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Abstract: This study focused on analyzing vibrations during waterjet cutting with variable techno-
logical parameters (speed, vfi; and pressure, pi), using a three-axis accelerometer from SEQUOIA for
three different materials: aluminum alloy, titanium alloy, and steel. Difficult-to-machine materials
often require specialized tools and machinery for machining; however, waterjet cutting offers an
alternative. Vibrations during this process can affect the quality of cutting edges and surfaces. Surface
roughness was measured by contact methods after waterjet cutting. A machine learning (ML) model
was developed using the obtained maximum acceleration values and surface roughness parameters
(Ra, Rz, and RSm). In this study, five different models were adopted. Due to the characteristics of the
data, five regression methods were selected: Random Forest Regressor, Linear Regression, Gradient
Boosting Regressor, LGBM Regressor, and XGBRF Regressor. The maximum vibration amplitude
reached the lowest acceleration value for aluminum alloy (not exceeding 5 m/s2), indicating its
susceptibility to cutting while maintaining a high surface quality. However, significantly higher
acceleration amplitudes (up to 60 m/s2) were registered for steel and titanium alloy in all process
zones. The predicted roughness parameters were determined from the developed models using
second-degree regression equations. The prediction of vibration parameters and surface quality
estimators after waterjet cutting can be a useful tool that for allows for the selection of the optimal
abrasive waterjet machining (AWJM) technological parameters.

Keywords: abrasive waterjet cutting; difficult-to-cut materials; vibration measurements; simulations;
machine learning ML; material cutting

1. Introduction

The constitution of machine part geometries has been evolving rapidly for many years
with the emergence of new technologies. Waterjet machining (AWJ) of materials, which
involves the use of high-pressure water along with the addition of an abrasive, has become
a popular method for shaping machine parts in various industries around the world [1].
Waterjet cutting is a technology that uses a high-pressure waterjet mixed with abrasives to
cut a variety of materials, including composites, glass, steel, and multilayer structures [2].
The flexibility of this technology has made it widely used in the aerospace, automotive,
and construction industries [3].

The optimal selection of cutting parameters is essential to ensure the stability and reli-
ability of the cutting process, as well as to achieve a high-quality cutting surface. However,
achieving these optimal cutting parameters can be a technological challenge, often due to
process instability and insufficient data needed to stabilize the process [4,5]. Consequently,
there is a need to develop strategies for monitoring and controlling the material cutting pro-
cess with the primary objective of enhancing the cutting process quality and, subsequently,
attaining the best possible cutting surface quality [6,7].
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Works by other authors concerned, among other things, the quality of the machined
surface obtained using waterjet cutting (WJC) technology in relation to the influence of
selected dynamic parameters (feed rate, abrasive flow rate, and pressure) on the quality of
the machined surface for AISI 316L steel [8,9].

Cutting materials through waterjet processing offers several advantages compared
to other cutting methods, such as laser cutting or plasma cutting [10]. These benefits
include the ability to cut through materials with diverse properties, even those that are
challenging to cut using traditional methods, and the creation of a small heat-affected zone,
leading to reduced thermal deformation. This is particularly crucial for precision cutting
applications [11]. Additionally, in many cases, especially for rough machining, waterjet
cutting eliminates the need for additional operations such as milling, resulting in time
and cost savings [12]. Consequently, waterjet cutting has gained popularity as a surface
treatment technology, surpassing other cutting methods, such as laser cutting and plasma
cutting [12,13]. Various researchers have employed both vibration and acoustic emission
for the real-time monitoring of the AWJ (abrasive waterjet) process [14,15]. According to the
literature [16], the first group of methods focuses on tracking the vibration signal parameters
of the process itself and the working elements and their impact on the final product’s quality.
The second group is concerned with diagnostics and condition monitoring of machine
components based on the acoustic emission signal, aiming to identify the sources of the
emission. As for the first category, most experimental studies involve the extraction of
synthetic indicators, such as the root mean square (RMS) of the monitored signal, which
has proven to be sensitive to the process and its parameters, as well as the condition of
working components [17].

One of the disadvantages of the abrasive waterjet (AWJ) cutting process is its inherent
instability, leading to vibrations that negatively impact the quality of the cutting edge and
surface [18,19]. However, monitoring these vibrations during the cutting process presents
an opportunity to enhance the stability and reliability of the process, consequently influenc-
ing the quality of the surface and edges after cutting [20,21]. Experimental studies have
demonstrated that vibrations can be effectively identified using an accelerometer attached
to the workpiece being measured [22]. This approach was also utilized in the study [23],
and it can be employed in further experimental investigations on measuring vibrations
during the waterjet abrasive jet cutting of various materials, including composites, glass,
and steel [24,25].

