability of
reinforced concrete structures and to evaluate their service life. At present, some scholars
have used ML models to analyze reinforced concrete beams [18], squat reinforced concrete
walls [19], reinforced concrete slabs and other engineering problems [20,21]. Whatever the
accuracy, however, the black-box nature of the predictions makes ML models unexplainable.
The emergence of SHapley Additive exPlanation (SHAP) can solve this problem. SHAP
can reasonably explain the interaction of variables in the ML model and the influence of
eigenvalues on the results. Researchers have applied explicable ML combined with the
SHAP method to concrete to predict the mechanical properties, durability and working
performance of reinforced concrete beam [22], slab [23] and column members [24] and to ex-
plain the prediction process. The application of ensemble learning in concrete structures is
of great interest to researchers [25–29]. Ensemble learning is combining multiple individual
learners into one learner to complete a learning task. According to the generation of indi-
vidual learners, the current ensemble learning methods can be roughly divided into three
categories: boosting, bagging and stacking. Ensemble learning integrates several learning
devices to achieve better performance than a single learning device [30–32]. The three kinds
of ensemble learning are widely used in concrete structures. Vimal [33] et al. predicted
the compressive strength of concrete with the boosting ML algorithm. Ahmad [34] et al.
used the bagging model to predict the compressive strength of concrete containing sup-
plementary cementing materials. Gupta [35] et al. estimated the compressive strength of
geopolymer composites by using the stacking model.

All studies on the compressive strength of RP mortar have been conducted through
experiments. To the author’s knowledge, no studies have been carried out (1) using an
integrated ML model to predict the compressive strength of RP mortar, (2) explaining the
prediction mechanism of compressive strength based on ML, or (3) on the factors affecting
the compressive strength of the RP mortar. This paper aims to: (1) develop an integrated
ML algorithm model to predict the compressive strength of RP mortar and to (2) explain the
contribution of input variables to the prediction results. Therefore, four different ensemble
ML-based algorithms are developed to predict the compressive strength of the RP mortar
and the underlining relationship between input influential factors and output strength
is also revealed. This research consists of four stages: firstly, 204 groups of RCP and
RBP mortar compressive strength test results are collected from the relevant literature;
secondly, eXtreme Gradient-Boosting (XGBoost), Random Forest (RF), Light Gradient-
Boosting Machine (LightGBM) and Adaptive Boosting (AdaBoost) algorithms are applied,
and then the hyperparameters are optimized to establish the strength prediction model;
thirdly, the accuracy and generalization ability of the ML-based models are evaluated with
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the a10-index, root mean square error, mean absolute error and determination coefficient;
finally, SHAP is used to illustrate the prediction process of the best algorithmic model and
to investigate the interpretability of the influencing factors. The RP mortar compressive
strength test requires a lot of manpower, material resources and time costs. The ML method
only needs data to predict the compressive strength and does not need experimental
research to test the comprehensive impact of RP mortar compressive strength and to
provide reference value for potential users of RP.

2. Data Collection and Analysis

Lots of RP mortar test data are required to establish the compressive strength predic-
tion model. To this end, 125 groups of RCP mortar strength and 79 groups of RBP mortar
strength data are collected from previous literature. The cement used in the datasets is P.O
42.5 or P.O 42.5R. The complete dataset and its resource are listed in Appendix A.

It should be noted that the acceptable numbers of data for ML modeling should be
greater than 10 times the number of input variables [36]. According to the literature review,
four variables are selected as input variables: mass replacement rate (MRR) of RP (%), kinds
of RP, water-to-binder ratio (W/B), particle size of RP (µm) and mortar compressive strength
(f c) of RP(Mpa) served as output variables [37,38]. Therefore, the data size (204) chosen
in this paper meets the requirement of data number for ML modeling. Figure 2 depicts
the Pearson correlation coefficient plot for each variable. It is found that the compressive
strength of RP mortar is strongly correlated with MRR and negatively correlated. However,
the correlation degree of other variables is considered a weak correlation or no correlation.
In addition, the distribution of all variables is shown in Figure 3, and the cumulative
percentage of each variable is shown in the orange curve in Figure 3. The distribution of
each variable is described below; 125 groups of RCP, accounting for 61%, are classified as
kind 0; 79 groups of RBP, accounting for 39%, are classified as kind 1. The particle size of
RP refers to the average particle size of RP; the distribution range is 0–100 µm, and the
main distribution is in the range of 10–30 µm. The W/B is 0.35, 0.4, 0.5 and 0.55, with 0.5
accounting for the highest proportion [39,40]. The mass replacement rate of RP ranges from
0 to 60%, with 30% being the most frequently used in the experiment [41]. As the output
variable, the mortar compressive strength ranges from 16.60 to 56.80 Mpa, and most of
them are distributed between 30 and 50 Mpa.
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3. Machine-Learning-Based Models for Compressive Strength
3.1. Data Preprocessing

After collecting the raw data, a detailed dataset can be obtained after filling in the
missing values and processing the outliers [42]. However, various metrics have different
properties (continuous, discrete) and orders of magnitude, thus training directly will
weaken the impact of data with lower orders of magnitude, so the data also need to be
normalized (target values usually do not need to be scaled) to allow the data to be trained.
Data standardization is the process of turning dimensioned data into dimensionless data
and processing data of different magnitudes to the same magnitude, so that data of different
dimensions can be compared, which can improve the prediction effect of the model for ML.
The formula for z-score normalization can be expressed as:

x′ = (x− µ)/σ (1)

where x is the raw datum, µ is the mean of the data, and σ is the standard deviation [43].

3.2. ML Model Algorithm

The model was developed using Python code in the PyCharm (version 2017.1) soft-
ware, which comes with a set of tools to help users improve their productivity when
developing in the Python language, version 3.6.4 of which was used.

