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Abstract: This paper presents the results of experiments using the eddy current system designated for
nondestructive inspection of carbon fiber-reinforced composites. For this purpose, the eddy current
testing system with a differential transducer with two pairs of excitation coils oriented perpendicularly
and a central pick-up coil was utilized. The transducer measures the magnetic flux difference flowing
through the pick-up coil. The transducer of this design has already been successfully utilized to
inspect isotropic metal structures. However, the anisotropy of the composites and their lower
conductivity compared to metal components made the transducer parameters adjustment essential.
Thus, various excitation frequencies were considered and investigated. The system was evaluated
using a sample made of orthogonally woven carbon fiber-reinforced composites with two artificial
flaws (the notches with a maximum relative depth of 30% and 70%, respectively, thickness of 0.4 mm,
and a length of 5 mm). The main goal was to find a configuration suitable for detecting hidden flaws
in such materials.

Keywords: nondestructive testing (NDT); nondestructive evaluation (NDE); eddy current testing
(ECT); carbon fiber-reinforced composites; differential eddy current probe; hidden flaws detection

1. Introduction

Composites are manufactured by joining together two materials that differ significantly
in their chemical and physical properties. The undoubted advantages of composites
are simple modifiability of the structure for the target use, low production cost, good
corrosion resistance, and high strength–thickness ratio. Due to these facts, composites
found extensive use in various branches of modern industry, such as shipbuilding (machine
enclosures) [1], offshore (pipelines) [2], civil engineering (reinforced foundations, sewage
pipes) [3], power engineering (rotor blades in wind turbines) [4], aerospace (crew capsules,
satellites) [5], and even in biomedicine (implants) [5]. Composites are the first choice in case
of weight reduction, fire and thermal protection, and invariable dimensions or stiffness.
Unfortunately, the strength of composites, like the steel commonly used in industry for
years, is limited. Moreover, the composite structure damage may already occur at the
manufacturing stage and substantially affect the structure’s performance and lifetime.
For example, in the power energy industry, the production of larger wind turbine blades
causes an increased failure rate due to the weight reduction of the glass composite [6,7].
Carrol et al. indicate that wind turbine blade malfunctions account for 6.2% of failure
cases [8]. Sometimes, a cost-intensive structural repair is necessary to resume the turbine
operation. Health monitoring and frequent inspections, especially nondestructive ones, are
necessary to enhance the productiveness of the turbines [9]. In the automotive industry, the
production of hydrogen fuel cell vehicles is gaining popularity, given the need to reduce
fossil fuel consumption and air pollution [10]. Hydrogen storage vessels are manufactured
from carbon fiber-reinforced composites, which are lightweight and corrosion-resistant

Materials 2023, 16, 506. https://doi.org/10.3390/ma16020506 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16020506
https://doi.org/10.3390/ma16020506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-7356-6724
https://orcid.org/0000-0003-1512-9846
https://doi.org/10.3390/ma16020506
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16020506?type=check_update&version=2


Materials 2023, 16, 506 2 of 13

compared to those made of steel. To ensure structural integrity and thus a safe and reliable
operation of the composite vessel, the detection and identification of structural defects by
using nondestructive techniques are invaluable [11].

Exemplary defects in composites include fiber breakages, cracks, porosities, fiber
misalignments, and delaminations [1,2]. Therefore, it is essential to perform nondestructive
testing of composites at the production stage and during the operation. Systematic inspec-
tions increase the safety of structure service and diminish the danger to the life or health of
the maintenance and end users.

Nowadays, in the case of composites, the following techniques of nondestructive
testing are utilized: the ultrasonic method, eddy currents, thermography, radiography, and
shearography. The eddy current method is widely used in the nondestructive evaluation of
metal components. This method is advantageous due to surface and subsurface defect de-
tection, the possibility of coating thickness measurement, and a non-hazardous, contactless
procedure [12,13]. An important parameter is the penetration depth of eddy currents, which
depend on the choice of the excitation frequency. The eddy current method is promising
for all composites consisting of materials with good electrical conductivity, such as those
reinforced with carbon fiber. However, it requires further study to optimize the design
of the transducers and the testing parameters following the carbon fiber-reinforced com-
posite specificity. It is predominately due to the relatively low conductivity and material
anisotropy [1].