The use of a noninvasive vibration sensor to monitor vibration during abrasive wa-
terjet cutting offers several advantages. First and foremost, it provides a practical and
nonintrusive solution for a vibration monitoring system, which is crucial for ensuring the
stability and reliability of the cutting process [26]. Additionally, this approach enables
real-time vibration monitoring, providing valuable feedback that can be utilized to adjust
cutting parameters and improve cutting quality [27].

In the AWJM (abrasive waterjet machining) process, high-speed abrasive particles
suspended in a waterjet impact the workpiece surface, leading to vibrations in the work-
piece and generating acoustic signals [28]. Researchers such as Peržel et al. [29]. have
analyzed vibrations occurring during the cutting of stainless steel. In their study, the
variable parameter was the abrasive mass flow rate, set at 250 and 400 g·min−1 (with a
constant feed rate). The study measured amplitudes and frequency spectra to establish the
relationship between the input factors of the AWJM process and the emission of vibrations
and acoustic signals. Tyč et al. [21] investigated the cutting process of hard-to-machine
materials (RSt 37-2 steel) of various thicknesses during AWJ. The study involved using
three piezoelectric accelerometers as the core of a vibration monitoring station. The tests
revealed a strong correlation between the root mean square (RMS) value of the signal and
the feed rate. An increase in feed rate caused a corresponding increase in the RMS value,
depending on the direction of vibration measurement by the accelerometer. Krenický and
Rimár [30], in their research, measured vibrations to analyze the technological parameters
of AWJM cutting. They employed nozzle stabilization and a specially designed workpiece
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clamping system to reduce vibrations. Another study by Karminis-Obratanski et al. [31]
aimed to determine whether vibration measures could be utilized to monitor the efficiency
of the AWJM process. The study concluded that there was no direct relationship between
process efficiency and vibration amplitude [32,33]. However, they observed an increase in
average vibration amplitude with the depth and width of the cut.

Zagórski et al. [34], on the basis of a study on the effect of varying parameters of
waterjet cutting of cast aluminum, concluded that the parameter that has a significant effect
on the surface roughness after cutting is the feed speed, vf.

An analysis of the literature indicates that there is still a gap in the research on the
relationship between the vibrations occurring during abrasive waterjet cutting and the
cutting surface quality of various materials. Therefore, it is important to properly select
the machining parameters to achieve the lowest possible vibration in order to achieve the
desired edge and cutting surface quality of the materials under analysis.

Methods involving artificial intelligence, such as machine learning (ML) methods,
are increasingly employed in various research areas. ML methods are commonly used in
different predictive tasks due to their capacity to forecast nonlinear systems and the sim-
plicity of their deployment, which has led to their growing adoption in addressing research
challenges associated with, for example, predicting hot flow stress [35], high-temperature
deformation of steel, chemical composition modeling, industrial electrical tomography,
and electrical impedance tomography [36–38]. Additionally, modeling has been used in
research on abrasive waterjet machining. A study by Ganovska et al. [7] investigated the in-
fluence of roughness parameters (Ra, Rq, and Rz), technological parameters (traverse speed
and abrasive mass flow rate), and vibration on the AWJC process for stainless steel. The
study also derived equations to predict surface roughness parameters and concluded that
the surface topography was affected by the traverse speed of the cutting head. Similarly,
Ficko [1] examined the effects of selected technological parameters (traverse speed, depth
of cut, and abrasive mass flow rate) during the machining of stainless steel by AWJ on the
surface roughness (Ra) of the material [39,40]. The results from this study were adopted to
develop a predictive model for the Ra parameter, using an artificial neural network (a type
of ML method).

2. Materials and Methods

This research was conducted using an Eckert WaterJet COMBO cutting machine, which
features a modern CNC controller ECK 872. This controller is operated by Windows XP and
is linked to a touch screen, facilitating seamless interaction between the machine and the
operator and enabling efficient control of the cutting process. The machine is equipped with
an Ethernet connection and a USB interface, thus simplifying the transfer of programmed
programs and leading to saved time and work optimization.

The Eckert WaterJet COMBO cutting machine (presented in Figure 1) is equipped with
a high-pressure UHDE pump that is capable of generating a maximum pressure of up to
350 MPa. With this pump, the machine is capable of efficiently cutting various materials up
to 150 mm thick, making it a versatile cutting tool.

Samples made of titanium alloy, aluminum alloy, and steel were used in the study.
Titanium Grade 5 (Ti-6Al-4V) is the most widely used titanium alloy, which is used in
a wide range of industrial applications (from aerospace to medicine). It consists of 90%
titanium, 6.4% aluminum, 4.1% vanadium, and other elements. Table 1 shows its chemical
composition.
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Figure 1. Eckert WaterJet COMBO portal cutting machine.