Four ensemble ML algorithms XGBoost, RF, LightGBM and AdaBoost are selected
among a handful of ML algorithms to predict the compressive strength of the RP mortar. En-
semble learning algorithms accomplish learning tasks by building and combining multiple
machine learners, so they can often obtain superior generalization performance than a single
learner [44]. At present, there are three groups of ensemble learning algorithms: bagging-
based algorithms, boosting-based algorithms and stacking-based algorithms; RF [45,46] is
a typical kind of bagging-based representative algorithms, while boosting-based represen-
tative algorithms include AdaBoost, XGBoost, LightGBM, etc. [47]. The stacking algorithm
refers to the combination of multiple basic learning tools to generate final predictions
that are more accurate than a single stacking model. For example, the SVR, XGBoost and
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GBDT algorithms can be used to build a stacking algorithm [48]. In this section, the four
ML algorithms used in the experiment are briefly explained, which helps to understand
the principles and compare their differences. Figure 4 depicts a flowchart of the research
method in this paper.
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3.2.1. eXtreme Gradient-Boosting (XGBoost)

XGBoost is an efficient, flexible and light gradient-boosting decision tree algorithm [49].
XGBoost has the same basic idea as GBDT, but XGBoost has a lot of optimizations and is
different from light gradient-boosting [50]. For example, the second-order Taylor formula
expansion is used to optimize the loss function and improve the calculation accuracy. A
regularization term is used to simplify the model to avoid overfitting. The blocks storage
structure is adopted, and parallel computing is implemented. As a forward addition model,
it is critical to adopt the ensemble idea (boosting), which integrates multiple weak learners
into a strong learner through certain methods. Figure 5 demonstrates the derivation steps
of the XGBoost algorithm.
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3.2.2. Random Forest (RF)

RF adopts the idea of bagging [51] with the following steps: (1) each time a sample
is taken back for training to form a new training set; (2) adopt the new training set to
train n sub-models; (3) for regression problems, the predicted value is obtained by using a
simple averaging method [52]. The training modeling process of the RF method is shown in
Figure 6. RF takes decision trees as the basic unit, and a lot of decision trees are integrated
to form a random forest [53,54].
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3.2.3. Light Gradient-Boosting Machine (LightGBM)

LightGBM is also an efficient implementation of GBDT. In principle, lightGBM is
similar to XGBoost, but XGBoost consumes considerable space and time. In order to avoid
the defects of XGBoost, lightGBM is optimized on the traditional GBDT algorithm [55,56].
LightGBM is a decision tree algorithm based on a histogram, which can reduce memory
footprint and computation times. Gradient-based One-Side Sampling (GOSS) is used to
exclude most samples with a small gradient, and only the remaining samples are used to
calculate the information gain, so as to balance the reduction of data volume and ensure
accuracy. Using Exclusive Feature Bundling (EFB), many mutually exclusive features are
bound to a single feature to reduce dimensionality. The leaf-wise algorithm with depth
restriction is used to control the complexity of the model and to ensure high efficiency
while preventing overfitting [57]. Figure 7 shows the schematic diagram of the LightGBM
optimization methods.
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3.2.4. Adaptive Boosting (AdaBoost)

AdaBoost is also called reinforcement learning or the promotion method, which is
proposed by Freund et al. [58]. Its self-adaptation is reflected in each training data set;
each sample prediction is assigned a weight, and the wrong prediction is identified and
further assigned to the next basic learner with a high weight for this wrong prediction,
while the weight of the correctly predicted sample will be reduced. Meanwhile, in each
iteration, a new weak learner is added, and the final strong learner is not determined until a
predetermined error rate is small enough or until the predetermined maximum number of
iterations is reached. However, AdaBoost is sensitive to abnormal samples, and abnormal
samples may get higher weights in iteration, which may affect the prediction accuracy. The
expression for AdaBoost is Equation (2) below.

f (x) =
N

∑
i=1

(
ln

1
αm

)
g(x) (2)

where g(x) is the median of all weak learners αmGm(x), m = 1, 2, . . . , N.

3.3. Model Tuning and Evaluation
3.3.1. Model Tuning: K-Fold Cross-Validation

When conducting ML research, the raw data are divided into training and test sets,
and the algorithm is evaluated by simple cross-validation. However, the data are only used
once; it is not fully utilized, and the division ratio of the raw data has a large impact on
the evaluation index of the test set. Therefore, k-fold cross-validation is required, which
can solve the problem of not having enough data in the dataset and can also solve the
problem of parameter tuning [59]. In this study, five-fold cross-validation is used. Firstly,
all samples are divided into five subsets with equal number of samples. Then, the five
subsets are traversed successively, and the current subset is served as the validation set
each time, and all the remaining samples are used as the training set to train and evaluate
the model. Finally, the average value of the five evaluation indices is taken as the final
evaluation index [60]. The schematic five-fold cross-validation diagram is given in Figure 8.
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3.3.2. Model Evaluation

In order to evaluate the predictive performance of the algorithm used in this study,
three evaluation metrics are selected, namely, root mean square error (RMSE), mean ab-
solute error (MAE) and coefficient of determination (R2) [61]. RMSE is a measure of the
deviation between observed values and true values, also known as standard error. Its
significance is that, after the root number of the mean square error, the result of the error
is at the same level as the data, and the data can be better described. RMSE is sensitive
to the reflection of very large or small errors in a set of measurements, so RMSE can well
reflect the precision of the measurement. MAE is used to evaluate the degree of proximity
between predicted results and true values, and it is the most easily understood regression
error indicator. The smaller the value, the better the fitting effect. R2 can be understood
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as the proportion of the variability of the dependent variable that can be explained by the
independent variable through the multiple regression equation. It measures the degree of
interpretation of each independent variable to the change of the dependent variable. Its
value is between 0 and 1. The closer its value is to 1, the better the regression fitting effect
of the variable is. On the contrary, the worse the regression fitting effect is. Furthermore,
a following new engineering index, the a10-index evaluates artificial intelligence models
by showing the number of samples that fit the prediction values with a deviation of ±10%
compared to experimental values. The index is used to evaluate the reliability of the ML
model [62]. Equations (3)–(6) are the evaluation of three indicators:

RMSE =

√
1
m ∑m

i=1( f (xi)− yi)
2 (3)

MAE =
1
m ∑m

i=1| f (xi)− yi| (4)

R2 = 1− ∑m
i=1( f (xi)− yi)

2

∑m
i=1(yi − yi)

2 (5)

a10− index =
m10

m
(6)

where f (xi) is the predicted value, yi is the target value, and yi is the average of the target
values, i = 1, 2, 3, . . . , m. m is the number of dataset sample, and m10 is the number of
samples with a value of the ratio between the experimental and predicted values between
0.90 and 1.1.