Moreover, carbon fiber-reinforced composites differ in reinforcement type and fiber
alignments. Components with uni-, bi-, or multi-directional fiber orientations are sym-
metrically built. However, there are also many components with reinforcement made of
orthogonally woven fibers. Nondestructive inspection of composites with such a fiber
alignment is complex due to asymmetry and high anisotropy. Therefore, it is especially
challenging to detect hidden flaws in such materials.

2. Materials and Methods

Several studies were already performed concerning the alignment of the eddy current
method to composite specificity. For example, Mizukami et al. proposed a new approach
to identify and localize delamination in carbon fiber-reinforced composites. The study in-
volved the inspection of quadratic samples (200 mm× 200 mm) with artificial delamination
produced using a thin polyimide film placed between composite layers at the lamination
stage [14]. Dehui et al. focused on the detection of crack detection (inner flaws with
dimensions of around 10 mm × 0.2 mm × 0.4 mm) using a new method relying on power
loss measurements. Orthogonally woven samples and samples with uni-, bi-, and four-
directional carbon fibers and dimensions of around 200 mm × 200 mm were inspected [15].
Pasadas et al. proposed an approach based on guided wave tomography and eddy cur-
rents to detect and localize fiber breakages. A rectangular sample (500 mm × 470 mm)
with four-directional fibers (0◦, 90◦, 45◦, −45◦) containing an artificially made breakage
with a length of 20 mm was subjected to experiments [16]. The Fraunhofer Institute for
Nondestructive Testing researched the application of the high-frequency eddy current
method to carbon composites. The research involved the detection of hidden defects such
as web faults and delaminations [17]. Zeng et al. proposed the eddy current method to
detect fiber waviness in carbon composites using a transducer with vertical coils. The
research comprised a rectangular, unidirectional sample (200 mm × 200 mm) [18]. Fan et al.
used a differential rectangular sensor to detect delaminations, cracks, and impact damages
using a technique based on pulsed eddy current [19]. Cheng et al. detected wrinkles,
missing bundles, and gaps in carbon fiber-reinforced composites using a high-resolution,
self-nulling eddy current transducer [20]. The research conducted by Underhill et al. em-
phasized the nondestructive evaluation of sandwich panels made of carbon composites.
The examination procedure involved an eddy current array sensitive to minor disbound
and dents [21].
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This study used a rectangular sample (labeled S03) made of an orthogonally woven
carbon fiber-reinforced composite as the subject of the experiments and analysis. An
overview of the sample parameters is provided in Table 1.

Table 1. Sample parameters.

Sample S03

Dimensions 210 mm × 148 mm
Thickness 2 mm
Mass ca. 90 g
Face reinforcement weight 245 g

m2

Internal reinforcement weight 400 g
m2 and/or 600 g

m2

Surface coating matt coating
Heat treatment annealing at a temperature of 60 ◦C

The sample contained two artificial flaws (cuts) manufactured with a diamond blade.
Two semi elliptical cuts with a thickness of 0.4 mm and a length of 5 mm were made
on the longitudinal axis of the plate symmetry. The relative maximum depth of the cuts
is 30% (OF30%; OF stands for Outer Flaw) and 70% (OF70%) of the material thickness,
respectively. The outer flaw means that the transducer was scanned over the opposite side
of the specimen. The photo of the sample is shown in Figure 1.
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Sample S03 
Dimensions 210 mm  148 mm 
Thickness 2 mm 
Mass ca. 90 g 
Face reinforcement weight 245   
Internal reinforcement weight 400  and/or 600  
Surface coating matt coating 
Heat treatment annealing at a temperature of 60 °C 

Figure 1. Photo of the sample S03 with the two artificial flaws (left: OF30%, right: OF70%). The
transducer was scanned over the opposite side of the plate.

The eddy current method is a nondestructive technique applied to inspect conductive
materials. An alternating current flowing through the excitation coil creates a primary
alternating electromagnetic field. The field covers the sample and causes the eddy current to
flow into it. If an inhomogeneity occurs in the material, the current path is disrupted. Eddy
currents induce a secondary magnetic field that causes the current flow in the field-sensing
coil. Measurement and analysis of the field-sensing coil voltage enable the assessment of
the material’s condition [22].