Table 1. Chemical composition of titanium alloy Ti-6Al4V (% mas.).

Al V C Fe O2 N2 H2 Ti

6.4 4.1 0.1 0.16 0.18 0.01 0.03 Rest

Alloy 2024 is an aluminum–copper alloy that is widely used in the aerospace industry.
It is known for its excellent strength and hardness, making it ideal for manufacturing parts
that must withstand heavy loads, such as aircraft wings and fuselages. Table 2 shows the
chemical composition of aluminum alloy 2024.

Table 2. The chemical composition of Al2024 alloy (% mas.).

Al Cu Mg Mn Fe Si Zn Ti Cr

93.5 3.8–4.9 1.2–1.8 0.3–0.9 ≥0.5 ≥0.5 ≥0.25 ≥0.15 ≥0.1

S235JR is a grade of structural steel that is extensively used in various sectors of
the economy, including the engineering industry and construction. This type of steel is
favored as a structural material due to its widespread availability and excellent mechanical
properties. Notably, S235JR steel is well regarded for its good weldability and formability,
making it an ideal choice for structural applications. Additionally, its relatively soft nature
makes it easy to cut and machine. For detailed information on the chemical composition of
S235JR steel, please refer to Table 3.

Table 3. Chemical composition of S235JR steel (% mas.).

C Mn Cu Al Mo Si P S Fe

0.16 0.4 0.03 0.04 0.03 0.016 0.05 0.017 Rest

The study used test specimens with dimensions of 200 × 80 × 15 mm. The height of
the sample and, at the same time, the depth of the cut was 15 mm. In the course of the
experiment, vibration measurements were carried out during the cutting of the samples
with a water-abrasive jet, with varying process parameters.

The main component of the measurement station is shown in Figure 2.
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Figure 2. Test stand for vibration measurement.

The SeTAC (Sequoia) system consists of a specialized sensor that measures acceleration,
which is connected to a high-precision transducer of the collected signals. The computer
used in this system is equipped with SeTAC software V5.14.0, which is used to process
and display the measurement results, as well as analyze them. Technical data of the
accelerometer: measuring of range ±18 g, dynamic range of 85 dB for 10 Hz, and resolution
of 1 mg for 10 Hz. Pictures of the measurement station are shown in Figure 3.

Figure 3. Measurement stand: 1—vibration sensor; 2—signal transducer; and 3—computer for signal
analysis.
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The software used in the research facilitates real-time vibration monitoring to optimize
the cutting process by minimizing vibrations. To ensure precise measurements, a vibration
sensor was securely attached to the object, using beeswax. This ensured a stable connection
between the sensor and the material, allowing for the accurate transmission of the measured
vibrations during the entire measurement process. Consequently, the sensor remains firmly
attached to the measuring point throughout the tests.

During all the conducted tests, the position of the sensor was rigorously maintained
in the same place and at a constant distance from the edge of the material being cut.
This consistent positioning is vital for obtaining high-quality data, enabling accurate and
objective evaluation of the vibrations produced during cutting.

The primary objective of this research was to evaluate the influence of input tech-
nological parameters on vibrations during the cutting process of various materials. The
key parameters analyzed during the study were the working pressure p (MPa) and the
cutting speed vf (mm/min). These parameters are critical in waterjet cutting technology, as
they significantly impact the cutting efficiency and quality [10]. This research focused on
analyzing the effect of technological cutting conditions on the value of acceleration and
their amplitude, a (m/s2).

A measurement of the 2D surface roughness was carried out after cutting the samples
with variable technological parameters. The roughness measurements were performed
on a Hommel tester T1000 contact profilometer (Villingen-Schwenningen, Germany). The
measurements were carried out in five repetitions at one measuring point located 10 mm
from the upper edge of the sample. In the tests, the following 2D surface roughness
parameters were measured: Ra, Rz, and RSm.

The surface roughness measurement using the Hommel tester T1000 is shown in Figure 4
Table 4 shows a summary of the constant technological parameters of cutting, i.e., the

mass flow rate of abrasive ma (g/s), the distance of the nozzle from the material being cut
h (mm), and the type of abrasive.
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Figure 4. Surface roughness measurement by the Hommel tester T1000: 1—signal analysis device;
2—measuring head with needle; and 3—measured sample.

In the experiment, as shown in Figure 5, the researchers employed a research plan
with input variables that were modified to observe their effect on the cutting process.
The process variables included the working pressure, pi (MPa) and the cutting speed, vfi
(mm/min). These variables were systematically altered to study their impact on the cutting
process and vibrations.
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Table 4. Summary of constant technological parameters.