4. Model Results and Discussion

All the samples are randomly divided into a training set and a test set according to the
proportion of 8:2. The training set is Appendix B, and the test set is Appendix C. In order
to ensure the comparability of performance evaluation, the same training and test sets are
used for all ML algorithms, hyperparameters are tuned by using grid search combined
with five-fold cross validation, and the comprehensive performance is evaluated by using
four evaluation metrics (RMSE, MAE, R2, a10 − index).

4.1. Hyperparameter Settings and Optimization

In order to obtain higher prediction accuracy and generalization ability, the parameters
and hyperparameters of the ML algorithm model are adjusted. Parameters refer to the
numbers of optimized algorithms, such as the least squares method or the gradient descent
method. Model parameters are configuration variables within the model that are usually
not set manually by the programmer and whose values can be estimated from the data.
Hyperparameters are artificially set parameters before machine learning begins, whose
values cannot be estimated from the data, and are often used to help estimate model
parameters. Common hyperparameter optimization methods include grid search, random
search and Bayesian optimization [63,64]. As there are few hyperparameters that need
to be tuned in this study, grid search combined with five-fold cross validation is used to
optimize the hyperparameters. Grid search refers to pre-defining a set of potential values
for the desired hyperparameters. Each hyperparameter is then assigned a value from the
set of potential values to form a different combination of hyperparameters. Then, the
machine learning model is trained and evaluated for each hyperparameter combination,
and the optimal combination is found during the tuning process [65]. Table 1 lists the
major hyperparameter potential values used by each ML model in grid search. In order
to determine the final prediction model, its prediction performance needs to be tested by
five-fold cross validation [20]. Table 2 presents the values of the major hyperparameters of
the ML model, as well as the mean scores of five-fold cross-validation.
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Table 1. The potential values of major hyperparameters of the machine learning model.

Hyperparameters Potential Values

ML Models Number of Weak Learners Learning Rate Maximum Depth

XGBoost 50, 60, 70, . . . , 200 0.1, 0.2, 0.3, . . . , 1 1, 2, 3, . . . , 10
RF 50, 60, 70, . . . , 200 - 1, 2, 3, . . . , 20

LightGBM 50, 60, 70, . . . , 200 0.1, 0.2, 0.3, . . . , 1 1, 2, 3, . . . , 20
AdaBoost 50, 60, 70, . . . , 200 0.1, 0.2, 0.3, . . . , 1 -

Table 2. Values of major hyperparameters of ML models used for resistance prediction.

Hyperparameters Values

ML Models Number of
Weak Learners Learning Rate Maximum

Depth
Average Validation

Outcome

XGBoost 100 0.1 6 0.75
RF 100 - 10 0.646

LightGBM 100 0.4 15 0.701
AdaBoost 100 0.3 - 0.628

4.2. Model Prediction Results

The prediction results shown in Figure 9a can be used as a reference for the comparison
of generalization ability among the four ML models; blue dots represent the training set
results, and orange dots represent the test set results. The data point in the scatterplot of the
four ensemble models are distributed around the baseline (y = x). Figure 9a demonstrates
the XGBoost-predicted results. It is found in Figure 9a that the difference between the test
values and the predicted values is small, and it shows good performance in predicting
the compressive strength of the RP mortar. In order to compare the prediction results of
the proposed ML models, Table 3 lists the specific evaluation metrics (R2, RMSE, MAE,
a10-index) of the training and test sets of the four ML models. Using the same training
set and test set for prediction, it is found that the R2 value of XGBoost is higher than that
of the other three ML models, which significantly indicates that XGBoost has the highest
prediction accuracy. The evaluation criterion of RMSE and MAE is the smaller the better. It
can be seen from the Table 3 that the RMSE and MAE evaluation indices of the XGBoost
training set and test set are lower than those of the other three ML models, while the RMSE
and MAE of the AdaBoost training set and test set are the largest, indicating that the error
of the XGBoost model is the smallest. The evaluation criterion of the a10-index is that
the closer it is to 1, the better the reliability will be. It can be seen from Table 3 that the
reliability of XGBoost is higher than that of other models and that AdaBoost performs the
worst. According to the comprehensive consideration of the four evaluation indices of the
training set and the test set prediction model, the accuracy and generalization of the four
ML models from high to low are ranked as XGBoost, RF, LightGBM and AdaBoost.

Table 3. Performance of ML models.

Data Set Training Set Test Set

ML Models XGBoost RF AdaBoost LightGBM XGBoost RF AdaBoost LightGBM

R2 0.950 0.928 0.708 0.818 0.842 0.823 0.762 0.825
RMSE 2.155 2.591 5.217 4.121 4.285 4.538 5.26 4.515
MAE 1.569 2.009 4.223 3.163 3.182 3.581 4.314 3.441

a10-index 0.926 0.822 0.509 0.718 0.659 0.585 0.439 0.585
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5. Interpretability of the Model

Based on the above evaluation results, the XGBoost model is selected for interpretation
and analysis. ML algorithm model can only obtain the final prediction results, unable to
explain the characteristics and the influence of the predicted results. Therefore, SHAP is
applied to interpret each variable on a global and individual scale in the following sections.