A differential eddy current transducer presented in Figures 2 and 3 was utilized for
testing. The transducer design was proposed and successfully used by Chady et al. [23]
for testing isotropic, metal-made Inconel structures. The transducer comprises a ferrite
core with five columns (Figure 2). The columns are symmetrically arranged. The middle
column carries a pick-up coil S, while the other four carry excitation coils EA, EB, EC, and
ED. The excitation coils form two pairs arranged perpendicularly. If the test material is
homogeneous, the magnetic fluxes between the coils EA and EB and between the coils EC
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and ED are almost the same. The inaccuracies in the transducer implementation cause minor
differences between the fluxes. The fluxes are forced in opposite directions. Therefore,
the voltage induced in the pick-up coil S is nearly zero. The heterogeneity of the material
structure caused by defects results in larger flux differences and the increased voltage
induced in coil S. Table 2 presents chosen parameters of the transducer.
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Figure 2. Schematic view of the differential eddy current transducer and arrangement over the
sample. EA, EB, EC, ED—excitation coils, S—pick-up coil, core—ferrite core, ϕx, ϕy—magnetic fluxes
generated by the pairs of excitation coils.
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Figure 3. Photo of the transducer protected by the tape (bottom view).

Table 2. Transducer parameters.

Parameter Value

Excitation coil EA turns 25
Excitation coil EB turns 25
Excitation coil EC turns 25
Excitation coil ED turns 25

Pick-up coil S turns 100
Ferrite core diameter 12 mm

Excitation coils—pick-up coil distance 5 mm
Core column diameter 2 mm

Core column height 6 mm
Core height 10 mm

Figure 4 shows a simplified block scheme of the measuring system. The system com-
prises the eddy current differential transducer (Figure 3), a function generator, amplifiers,
an analog-to-digital converter, an amperemeter, a high-pass filter, and a control computer.
First, the computer sends the parameters of the requested excitation (amplitude, frequency,
gain) to the function generator, which produces an analog excitation voltage on this basis.
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Then, the power amplifier boosts the voltage signal and passes it to the excitation coils of the
transducer. The amperemeter between the amplifier and the transducer enables observation
of the excitation current. Subsequently, the instrumentation amplifier boosts the output
voltage from the transducer, and the Butterworth fourth-order high-pass filter reduces
lower-frequency interferences. Eventually, the converter transforms the output voltage
from its analog form into digital, which is saved in the computer for further analysis.
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3. Results of Experiments and Discussion
3.1. Preliminary Investigation of the Transducer

Before the main experiments, a preliminary evaluation of the transducer performance
was carried out. For this purpose, the voltage from the pick-up coil was measured in two
cases:

(a) the transducer was placed over the central unflawed part of the sample, and the
voltage U1 was measured

(b) the transducer was placed at the edge of the sample (one of the excitation coils was
outside the sample), and the voltage U2 was measured.

The measurements were repeated for frequencies starting from 500 kHz up to 4.5 MHz
(with the step of 50 kHz). For each frequency, the voltage U1 measured in case a) and
voltage U2 measured in case b) were subtracted from each other and the relative voltage
changes were calculated using the formula (1):

δu =
|U2 −U1|

U1
(1)

All the resulting values were utilized to create the frequency characteristic of the
transducer’s sensitivity shown in Figure 5.
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The achieved characteristic was used to select the excitation frequency range for further
experiments. As the maximum changes of the signal were observed around a resonance
frequency (f = 2 MHz), the subsequent investigations were conducted for the frequencies
starting from 1 MHz up to 2 MHz.

3.2. Measurement and Data Processing

The final experiments consisted of 1D multifrequency testing (first stage) and 2D
single-frequency inspection (second stage). The sample was placed under the differential
eddy current transducer fixed to the head of the positioning system. The transducer was
moved along the x-axis (Figure 1) on the sample’s surface opposite the defects. After
applying the excitation of the selected frequency, the transducer was moved over the
sample. The voltage from the pick-up coil was measured every 0.5 mm and stored in the
computer for further analysis. The inspection was repeated for different frequencies. In
the second stage, the measurement was carried out for a single frequency of 2 MHz. The
frequency was selected based on the results achieved for 1D scanning. Analogically to
the first stage, the transducer was moved along the x-axis, and the pick-up coil voltage
was measured every 0.5 mm. Subsequently, the procedure was performed for successive
transducer positions (every 1 mm) along the y-axis (Figure 1).