Technological Parameters

Abrasive material Garnet 80 mesh
Nozzle length 100 mm
Mass flow rate 8 g/s

Distance from the material being cut 3 mm

In order to thoroughly investigate the effect of varying process parameters (shown in
Table 5), a series of experiments were conducted with different combinations of input param-
eter values. Four different working pressures (p1 = 350 MPa, p2 = 300 MPa, p3 = 250 MPa,
and p4 = 200 MPa) and four different feed speeds (vf1 = 30 mm/min, vf2 = 40 mm/min,
vf3 = 50 mm/min, and vf4 = 60 mm/min) were used. In addition, three construction
materials were used: steel S235JR (b1), aluminum alloy Al2024 (b2), and titanium alloy
Ti-6Al4V (b3).

Table 5. Summary of the variable technological parameters.

No. Material Pressure
pi (MPa)

Feed Speed
vfi (mm/min)

1

Steel, b1;
aluminum alloy, b2;
titanium alloy, b3

350

30

2 40

3 50

4 60

5

300

30

6 40

7 50

8 60

9

250

30

10 40

11 50

12 60

13

200

30

14 40

15 50

16 60
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3. Results and Discussion

Figure 6 presents a schematic of the experimental tests conducted, illustrating the key
elements used in the process. The diagram depicts the nozzle utilized for cutting through
the test material. The nozzle moved at a predetermined feed speed (vf) relative to the
material being cut, represented as b. This controlled movement of the nozzle allowed for
the precise management of the cutting parameters, avoiding the influence of uncontrolled
fluctuations in the displacement rate. Vibrations generated during the cutting process
were recorded by the vibration sensor, indicated as 1 in the diagram. The vibration signal
transducer, marked as 2, converted the recorded sensor signal into a format interpretable
by the computer system, designated as 3. This conversion allowed for data interpretation
and enabled a rapid analysis to correct the technological parameters of the experiment.
To ensure the stability and repeatability of the process and eliminate additional factors
that could impact the test results, the cut sample was securely clamped to the table. This
stable mounting of the sample was crucial for consistent and reproducible results. The
vibration sensor was fixed at a fixed distance of a = 100 mm from the cutting points. This
standardized distance ensured that the vibrations were consistently measured at the same
location, enabling accurate comparisons and the reliable analysis of the data.
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signal analysis with software.

Figure 7 shows an example of vibration waveforms for steel (vf = 30 mm/min;
p = 350 MPa). The presented waveforms marked with different colors correspond to the
signals recorded on each axis: X, Y, and Z. From the example waveform, it can be seen
that there are three main zones in the water-wall cutting process: the entry zone (1), the
zone of stabilized cutting process (2), and the exit zone (3). In the entry zone, the increase
in vibration is due to the impact of the water-abrasive jet on the surface of the water and
coming into contact with the surfaces of the material being cut (zone marked 1). The effect
of this, due to the strong force interaction, is an increase in the amplitude of vibration, the
stabilization of which occurs only in the second zone. The second zone, marked No. 2 of
the stabilized cutting process, in the full material, is characterized by a stabilized value of
vibrations. During the exit of the jet from the cut material (zone three marked No. 3), an
increase in vibrations is again noticeable, resulting from the exit of the jet from the material
and the jet hitting the water surface again. The initial (4) and final (5) signal waveforms
mark the period before the cutting process begins and ends.
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Figure 7. Time course of vibration with marked cutting areas: entry zone (1), stabilized cutting zone
(2), and exit zone (3).

This article presents only selected vibration time waveforms describing the studied
phenomenon.

Figures 8–10 showcases examples of vibration waveforms for the X-axis, Y-axis, and
Z-axis recorded during the cutting process of aluminum alloy (Al2024) at specific techno-
logical parameters: pressure, p1 = 350 MPa; and speed, v2 = 40 mm/min. The presented
time courses of vibration acceleration reveal three characteristic zones occurring during the
cutting process. On the X-axis, the maximum vibration value of 20.7 m/s2 occurs in the
entrance zone. On the Y-axis, the maximum vibration amplitude of 22.6 m/s2 is observed
at the exit zone. Meanwhile, on the Z-axis, the highest vibration with an amplitude of
21.4 m/s2 occurs at the entrance zone. The increase in vibration amplitude at the exit zone
can be attributed to the exit of the water-abrasive stream from the material and its impact on
the surface of the water table. In the stabilized zone, which is characterized by comparable
vibration values in all axes, the maximum value of vibration does not exceed 5 m/s2. This
suggests that the cutting process stabilizes in this zone, leading to reduced vibrations and
ensuring a higher quality of the cutting surface.
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Figure 8. Example of time course of changes in acceleration a(t) (vibration) in the X-axis for aluminum
alloy Al2024, as obtained at p1 = 350 MPa and v2 = 40 mm/min.
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Figure 9. Example of time course of changes in acceleration, a(t) (vibration), on the Y-axis for
aluminum alloy Al2024, as obtained at p1 = 350 MPa and v2 = 40 mm/min.
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Figure 10. Example of time course of changes in acceleration, a(t) (vibration), on the Z-axis for
aluminum alloy Al2024, as obtained at p1 = 350 MPa and v2 = 40 mm/min.