5.1. Features Explained: Shapley Additive exPlanations (SHAP)

The interpretation methods of the ML model include the linear model, PDP, SHAP,
ALE, etc. Among them, SHAP is widely applicable to the interpretable field, which not only
reflects the influence of all features of each sample but also shows the positive and negative
of the influence [66]. Therefore, the analysis of the research process of the ML regression
prediction model in this study is done by SHAP technology. The SHAP interpretation
method is to calculate the Shapley value according to the alliance game theory [67]. The
eigenvalues of the data instance act as participants in the federation (collection). The
Shapley values reveal how much eigenvalues contribute to the prediction [68,69]. The
SHAP value follows the following equation.

yi = ybase + f (xi,1) + f (xi,2) + · · ·+ f (xi,k) (7)

where ybase is the baseline of the whole model (usually the mean of the target variables
of all samples), xi,k is the k feature of the i sample, f (xi,k) is the SHAP value of xi,k, when
f (xi,k) > 0, indicating that the feature improves the predicted value and has a positive
effect. Conversely, it means that the feature makes the predicted value lower and has the
opposite effect.
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5.2. Individual Interpretation

Figure 10 shows a typical individual prediction graph for a sample. The SHAP value
quantifies the local interpretation of the model, using the sum of the effects of each input
variable to explain each prediction (Figure 10). The base value represents the mean value
of the predicted value; the length of the bar represents the SHAP value of each eigenvalue;
red represents the positive influence of the eigenvalue on the predicted value, and blue
represents the negative influence. As can be seen from Figure 10, for this sample, starting
from the base value, the SHAP values of the four eigenvalues are superimposed to get the
result. The mass replacement rate of RP has the greatest positive influence on the prediction
of the compressive strength of te RP mortar. Note that it is likely to vary the importance
factor for individual predictions (Figure 10) from the mean SHAP value (Figure 11) as the
mean value is a global indication.
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5.3. Global Interpretation

Passing the SHAP values to the bar plot function creates a global feature importance
plot, where the global importance of each feature is treated as the average absolute value
of that feature across all given samples, as shown in Figure 11. It shows that the mass
replacement rate (MRR) of RP has a significant contribution to the prediction of compressive
strength of RP mortar, and its SHAP value is twice that of its size, and kind has the
least influence on the predicted results. The water–binder ratio in the data set is more
concentrated, so it has the least influence on the prediction results.

Each row in Figure 12 represents a feature that is sorted by importance from top to
bottom, with the abscissa is displayed the SHAP value. A dot represents a sample, and
the change in color from blue to red indicates that the value of the feature itself changes
from small to large. Through the overall analysis diagram of features, it can be intuitively
seen that the mass replacement rate (MRR) of RP is an important influencing factor, and
its feature value is basically negatively correlated with the SHAP value, indicating that
the mass replacement rate of RP has a negative impact on the compressive strength of the
mortar. The influence of kind on the prediction result is that the eigenvalue is positively
correlated with the SHAP value. The characteristic value of RCP is 0 and that of RBP is 1,
indicating that the compressive strength of RBP mortar is generally higher than that of the
RCP mortar.

5.4. Feature Interactions

Figure 13 depicts the relationship between a given variable and the SHAP value and
frequently interacting variables. Each point represents a sample in the feature correlation
graph, where the color represents the size of the feature value on the right. The experimental
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data of the water–binder ratio are concentrated, so the feature interaction analysis is not
carried out. The kind, size and mass replacement rate affect each other. It can be seen
from Figure 13a that when kind = 0, the SHAP value of kind decreases with the increase
in size, while, when kind = 1, the SHAP value of kind increases with the increase in size,
indicating that size has an effect on species. It can be seen from Figure 13c,d that, with the
increase in the RP quality replacement rate (MRR), the SHAP value decreases to varying
degrees. Therefore, as a major factor in reducing compressive strength, the reduction in
the SHAP value means the reduction of compressive performance. Some experimental
evidence supports these findings [70,71]. It is difficult to obtain obvious results from the
figure on the influence of particle size on the compressive strength of mortar, which needs
further study in the future.
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5.5. Sensitivity of Feature

Sensitivity analysis is a method used to study how the input changes of ML models
affect the output changes [72]. Because the XGBoost model is the best in predicting the
compressive strength of RP mortar, XGBoost is selected for sensitivity analysis. In order to
investigate the sensitivity of the selected ML model, one feature value is disturbed each
time for two kinds of RP, and the average value of the other two feature values remain
unchanged so as to predict the compressive strength of the RP mortar. Figures 14 and 15.
show the feature sensitivity analysis diagrams of RCP and RBP, respectively. It can be
seen from the correlation coefficients −0.592 and −0.669 that the mass replacement rates of
RCP and RBP are moderately negatively correlated with the predicted mortar compressive
strength. According to the fitting equation, the decline trend of RCP is steeper than that
of RBP. There is no obvious linear relationship between the particle size of the two kinds
of RP and the predicted compressive strength of the mortar. Due to the concentration of
water–binder in the data, sensitivity analysis of the water–binder ratio was not carried
out. By comparing the predicted values of the two kinds of RP under different disturbance
feature values, it is found that the mass replacement rate of the regenerated powder leads
to the biggest change in the predicted results.

r =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(8)

where r is the correlation coefficient, a measure of linear correlation between variables. Xi
is the feature value of the perturbation, and Yi is the predictive value. X is the average of
the feature values of the perturbation, and Y is the average of the predicted values.
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6. Conclusions

In this paper, four ensemble ML models (XGBoost, RF, LightGBM, AdaBoost) are
applied to the prediction of the compressive strength of RP mortar. Four variables are used
as inputs, including W/B, particle size of RP (µm), kind of RP and mass replacement rate
of RP (%). The RMSE, MAE, R2 and a10-index are used to compare the performance of four
ML models for predicting the compressive strength of the RP mortar. Finally, the SHAP
algorithm is used to explain the model prediction and analyze the influence of the input
variables on the output. The following conclusions can be drawn from the study:

1. After the comparison of four performance indicators, it is found that XGBoost achieves
the best results in four ML models. The a10-index, RMSE, MAE and R2 are 0.926,
2.155, 1.596 and 0.95 in the training set and 0.659, 4.285, 3.182 and 0.842 in the test set,
respectively, indicating that the XGBoost model is the best model for predicting the
compressive strength of the RP mortar.

2. Among the four ML models used in this paper, AdaBoost has the worst performance,
with the R2 value in the training set only 0.708. This is because AdaBoost is sensitive
to abnormal samples, which may gain higher weights in iterations, affecting the
prediction accuracy of the final strong learner.

3. SHAP is an additive interpreter that adds up the contribution values of each influ-
encing factor to obtain the final predicted value. In the first place, SHAP provides a
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global interpretation of the strength prediction and sorts the feature importance of the
four input variables to conclude that the mass replacement rate of RP has the greatest
influence on the prediction process, which is consistent with the results found in
previous experiments [73]. On the contrary, W/B has the least effect on the predicted
results, because the W/B used in the experiment is more concentrated.