In order to simplify the comparison of the results of measurements, the relative voltage
difference was calculated using the formula (2):

∆u =
∆U

∆Umax
(2)

where: ∆U—voltage difference (voltage changes concerning the voltage measured for
the defect-free part of the sample) calculated for a given frequency, ∆Umax—maximum of
voltage changes measured for all frequencies.

3.3. Results of Multifrequency 1D Examination

Figure 6 presents a set of curves representing relative voltage differences ∆u for distinct
frequencies as a function of transducer position along the x-axis. The signals were plotted
separately for the flaw OF70% and the flaw OF30% due to the significantly different values.
As shown in Figure 6a for the flaw OF70%, the curves for the frequencies 1 MHz–1.6 MHz
are quasiconvex and increase their values along with the frequency rise. It is noticeable that
the extreme signal values corresponding to the flaw location are negative for frequencies
between 1 MHz and 1.1 MHz. For frequencies above 1.1 MHz, the extreme signal value
around the flaw is positive. Starting from the frequency 1.7 MHz, the shape of the curve
changes to quasiconcave and continues to grow the peak value. Figure 6b presents the
signals measured for the flaw OF30%. One can observe that curves representing relative
voltage as a function of transducer position differ from those obtained for the flaw OF70%.
Peak values of the signals are positive for all the excitation frequencies. The transition
from the quasiconvex to the quasiconcave curve shape occurs for a frequency of 1.3 MHz.
Similarly to the signals for the flaw OF70%, the peak values increase with the rise of the
excitation frequency.

The signals obtained for different frequencies can be presented in a single plot called a
spectrogram. In this case, the abscissa corresponds to the transducer position x, the ordinate
corresponds to the frequency f, and the colors represent the value of the signal. Figure 7
shows the spectrograms for both artificial flaws. The flaw OF70% (Figure 7a) is readily
detectable across the entire frequency spectrum. A different situation occurs regarding
the flaw OF30% (Figure 7b). The flaw is barely visible for the frequency values from 1
MHz up to 1.5 MHz. Its visibility improves for the higher frequencies. Both flaws are most
detectable for the frequency of 2 MHz, which is close to the natural resonance frequency of
the transducer circuit.
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The resonance phenomenon caused a disturbance in the shape of the frequency char-
acteristics of defects that can be observed in the case of metal samples [23]. The range of
excitation frequencies used for metals (1 kHz–200 kHz) did not include the inherent reso-
nant frequencies of the measuring transducer. In such a case, the shape of the characteristic
depends on the penetration depth for different frequencies and the defect’s depth. Using
resonant frequencies for measurements made it possible to obtain a greater sensitivity of
the transducer to defects, but on the other hand, it made identifying defects more difficult.

Figure 8 comprises curves of the peak value of relative voltage changes ∆u as a function
of the excitation frequency f. It is evident that for the frequencies of 1 MHz–1.2 MHz, the
curve corresponding to the OF70% takes negative values. The curves intersect between
frequencies 1.2 MHz and 1.3 MHz. The transition from the positive to negative values
for OF70% occurs because the transducer works with two perpendicular coil pairs whose
signals balance each other. Based on the analysis of the curves, the location of defects can
be quickly and unambiguously determined, for example, using the frequency for which
the curve crosses the f -axis. For the flaw OF70%, this frequency is 1.15 MHz; for OF30%,
the intersection point does not exist in the range of measured values.
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Figure 8. Maximum relative voltages as a function of the excitation frequency. The red line approxi-
mates data for OF70%, while the blue line approximates data for OF30%.

3.4. Results of Two-Dimensional Examination with a Single-Frequency Excitation

Figure 9 shows the relative voltage difference ∆u as a function of the transducer’s
position along the x-axis and y-axis. The flaws OF70% (Figure 10a) and OF30% (Figure 10b)
are detectable, but a high material anisotropy caused by the fiber alignment affects the
results. Especially for minor hidden flaws, this makes it more difficult to detect and localize
them. The undoubted advantage of the presented transducer, sensitivity to defects of
different orientations in the case of anisotropic materials such as carbon fiber-reinforced
composites, generates interfering signals that make analysis more complicated. The prob-
lem can be overcome by changing the design of the transducer or by using image processing
algorithms involving background removal. This study proposed a dedicated background
removal algorithm (Figure 11).
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Figure 9. Two-dimensional plot of the relative voltage as a function of the sensor position; excitation
frequency f = 2 MHz; a raw signal before background removal.