Figures 11–13 also display example vibration time waveforms on three axes (X, Y,
and Z) for S225JR steel at process parameters of a pressure of p1 = 350 MPa and speed of
v2 = 40 mm/min. Figure 11 presents the vibration signal for the X-axis, Figure 11 for the
Y-axis, and Figure 12 for the Z-axis. An analysis of Figures 11–13 reveals that, similar to
the case of aluminum alloy (Al2024), three characteristic zones can be distinguished for
S225JR steel: the entry zone (1), the stabilized cutting zone (2), and the exit zone (3). The
entry zone (1) covers the period from the start of the cutting process until the waterjet
comes into contact with the edges and surfaces of the material being cut. In this zone,
significant changes in the waveform of the vibration signal are observed. Notably, this
zone is longer for the S225JR steel being cut compared to the vibration time waveform for
Al2024 aluminum alloy, despite maintaining the same technological cutting parameters.
The zone of the stabilized cutting process refers to cutting through the full material, where,
according to the study, no significant deviations in the values of the vibration amplitude
were observed. This zone is shorter with respect to Al2024 aluminum alloy. The exit zone
is characterized by an increased value of vibration amplitude.
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Figure 11. Example of time course of changes in acceleration, a(t) (vibration), on the X-axis for S235JR
steel, obtained at p1 = 350 MPa and v2 = 40 mm/min.
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Figure 12. Example of time course of changes in acceleration, a(t) (vibration), on the Y-axis for S235JR
steel, as obtained at p1 = 350 MPa and v2 = 40 mm/min.

Materials 2023, 16, x FOR PEER REVIEW 11 of 30 
 

 

 

Figure 11. Example of time course of changes in acceleration, a(t) (vibration), on the X-axis for S235JR 

steel, obtained at p1 = 350 MPa and v2 = 40 mm/min. 

 

Figure 12. Example of time course of changes in acceleration, a(t) (vibration), on the Y-axis for S235JR 

steel, as obtained at p1 = 350 MPa and v2 = 40 mm/min. 

 

Figure 13. Example of time course of changes in acceleration, a(t) (vibration), on the Z-axis for S235JR 

steel, as obtained at p1 = 350 MPa and v2 = 40 mm/min. 

During the cutting of the S225JR steel, the entry zone was characterized by a longer 

duration compared to the exit zone observed during the cutting of aluminum alloy. Ad-

ditionally, significant differences were noted in vibration values between the entry zone 

and the exit zone. In the exit zone, the vibration values were considerably smaller com-

pared to those in the entry zone. In the entry zone, the highest vibration amplitudes were 

observed on the X-axis, reaching as high as 42.3 m/s2. For the Y-axis in the same area, the 

highest vibration amplitude was 39.3 m/s2, while for the Z-axis, the highest value of vibra-

tion amplitude was 28.8 m/s2. Conversely, in the stabilized zone, the vibration amplitudes 

were similar for all axes, not exceeding 10 m/s2. When compared to the results obtained 

for aluminum alloy, the percentage increase in vibration values for S225JR steel was 

104.35% for the X-axis, 73.89% for the Y-axis, and 34.58% for the Z-axis, respectively. 

-40

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19 20 21 22 23 24 25 26 27 28 29 30

A
cc

el
er

at
io

n
, a

 [
m

/s
2 ]

Time, t [s]

X-axis vibration

-40

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19 20 21 22 23 24 25 26 27 28 29 30

A
cc

el
er

at
io

n
, a

 [
m

/s
2 ]

Time, t [s]

Y-axis vibration

-40

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19 20 21 22 23 24 25 26 27 28 29 30

A
cc

el
er

at
io

n
, a

 [
m

/s
2 ]

Time, t [s]

Z-axis vibration

Figure 13. Example of time course of changes in acceleration, a(t) (vibration), on the Z-axis for S235JR
steel, as obtained at p1 = 350 MPa and v2 = 40 mm/min.