4. In the feature dependence analysis, the SHAP value decreases with the increase in the
mass replacement rate, and the SHAP value of RBP is slightly higher than that of RCP.
These findings provide reference value for future research into recycled powder.
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Appendix A. All test data

Author Literature ID Kind Size(µm) W/B MRR(%) fc(Mpa)

Zhang Xiu qin
EXPERI MENTAL STUDY ON THE

UTILIZATION OF RENEWA BLE MICRON
(Chinese) [74]

1 RCP 0.00 0.50 0.00 42.70
2 RCP 29.78 0.50 10.00 39.10
3 RCP 29.78 0.50 20.00 35.80
4 RCP 29.78 0.50 30.00 31.20

Shujun Li et al.
Experimental Study on the Preparation of

Recycled Admixtures by Using Construction
and Demolition Waste [39]

5 RCP 0.00 0.50 0.00 46.60
6 RCP 22.50 0.50 30.00 33.55
7 RCP 37.50 0.50 30.00 32.62
8 RBP 22.50 0.50 30.00 36.35
9 RBP 37.50 0.50 30.00 34.48

Lan Cong et al.
Study on the Application of Recycled Fine

Powder in Ready-Mixed Concrete [40]

10 RBP 16.61 0.50 30.00 33.05
11 RBP 14.44 0.50 30.00 34.99
12 RBP 12.67 0.50 30.00 37.42
13 RBP 10.66 0.50 30.00 37.91

Wang Hua
INFLUENCE OF RECYCLED FINE POWDER

ON SHRINKAGE CRACKING OF
CONCRETE (Chinese) [75]

14 RCP 100.00 0.50 30.00 29.90
15 RCP 70.00 0.50 30.00 32.30
16 RCP 50.00 0.50 30.00 30.20

Liu Rongtao
Experimental Study on the Construction Waste

Clay Brick Powder as Active Admixture
(Chinese) [76]

17 RBP 25.00 0.50 30.00 28.70
18 RBP 15.00 0.50 30.00 31.90
19 RBP 10.00 0.50 30.00 32.70
20 RBP 0.00 0.50 0.00 42.50
21 RBP 15.00 0.50 10.00 38.30
22 RBP 15.00 0.50 20.00 35.70
23 RBP 15.00 0.50 30.00 31.90
24 RBP 15.00 0.50 40.00 26.30
25 RBP 15.00 0.50 50.00 22.10
26 RBP 15.00 0.50 60.00 16.60
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Author Literature ID Kind Size(µm) W/B MRR(%) fc(Mpa)

Kang Xiaoming

Study on the Influence of the Particle Size
Distribution of Recycled Concrete Powder on
the Mechanical Properties and Microstructure

of Rcycled Mortar (Chinese) [77]

27 RCP 34.82 0.50 10.00 42.00
28 RCP 34.82 0.50 20.00 40.30
29 RCP 34.82 0.50 30.00 31.00
30 RCP 19.40 0.50 10.00 43.50
31 RCP 19.40 0.50 20.00 41.00
32 RCP 19.40 0.50 30.00 31.50
33 RCP 18.53 0.50 10.00 50.60
34 RCP 18.53 0.50 20.00 44.00
35 RCP 18.53 0.50 30.00 36.10
36 RCP 0.00 0.50 0.00 50.80
37 RCP 67.79 0.50 10.00 45.50
38 RCP 67.79 0.50 20.00 37.20
39 RCP 67.79 0.50 30.00 26.80
40 RCP 67.79 0.50 40.00 17.60

Xu Changwei et al.
Study on activation of waste clay brick

powder [41]

41 RBP 14.71 0.50 30.00 23.42
42 RBP 13.89 0.50 30.00 25.30
43 RBP 12.85 0.50 30.00 27.42
44 RBP 0.00 0.50 0.00 40.90
45 RBP 12.85 0.50 20.00 48.10
46 RBP 12.85 0.50 30.00 39.20
47 RBP 12.85 0.50 40.00 31.80
48 RBP 12.85 0.50 50.00 26.50
49 RBP 12.85 0.50 60.00 21.10

XU Changwei et al.
Application of waste clay brick powder in

grouting material (Chinese) [78]

50 RBP 20.90 0.50 30.00 22.10
51 RBP 16.70 0.50 30.00 27.70
52 RBP 14.37 0.50 30.00 32.90
53 RBP 12.71 0.50 30.00 35.60

Zheng Li Properties of Concrete with Recycled Clay-
Brick-Powder (Chinese) [79]

54 RBP 100.00 0.50 30.00 44.90
55 RBP 60.00 0.50 30.00 45.10
56 RBP 40.00 0.50 30.00 45.10
57 RBP 100.00 0.50 20.00 45.04
58 RBP 60.00 0.50 20.00 48.45
59 RBP 40.00 0.50 20.00 49.10
60 RBP 100.00 0.50 10.00 48.90
61 RBP 60.00 0.50 10.00 52.00
62 RBP 40.00 0.50 10.00 50.10

WANG Yuan-yuan
et al.

STUDY ON MECHANICAL PROPERTIES OF
WASTE CLAY-BRICK-POWDER MORTAR

(Chinese) [80]

63 RBP 0.00 0.35 0.00 54.90
64 RBP 53.00 0.35 10.00 50.00
65 RBP 53.00 0.35 20.00 48.30
66 RBP 53.00 0.35 30.00 45.10
67 RBP 71.00 0.35 10.00 52.30
68 RBP 71.00 0.35 20.00 48.20
69 RBP 71.00 0.35 30.00 45.10
70 RBP 82.00 0.35 10.00 48.80
71 RBP 82.00 0.35 20.00 44.90
72 RBP 82.00 0.35 30.00 44.80
73 RBP 45.00 0.35 10.00 53.60
74 RBP 45.00 0.35 20.00 40.00
75 RBP 45.00 0.35 30.00 37.10

Zhang Ping et al.
Study on the method of stimulating the activity

of regenerated micro powder (Chinese) [81]