The algorithm block scheme is shown in Figure 11. Rows and columns from the
signal’s data matrix, corresponding to the unflawed part of the sample, are selected and
multiplicated. On their basis, the signal background is estimated. The procedure ends with
subtracting the estimated background signal from the measured signal. Examples of the
signal background estimated for OF70% and OF30% are depicted in Figure 12.
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Figure 12. Two-dimensional plots of the background signals estimated for the excitation frequency
f = 2 MHz, which were utilized to correct signals measured for the flaw: (a) OF70%, (b) OF30%.

Figure 13 shows a two-dimensional plot of the measured relative voltage after back-
ground signal removal (the whole measurement area with both flaws was included).
Compared to the signal before processing (Figure 9), one can observe that the interferences
caused by the heterogeneity of the carbon fiber-reinforced composite were minimized and
both flaws are detectable.
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quency f = 2 MHz.

Figure 14 was prepared to focus only on the sample area around the flaws. It illustrates
the relative voltage ∆u as a function of the transducer’s position along the x-axis and y-axis
after applying the background removal algorithm. Compared with the non-processed
signal (Figure 10), the flaws OF70% and OF30% can be detected considerably better here.
Removing the background signal caused by the material anisotropy diminished the analysis
difficulty and minimized the hazard of incorrect flaw classification.
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Figure 14. Two-dimensional plot of the relative voltage after background signal removal; excitation
frequency f = 2 MHz; plot for the flaw: (a) OF70%, (b) OF30%.

The measurements conducted for the outer flaws confirmed the usability of the pro-
posed system. A relatively low excitation frequency (2 MHz) was used to detect hidden
defects (inner flaws), which guaranteed a sufficiently large penetration depth and the
ability to detect even shallow defects. Unfortunately, such an excitation frequency is not
optimal for detecting surface defects because the eddy currents should be concentrated in
the near-surface layer. Therefore, additional measurements were performed for surface
defects to confirm the system’s effectiveness in this case as well. Figure 15 shows plots
of the relative voltage ∆u as a function of the transducer’s position along the x-axis and
y-axis. In the case of this measurement, the defect names were changed respectively: OF70%
becomes IF70% (Figure 15a), while OF30% becomes IF30% (Figure 15b). It is evident that
both defects are easily detectable. These results confirm that the transducer enables the
detection of inner and outer flaws using the same excitation frequency.
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4. Conclusions

Currently, the eddy current technique is widely used to inspect metal parts. There
are many ongoing intensive works to adopt existing ECT systems to evaluate composite
structures consisting of conducting materials such as carbon fibers. In the described studies,
intensive work was carried out to adapt a well-proven (in the case of metals) system and
transducer. Particular emphasis has been placed on providing the ability to detect hidden
defects (inner flaws).

The conducted experiments are generally promising. However, the method requires
further development and adjustment to the specificity of the composites. Experiments
carried out so far have allowed several conclusions to be drawn:

• A differential transducer allows for a significant increase in sensitivity, but placing the
reference sensor close to the measured material is not an effective solution due to the
anisotropy of the tested material; a more effective solution seems to be the use of a
reference sensor with the reference material;

• The ability to detect defects can be improved by using signal processing, such as the
proposed background signal removal;

• The use of resonant frequencies allows for multiple increases in the sensitivity of the
transducer; at the same time, it is more complicated to use the frequency response to
identify the type and depth of the defect;

• The use of even a relatively low excitation frequency that guarantees the appropriate
depth of penetration does not prevent the effective detection of surface defects;

• The use of the frequency response to defects identification in the case of the composite
materials requires the use of a much wider range of excitation frequencies.

The experiment was limited to detecting notches (corresponding in some way to cracks)
to demonstrate the system’s usability. Despite satisfactory results, a comprehensive study
on detecting other flaws, such as delamination or porosity, should be conducted to ensure
the method’s versatility. Moreover, additional research on the method’s applicability is
needed for structures with different internal reinforcement weights and resin-rich samples.
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