During the cutting of the S225JR steel, the entry zone was characterized by a longer
duration compared to the exit zone observed during the cutting of aluminum alloy. Addi-
tionally, significant differences were noted in vibration values between the entry zone and
the exit zone. In the exit zone, the vibration values were considerably smaller compared to
those in the entry zone. In the entry zone, the highest vibration amplitudes were observed
on the X-axis, reaching as high as 42.3 m/s2. For the Y-axis in the same area, the highest
vibration amplitude was 39.3 m/s2, while for the Z-axis, the highest value of vibration
amplitude was 28.8 m/s2. Conversely, in the stabilized zone, the vibration amplitudes were
similar for all axes, not exceeding 10 m/s2. When compared to the results obtained for
aluminum alloy, the percentage increase in vibration values for S225JR steel was 104.35%
for the X-axis, 73.89% for the Y-axis, and 34.58% for the Z-axis, respectively.

The process of cutting steel involves the interaction of many factors, including material
characteristics and technological cutting parameters.
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Figures 14–16 show the results of the time course of vibrations during the cutting of
titanium alloy Ti-6Al4V, as recorded during the cutting process with the same technological
parameters as aluminum alloy and steel. The course of vibration characteristics during the
cutting of titanium alloy Ti-6Al4V was characterized by the fact that, in the initial input
zone for the X-axis, the vibrations were 167.45% larger with respect to the vibrations during
the cutting of aluminum alloy and 31% larger compared to the vibrations recorded during
the cutting process of steel. Their maximum amplitude value was 55.4 m/s2.
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Figure 14. Example of time course of changes in acceleration, a(t) (vibration), on the X-axis for
titanium alloy Ti-6Al4V, as obtained at p1 = 350 MPa and v2 = 40 mm/min.
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Figure 15. Example of time course of changes in acceleration, a(t) (vibration), on the Y-axis for
titanium alloy Ti-6Al4V, as obtained at p1 = 350 MPa and v2 = 40 mm/min.
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Figure 16. Example of time course of changes in acceleration, a(t) (vibration), on the Z-axis for
titanium alloy Ti-6Al4V, as obtained at p1 = 350 MPa and v2 = 40 mm/min.
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Similarly, in the stabilized zone, compared to steel and aluminum alloy, the average
vibration values were 5 m/s2 higher. The exit zone was shorter than in the case of steel.

The comparative evaluation of vibration time characteristics during the cutting of
aluminum alloy Al2024, steel S235JR, and titanium alloy Ti-6Al4V was performed based on
constructed graphs depicting the dependence of maximum acceleration (amax) as a function
of pressure (pi) for four tested feed speeds (vi) for each of the selected materials subjected to
the cutting process (bi). The analysis covered four different feed speeds: v1 = 30 mm/min
(Figure 17), v2 = 40 mm/min (Figure 18), v3 = 50 mm/min (Figure 19), and v4 = 60 mm/min
(Figure 20).
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Figure 17. Summary of maximum amax values for a cutting speed of v1 = 30 mm/min at different
pressures (pi) of different materials (bi).
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Figure 18. Summary of maximum amax vibration amplitude values for a velocity of v2 = 40 mm/min
at different pressures (pi) for different materials (bi).
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Figure 19. Summary of maximum amax for a velocity of v3 = 50 mm/min at different pressures (pi) for
different materials (bi).
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Figure 20. Summary of maximum amax values for a velocity of v4 = 60 mm/min at different pressures
(pi) for different materials (bi).

Figure 16 provides a comparison of the maximum vibration amplitude as a function
of pressure (p) for speed (v1) and the three materials analyzed, namely aluminum alloy
Al2024, steel S235JR, and titanium alloy Ti-6Al4V.

Figure 17 illustrates that the maximum value of vibration amplitude for aluminum
alloy Al2024 remains consistently low (not exceeding 5 m/s2) regardless of the pi (pressure)
value. Notably, Al2024 aluminum alloy has the lowest density among the three analyzed
materials. On the other hand, for S235JR steel, there is a significant correlation between
the pi (pressure) value and the maximum vibration values. An increase in pressure up
to 300 MPa results in a proportional increase in vibration intensity when cutting S235JR
steel. However, at a pressure of 350 MPa, there is a decrease in the maximum vibration
amplitude for this material. In the case of titanium alloy, the highest values of maximum
vibration amplitude were recorded at a pressure of 350 MPa, reaching 15.4 m/s2, while the
lowest values were observed at a pressure of 300 MPa, measuring 10 m/s2. The decrease in
vibration amplitude was 35.6%.

Figure 18 shows the dependence of the maximum values of vibration amplitude (amax)
for the feed speed v2 = 40 mm/min.