76 RCP 0.00 0.50 0.00 49.20
77 RCP 8.06 0.50 10.00 46.10
78 RCP 8.06 0.50 20.00 44.80
79 RCP 8.06 0.50 30.00 43.10
80 RCP 8.06 0.50 40.00 33.40
81 RCP 8.06 0.50 50.00 28.00
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Author Literature ID Kind Size(µm) W/B MRR(%) fc(Mpa)

Liu Yin et al.
Experimental Research on Cementitious

Property of Renewable Powders of
Construction Waste (Chinese) [82]

82 RCP 0.00 0.50 0.00 30.60
83 RCP 50.00 0.50 10.00 29.50
84 RCP 50.00 0.50 20.00 26.90
85 RCP 50.00 0.50 30.00 23.50
86 RCP 50.00 0.50 40.00 20.10

Ma Yu
Experimental study on properties of recycled

micro powder concrete mixed with
construction waste (Chinese) [83]

87 RCP 0.00 0.50 0.00 56.80
88 RCP 35.00 0.50 10.00 53.10
89 RCP 35.00 0.50 20.00 50.80
90 RCP 35.00 0.50 30.00 39.20
91 RCP 35.00 0.50 40.00 33.60
92 RCP 35.00 0.50 50.00 25.80

Fan Yao-hu et al.
Effect of Regenerated Powder and Fly Ash on
Mechanical Properties and Microstructure of

Mortar (Chinese) [84]

93 RCP 0.00 0.50 0.00 49.30
94 RCP 12.86 0.50 10.00 43.60
95 RCP 12.86 0.50 20.00 42.50
96 RCP 12.86 0.50 30.00 33.60
97 RCP 12.86 0.50 40.00 27.80

Gao shaobin
Full-component of Waste Cement and

Utilization of Recycled Concrete (Chinese) [85]

98 RCP 0.00 0.55 0.00 52.50
99 RCP 24.01 0.55 10.00 47.50
100 RCP 24.01 0.55 20.00 44.90
101 RCP 24.01 0.55 30.00 38.20

Zhenhua Duan
et al.

Combined use of recycled powder and
recycled coarse aggregate derived from
construction and demolition waste in

self-compacting concrete [37]

102 RCP 0.00 0.50 0.00 42.53
103 RCP 45.00 0.50 30.00 34.02
104 RCP 45.00 0.40 0.00 48.41
105 RCP 45.00 0.40 10.00 42.41
106 RCP 45.00 0.40 20.00 41.25

Dae-Joong Moon
et al.

Fundamental properties of mortar containing
waste concrete powder [38]

107 RCP 19.67 0.55 0.00 54.10
108 RCP 44.12 0.55 20.00 41.90
109 RCP 20.76 0.55 10.00 52.60
110 RCP 20.76 0.55 20.00 46.70
111 RCP 20.76 0.55 30.00 36.40
112 RCP 18.93 0.55 10.00 50.10
113 RCP 18.93 0.55 20.00 43.40
114 RCP 18.93 0.55 30.00 37.30

Shujun Li et al.
Particle-size effect of recycled clay brick
powder on the pore structure of blended

cement paste [86]

115 RBP 0.00 0.50 30.00 48.30
116 RBP 25.00 0.50 30.00 39.80
117 RBP 45.00 0.50 30.00 36.20
118 RBP 75.00 0.50 30.00 33.70

Zhiming Ma et al.

Mechanical properties and water absorption of
cement composites with various fineness and

contents of waste brick powder from C&D
waste [87]

119 RBP 0.00 0.50 0.00 42.10
120 RBP 6.00 0.50 7.50 43.30
121 RBP 6.00 0.50 15.00 44.50
122 RBP 6.00 0.50 30.00 38.00
123 RBP 12.00 0.50 30.00 42.60
124 RBP 12.00 0.50 30.00 43.40
125 RBP 12.00 0.50 30.00 37.80
126 RBP 18.00 0.50 30.00 40.70
127 RBP 18.00 0.50 30.00 39.10
128 RBP 18.00 0.50 30.00 36.30
129 RBP 42.00 0.50 30.00 38.50
130 RBP 42.00 0.50 30.00 37.40
131 RBP 42.00 0.50 30.00 32.90

Huixia Wu et al.

Water transport and resistance improvement
for the cementitious composites with

eco-friendly powder from various concrete
wastes [88]

132 RCP 0.00 0.50 0.00 42.50
133 RCP 9.00 0.50 10.00 37.90
134 RCP 9.00 0.50 20.00 35.40
135 RCP 9.00 0.50 30.00 32.13
136 RCP 9.00 0.50 50.00 20.70
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Author Literature ID Kind Size(µm) W/B MRR(%) fc(Mpa)

Huixia Wu et al.
Properties of green mortar blended with waste
concrete-brick powder at various components,

replacement ratios and particle sizes [89]

137 RCP 0.00 0.50 0.00 42.50
138 RCP 14.30 0.50 10.00 37.60
139 RCP 14.30 0.50 20.00 34.30
140 RCP 14.30 0.50 30.00 30.50
141 RBP 11.80 0.50 10.00 41.30
142 RBP 11.80 0.50 20.00 38.70
143 RBP 11.80 0.50 30.00 34.90

Zhenhua Duan
et al.

Study on the essential properties of recycled
powders from construction and demolition

waste [90]

144 RBP 0.00 0.50 0.00 45.00
145 RBP 12.64 0.50 10.00 41.40
146 RBP 12.64 0.50 20.00 40.70
147 RBP 12.64 0.50 30.00 37.80

Shujun Li et al.
Investigation of using recycled powder from

the preparation of recycled aggregate as a
supplementary cementitious material [91]

148 RCP 0.00 0.50 0.00 47.10
149 RCP 9.00 0.50 30.00 35.32
150 RCP 14.00 0.50 30.00 34.40
151 RCP 18.00 0.50 30.00 32.10
152 RCP 28.00 0.50 30.00 31.60
153 RBP 9.30 0.50 30.00 37.20
154 RBP 13.00 0.50 30.00 36.50
155 RBP 20.00 0.50 30.00 34.10
156 RBP 27.00 0.50 30.00 33.90

Xiao-xiao Yu
Effect of Mechanical Force Grinding on the

Properties of Recycled Powder (Chinese) [92]

