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1. The simple max-min normalization method 

The statistical values of the K-S value (D-value) and the P-value under hypothesis testing were 

obtained from Figure 3, and both were used to describe differences in the distribution of the two 

datasets. The D and P values obtained are as follows: D-value (Dstrain amplitude = 0.167, Dpore diameter = 

0.167, Dpore amount = 0.183, Dpore location = 0.200, Dfatigue life = 0.283) and P-value (Pstrain amplitude = 0.997, 

Ppore diameter = 0.997, Ppore amount = 0.989, Ppore location = 0.972, Pfatigue life = 0.781). If the D-value is small 

and the P-value is large, the null hypothesis of the K-S test can be accepted, that is, the distribution 

of the two datasets is consistent. The results indicate that the distribution of the training and test sets 

is approximately consistent, thereby validating the reasonableness of the dataset division. 

Figure S1(a) presents the objective function becoming “flat” due to differences in dimension 

among different types of eigenvalues. This not only increases the training time of the model but also 

adversely affects its predictive accuracy. To eliminate the dimensional influence among features, 
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prevent gradient explosion, and improve the predictive performance of the ML model, the dataset 

needs to be normalized. It maps the dataset to the interval of [0, 1]. The optimized search process is 

depicted in Figure S1(b), and the max-min normalization method is shown by 𝑥∗ =                                                                        (1) 

where x is the eigenvalue of the original dataset, and x* is the eigenvalue of the normalized dataset. 

max and min are the maximum and minimum eigenvalues of the original dataset, respectively.  

 

 

Figure S1. Process of finding the optimal solution. (a) The search process without normalization, and 

(b) the search process with normalization. 

 

2. Normal transformation 

The Gaussian distribution histogram and kernel density estimation (KDE) methods adopted in 

Figures S2(a)-(e) reveal a notable skewness issue with each normalized feature. The features of 

fatigue life, pore location, and strain amplitude exhibit significant skewness issues. Quantile-quantile 

(Q-Q) shown in Figures S2(f)-(j) evaluates the conformity between the actual and theoretical 

distribution of the features, and indicates that apart from pore diameter and fatigue life features, the 

data points of other features significantly deviate from the straight line, resulting in a non-Gaussian 

distribution of the normalized dataset. To make each feature more closely resemble the Gaussian 
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distribution, the BOX-COX transformation was conducted to correct the skewness and kurtosis 

problems of the dataset to make the normalized dataset more compatible with the Gaussian 

distribution, and the formula used is described as: 

𝑌 = , 𝜆 ≠ 0𝑙𝑛𝑌, 𝜆 = 0                                                                (2) 

where λ (λstrain amplitude = 0.367, λpore diameter = 0.563, λpore amount = 0.803, λpore location = -0.318, λfatigue life = 

0.389) is an undetermined transformation parameter after the normalization of different features, and 

λ (λstrain amplitude = -1.093, λpore diameter = 0.563, λpore amount = 0.803, λpore location = 5.235, λfatigue life = 0.141) 

is an undetermined transformation parameter with original features. The maximum value of the 

maximum likelihood function determines the size of the parameter λ. Y and Y(λ) represent vectors 

before and after transformation, respectively. 
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Figure S2. Gaussian distribution histograms and kernel density curves of the (a) strain amplitude (%), 

(b) pore diameter (µm), (c) pore amount (piece), (d) pore location (µm), and (e) fatigue life (cycles). 

The Q-Q plots of the (f) strain amplitude (%), (g) pore diameter (µm), (h) pore amount (piece), (i) 

pore location (µm), and (j) fatigue life (cycles). 
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Table S1. Definition of various ML algorithm categories and summary of the pre-processed data 
used 

Categories 

Data pre-processing: 

A: Normal transformation 

B: Normalization and normal transformation 

ML models 

Linearity 

B MLR 

B LASSO 

B RIDGE 

B ENR 

B L-SVR 

Nonlinearity 

A DT 

B ANN 

B PR 

Bagging 
A ET 

A RF 

Boosting 

B ADABOOST 

A XGBOOST 

B GBDT 

 

3.  Reasonability of the data partitioning after modeling 

Although Figure 3 shows that the distribution of each feature in both the training and test sets is 

consistent before establishing the ML models, it is unclear whether this partitioning result will affect 

the accuracy of ML models established by different algorithms after establishing the prediction model. 

Figure 5(a) reveals that approximately 95% of the differences between the two types of the dataset 

are within the Mean±1.96SD range. This suggests remarkable consistency between the evaluation 

results of the test set and training set and also indicates that there is no overfitting or underfitting. 

In Section 3.2, the dataset was normalized and Box-Cox-transformed, resulting in changes in the 

output fatigue life data as well. To obtain the fatigue life values of the same dimension, it is necessary 

to use the processing parameters of the training set to sequentially perform anti-Box-Cox 
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transformation and/or anti-normalization on the predicted values of fatigue life. On the test set, to 

evaluate the consistency between the R2 value obtained after anti-normalization and/or anti-Box-Cox 

transformation of the fatigue life feature and those without anti-transformation, Figure 5(b) reveals 

that approximately 95% of the differences between the two types of the dataset are within the 

Mean±1.96SD range. It can be explained that the R2 values obtained by both methods are consistent 

regardless of whether the inverse transformation is performed. This verifies the difference between 

the R2 values of the prediction model after anti-transformation and those without anti-transformation. 

 

 

Figure S3. The evaluation values of different algorithms under different indicators 

 