Similar to the case of velocity v1, the maximum value of vibration amplitude reaches
its lowest value for aluminum (not exceeding 6.8 m/s2) regardless of the pressure value (p).
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On the other hand, the highest value of maximum vibration amplitude was achieved when
cutting titanium alloy Ti-6Al4V at a pressure of p = 250 MPa, measuring 14.6 m/s2, which is
114.7% higher than the maximum vibration amplitude obtained for aluminum alloy Al2024.
A similar trend was observed when cutting S235JR steel—the values of maximum vibration
amplitude increase with increasing pressure up to 300 MPa, after which, at the maximum
pressure of 350 MPa, the maximum vibration amplitude decreases to 6 m/s2.

Figure 19 displays the values of maximum vibration amplitude for a feed speed of
v3 = 50 mm/min.

For steel, a trend was observed for the maximum value of vibration amplitude to
increase with the increasing pressure up to a value of 300 MPa. This increase assumes a max-
imum value at the same point among all analyzed velocities and reaches a maximum value
of vibration amplitude of 23.7 m/s2 just at v3. At 350 MPa, there is a decrease in vibration.
The lowest values of vibration amplitude were achieved, as in the case of other feed speeds,
for aluminum alloy Al2024, not exceeding 5 m/s2. Analyzing the results for titanium
alloy Ti-6Al4V, we can see that the lowest values of vibration amplitude were recorded at
300 MPa for each feed speed (v1 = 30 mm/min, v2 = 40 mm/min, v3 = 50 mm/min, and
v4 = 60 mm/min). The lowest value of vibration amplitude was 17.7 m/s2.

In Figure 20, the maximum vibration values for v4 = 60 mm/min are presented.
At the highest feed speed, v4, the trend characteristic of lower feed speed for S235JR

steel was not observed. Instead, there was no linear increase in the vibration amplitude
values up to a pressure of 300 MPa, and the maximum vibration amplitude values for this
material were reached at the lowest pressures of 200 and 250 MPa, measuring 15 m/s2 and
17.2 m/s2, respectively. The lowest value of maximum vibration amplitude for steel was
17.2 m/s2 at 250 MPa. Conversely, the highest value of maximum vibration amplitude of
23.7 m/s2 was achieved for titanium alloy Ti-6Al4V at the highest pressure, which was
282.26% higher than the value obtained for titanium alloy Ti-6Al4V at 250 MPa.

In the case of aluminum alloy Al2024, the value of maximum vibration significantly
deviates from the values for the other materials regardless of the adopted feed speed,
vf. This observed trend is consistent for all combinations of technological parameters,
primarily due to the lack of a noticeable increase in vibration values when cutting Al2024
aluminum alloy.

These results highlight the importance of selecting the proper feed speed, vfi, to obtain
optimal vibration amplitude results. A feed speed, vfi, that is too low can result in a slow
and inefficient cutting process, while a feed speed that is too high can lead to an increased
vibration. By finding the optimal feed speed, vfi, for each material (bi), it is possible to
achieve a more efficient and high-quality cutting process.

Below, Figures 21–23 show amax vibration amplitudes for three different materials:
aluminum alloy, steel, and titanium alloy. By analyzing the vibration amplitudes and
stabilization times in the X-, Y-, and Z-axis, one can better understand the physical basis
of the cutting process under certain conditions. This information is very valuable for
optimizing the cutting parameters and selecting the right materials for a given application.

Based on the analysis of the obtained experimental data and the determined estimates
(Figure 21) during the cutting of Al2024 aluminum alloy, it is evident that the lowest
values of vibration amplitude were recorded, regardless of the values of the technological
parameters of cutting. The amplitude values of maximum vibrations (amax) do not exceed
5 m/s2. Throughout the adopted range of technological cutting parameters, the cutting
process of the aluminum alloy remained stable. This stability can be attributed to several
factors. Firstly, Al2024 aluminum alloy is characterized by the lowest density among
the tested materials, allowing it to absorb a large amount of energy during the cutting
process. Additionally, the alloy’s low hardness positively influences the machining process
by minimizing the level of vibrations generated. These combined characteristics of Al2024
aluminum alloy contribute to the overall stability of the cutting process and result in low
vibration amplitudes.
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Figure 21. The course of changes in the amplitude value of amax for defined technological parameters
of cutting: pressures of p1 = 200 MPa, p2 = 250 MPa, p3 = 300 MPa, and p4 = 350 MPa; and cutting
speeds of v1 = 30 mm/min, v2 = 40 mm/min, v3 = 50 mm/min, and v4 = 60 mm/min for aluminum
alloy Al2024.
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Figure 22. The course of changes in the amplitude value of amax for defined technological parameters
of cutting: pressures of p1 = 200 MPa, p2 = 250 MPa, p3 = 300 MPa, and p4 = 350 MPa; and cutting
speeds of v1 = 30 mm/min, v2 = 40 mm/min, v3 = 50 mm/min, and v4 = 60 mm/min for S235JR steel.
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Figure 23. The course of changes in the amplitude value of amax for defined technological parameters
of cutting: pressures of p1 = 200 MPa, p2 = 250 MPa, p3 = 300 MPa, and p4 = 350 MPa; and cutting
speeds of v1 = 30 mm/min, v2 = 40 mm/min, v3 = 50 mm/min, and v4 = 60 mm/min for titanium
alloy Ti-6Al4V.
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When analyzing the experimental data recorded during the cutting of steel (Figure 21),
an increase in the value of vibration amplitude was observed compared to the cutting
process of Al2024 aluminum alloy. Comparing the maximum vibration amplitude value for
steel, which is 22.4 m/s2 at a pressure of p3 = 300 MPa and a feed speed of vf = 50 mm/min,
with the same parameters for Al2024 aluminum alloy, a noticeable 380% increase in vi-
bration amplitude is evident. Additionally, for the first three pressure values, namely
p1 = 200 MPa, p2 = 250 MPa, and p3 = 300 MPa, a linear increase in vibration amplitude is
noticeable. However, when the pressure changes to 350 MPa, there is a significant decrease
in amplitude for all values of the feed speed, vf, amounting to as much as 75% at a feed
speed of 60 mm/min. Steel is the material for which the waterjet cutting process implies
the highest values of vibration amplitude. The highest value of vibration amplitude was
achieved at a pressure of 300 MPa and a feed speed of vf = 50 mm/min, reaching 22.1 m/s2.