157 RCP 27.50 0.50 5.00 42.40
158 RCP 27.50 0.50 10.00 41.50
159 RCP 27.50 0.50 15.00 37.80
160 RCP 27.50 0.50 20.00 34.80
161 RCP 27.50 0.50 25.00 32.40
162 RCP 27.50 0.50 30.00 30.30
163 RCP 27.50 0.50 35.00 23.80
164 RCP 27.50 0.50 40.00 20.00
165 RCP 27.50 0.50 45.00 16.30
166 RCP 27.50 0.50 50.00 12.50
167 RCP 27.50 0.50 55.00 11.20
168 RCP 27.50 0.50 60.00 5.40
169 RCP 32.50 0.50 5.00 41.60
170 RCP 32.50 0.50 10.00 38.20
171 RCP 32.50 0.50 15.00 36.10
172 RCP 32.50 0.50 20.00 32.50
173 RCP 32.50 0.50 25.00 30.10
174 RCP 32.50 0.50 30.00 36.90
175 RCP 32.50 0.50 35.00 22.50
176 RCP 32.50 0.50 40.00 17.40
177 RCP 32.50 0.50 45.00 12.40
178 RCP 32.50 0.50 50.00 11.30
179 RCP 32.50 0.50 55.00 11.10
180 RCP 32.50 0.50 60.00 2.50

Li Zhong
Effect of recycled fine powder/aggregate

modification on cement-basedmaterials and its
application (Chinese) [93]

181 RCP 0.00 0.50 0.00 43.90
182 RCP 22.70 0.50 10.00 43.50
183 RCP 22.70 0.50 30.00 33.30
184 RCP 22.70 0.50 50.00 20.50

Yang Lin

INVESTIGATION ON R ECYCLED
CEMENTITIOUS MATERIALS PR EPAR ING

WITH RECYCLED CONCR ETE POWDER
(Chinese) [94]

185 RCP 0.00 0.50 0.00 45.20
186 RCP 33.20 0.50 30.00 27.80
187 RCP 27.60 0.50 30.00 28.90
188 RCP 20.60 0.50 30.00 31.30
189 RCP 16.50 0.50 30.00 29.60
190 RCP 14.30 0.50 30.00 28.00
191 RCP 10.30 0.50 30.00 25.70
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Author Literature ID Kind Size(µm) W/B MRR(%) fc(Mpa)

Huixia Wu et al.
Early-age behavior and mechanical properties
of cement-based materials with various types

and fineness of recycled powder [95]

192 RCP 0.00 0.50 0.00 38.80
193 RCP 12.40 0.50 7.00 38.50
194 RCP 12.40 0.50 15.00 36.40
195 RCP 12.40 0.50 30.00 30.20
196 RCP 12.40 0.50 40.00 24.10
197 RCP 23.50 0.50 7.00 27.80
198 RCP 23.50 0.50 15.00 34.50
199 RCP 23.50 0.50 30.00 29.60
200 RCP 23.50 0.50 40.00 22.90
201 RCP 103.60 0.50 7.00 35.20
202 RCP 103.60 0.50 15.00 30.20
203 RCP 103.60 0.50 30.00 25.20
204 RCP 103.60 0.50 40.00 20.00

Appendix B. ML training set data

ID Kind Size (µm) W/B MRR (%) fc (Mpa)

1 0 32.5 0.5 40 17.4
2 0 34.823 0.5 10 42
3 1 45 0.35 10 53.6
4 0 27.5 0.5 55 11.2
5 1 27 0.5 30 33.9
6 0 0 0.5 0 46.6
7 0 37.5 0.5 30 32.62
8 1 71 0.35 10 52.3
9 1 100 0.5 30 44.9
10 0 24.01 0.55 10 47.5
11 1 12.85 0.5 40 31.8
12 0 24.01 0.55 30 38.2
13 0 103.6 0.5 15 30.2
14 1 12 0.5 30 43.4
15 0 45 0.4 20 41.25
16 1 15 0.5 30 31.9
17 1 40 0.5 20 49.1
18 1 15 0.5 10 38.3
19 0 10.3 0.5 30 25.7
20 0 22.5 0.5 30 33.55
21 0 35 0.5 20 50.8
22 1 11.8 0.5 30 34.9
23 1 12.85 0.5 60 21.1
24 0 45 0.4 10 42.41
25 0 22.7 0.5 10 43.5
26 1 75 0.5 30 33.7
27 0 29.78 0.5 20 35.8
28 0 9 0.5 30 35.32
29 0 0 0.5 0 50.8
30 1 12.85 0.5 20 48.1
31 1 18 0.5 30 39.1
32 1 14.44 0.5 30 34.99
33 1 45 0.35 30 37.1
34 1 15 0.5 50 22.1
35 1 0 0.5 0 42.5
36 0 12.4 0.5 30 30.2
37 0 33.2 0.5 30 27.8
38 1 100 0.5 10 48.9
39 0 8.06 0.5 40 33.4
40 0 103.6 0.5 40 20
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ID Kind Size (µm) W/B MRR (%) fc (Mpa)
41 0 22.7 0.5 30 33.3
42 0 0 0.5 0 38.8
43 1 0 0.5 0 45
44 0 50 0.5 20 26.9
45 0 20.76 0.55 10 52.6
46 1 16.7 0.5 30 27.7
47 1 12 0.5 30 42.6
48 0 0 0.5 0 30.6
49 0 35 0.5 40 33.6
50 1 6 0.5 15 44.5
51 0 18.93 0.55 20 43.4
52 1 0 0.5 0 42.1
53 0 32.5 0.5 30 36.9
54 0 14 0.5 30 34.4
55 0 19.403 0.5 30 31.5
56 1 9.3 0.5 30 37.2
57 1 13 0.5 30 36.5
58 1 6 0.5 7.5 43.3
59 1 12 0.5 30 37.8
60 0 0 0.5 0 56.8
61 1 12.85 0.5 30 39.2
62 1 11.8 0.5 10 41.3
63 1 82 0.35 20 44.9
64 0 18.93 0.55 10 50.1
65 1 53 0.35 30 45.1
66 1 25 0.5 30 39.8
67 0 100 0.5 30 29.9
68 0 27.5 0.5 45 16.3
69 0 27.5 0.5 35 23.8
70 1 18 0.5 30 40.7
71 1 42 0.5 30 38.5
72 0 27.6 0.5 30 28.9
73 0 44.12 0.55 20 41.9
74 0 18 0.5 30 32.1
75 0 50 0.5 30 30.2
76 0 35 0.5 10 53.1
77 0 27.5 0.5 50 12.5
78 1 12.64 0.5 20 40.7
79 1 14.71 0.5 30 23.42
80 1 10.66 0.5 30 37.91
81 0 50 0.5 10 29.5
82 0 12.862 0.5 10 43.6
83 1 53 0.35 20 48.3
84 1 6 0.5 30 38
85 0 67.785 0.5 30 26.8
86 0 32.5 0.5 15 36.1
87 0 103.6 0.5 7 35.2
88 0 20.76 0.55 20 46.7
89 1 40 0.5 30 45.1
90 0 67.785 0.5 20 37.2
91 0 32.5 0.5 25 30.1
92 0 20.6 0.5 30 31.3
93 1 45 0.35 20 40
94 0 29.78 0.5 30 31.2
95 0 32.5 0.5 60 2.5
96 0 67.785 0.5 10 45.5
97 0 8.06 0.5 50 28
98 0 32.5 0.5 20 32.5
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ID Kind Size (µm) W/B MRR (%) fc (Mpa)
99 0 12.4 0.5 15 36.4

100 0 9 0.5 50 20.7
101 1 60 0.5 20 48.45
102 1 15 0.5 30 31.9
103 1 12.85 0.5 50 26.5
104 0 32.5 0.5 10 38.2
105 0 12.862 0.5 40 27.8
106 0 35 0.5 50 25.8
107 1 14.37 0.5 30 32.9
108 1 20.9 0.5 30 22.1
109 0 0 0.5 0 45.2
110 0 14.3 0.5 20 34.3
111 0 32.5 0.5 45 12.4
112 1 40 0.5 10 50.1
113 1 82 0.35 10 48.8
114 0 32.5 0.5 35 22.5
115 1 82 0.35 30 44.8
116 0 28 0.5 30 31.6
117 0 0 0.5 0 49.3
118 0 34.823 0.5 30 31
119 0 32.5 0.5 50 11.3
120 0 27.5 0.5 25 32.4
121 1 15 0.5 60 16.6
122 0 18.529 0.5 10 50.6
123 0 27.5 0.5 30 30.3
124 0 8.06 0.5 20 44.8
125 0 0 0.5 0 42.53
126 0 9 0.5 30 32.13
127 0 18.529 0.5 30 36.1
128 0 27.5 0.5 10 41.5
129 0 34.823 0.5 20 40.3
130 0 103.6 0.5 30 25.2
131 0 18.93 0.55 30 37.3
132 0 23.5 0.5 30 29.6
133 0 19.67 0.55 0 54.1
134 0 14.3 0.5 30 30.5
135 0 23.5 0.5 15 34.5
136 0 50 0.5 30 23.5
137 0 45 0.4 0 48.41
138 1 25 0.5 30 28.7
139 0 35 0.5 30 39.2
140 0 0 0.5 0 42.5
141 1 13.89 0.5 30 25.3
142 0 19.403 0.5 10 43.5
143 0 27.5 0.5 20 34.8
144 0 27.5 0.5 5 42.4
145 0 22.7 0.5 50 20.5
146 1 42 0.5 30 37.4
147 1 71 0.35 30 45.1
148 0 23.5 0.5 7 27.8
149 1 11.8 0.5 20 38.7
150 0 23.5 0.5 40 22.9
151 1 37.5 0.5 30 34.48
152 1 60 0.5 30 45.1
153 1 18 0.5 30 36.3
154 0 24.01 0.55 20 44.9
155 1 20 0.5 30 34.1
156 0 9 0.5 10 37.9
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ID Kind Size (µm) W/B MRR (%) fc (Mpa)
157 0 0 0.5 0 42.7
158 1 100 0.5 20 45.04
159 0 12.4 0.5 7 38.5
160 0 12.862 0.5 30 33.6
161 1 0 0.5 30 48.3
162 0 70 0.5 30 32.3
163 0 0 0.5 0 49.2

Appendix C. ML test set data

ID Kind Size (µm) W/B MRR (%) fc (Mpa)

1 0 18.529 0.5 20 44
2 0 19.403 0.5 20 41
3 0 0 0.5 0 47.1
4 0 0 0.5 0 43.9
5 0 27.5 0.5 60 5.4
6 0 0 0.55 0 52.5
7 1 45 0.5 30 36.2
8 1 12.67 0.5 30 37.422
9 1 15 0.5 40 26.3
10 1 12.64 0.5 30 37.8
11 1 12.71 0.5 30 35.6
12 0 8.06 0.5 10 46.1
13 1 12.85 0.5 30 27.4176
14 0 67.785 0.5 40 17.6
15 1 12.64 0.5 10 41.4
16 0 27.5 0.5 40 20
17 1 0 0.5 0 40.9
18 0 29.78 0.5 10 39.1
19 1 16.61 0.5 30 33.048
20 0 45 0.5 30 34.02
21 1 0 0.35 0 54.9
22 0 0 0.5 0 42.5
23 1 10 0.5 30 32.7
24 1 42 0.5 30 32.9
25 0 12.4 0.5 40 24.1
26 0 32.5 0.5 5 41.6
27 0 32.5 0.5 55 11.1
28 0 9 0.5 20 35.4
29 0 14.3 0.5 10 37.6
30 0 14.3 0.5 30 28
31 1 71 0.35 20 48.2
32 1 53 0.35 10 50
33 0 8.06 0.5 30 43.1
34 1 15 0.5 20 35.7
35 0 50 0.5 40 20.1
36 0 27.5 0.5 15 37.8
37 1 22.5 0.5 30 36.348
38 1 60 0.5 10 52
39 0 12.862 0.5 20 42.5
40 0 20.76 0.55 30 36.4
41 0 16.5 0.5 30 29.6
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