In the case of the water-abrasive cutting of titanium alloy Ti-6Al4V (Figure 22), a
significant decrease in vibration amplitude values can be observed for feed speeds of
vf = 50 mm/min and vf = 60 mm/min, amounting to 97.1% and 75% at 350 MPa with
respect to the results obtained for S235JR steel. The highest values of vibration amplitude
occur for the smallest value of feed speed, vfi, and do not exceed 15 m/s2. As the feed
speed vfi increases, a decrease in vibration amplitude is observed. This trend is preserved
for all values of pressure pi.

In conclusion, the analysis of peak acceleration values in the AWJM process provided
valuable insights into the causal relationships between the technological conditions of
the cutting process and the parameters describing the levels of mechanical vibrations
generated during the hydro-abrasive cutting of various materials. This understanding
of the phenomena occurring during hydro-abrasive machining can significantly impact
the improvement of the efficiency and effectiveness of the AWJM process across a wide
range of materials. Industries such as aerospace and biomedical, where hydro-abrasive
machining is indispensable, stand to benefit greatly from these findings.

The obtained results offer valuable information for optimizing cutting conditions
tailored to specific materials, while also aiding in the reduction of vibrations and their
amplitudes to enhance the overall quality and efficiency of the cutting process. By imple-
menting the knowledge gained from this research, it is possible to advance the capabilities
of the AWJM process, making it a more reliable and efficient method for cutting various
materials in critical industries.

Figures 24–26 present the results of surface roughness for 2D parameters (Rz, Ra, and
RSm) as a function of the feed rate and pressure values. Surface roughness parameters
associated with the profile height are crucial for the proper interaction of surfaces of two
machine elements. From the perspective of their interaction, it is advantageous for the
surface roughness parameters to be as low as possible. As the charts indicate, the lowest
roughness value for the Ra parameter is observed for titanium at higher pressures above
300 MPa. It can therefore be concluded that, for the analyzed case of aluminum and
titanium, the obtained surface is characterized by a low friction coefficient.

Analyzing the charts, a trend can be identified indicating that, as the pressure increases,
the roughness parameters decrease, but also, as the feed rate increases, the roughness
increases. This trend is significant, as it suggests that to achieve a surface with minimal
roughness and, hence, minimal friction, it is necessary to operate at higher pressures and
lower feed rates. This is particularly important in industries where minimizing friction is
crucial, such as in automotive or aerospace applications.
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Figure 24. Dependence of parameter Ra on cutting pressure, pi (MPa), and feed rate, vf (mm/min),
for the surface of aluminum alloy steel and titanium alloy.
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Figure 25. Dependence of parameter Rz on cutting pressure, pi (MPa), and feed rate, vf (mm/min),
for the surface of aluminum alloy steel and titanium alloy.
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Moreover, it is interesting to note that aluminum, a material known for its strength
and durability, exhibits lower roughness at higher pressures compared to titanium. This
suggests that titanium might be a more suitable material for applications requiring lower
surface roughness and, consequently, lower friction. However, the cost, availability, and
machinability of titanium compared to aluminum must also be considered in the selection
of materials for specific applications. The authors of the publication [31] found that, during
the machining of titanium, they could not establish a direct correlation between the process
outcome and the amplitude of vibrations. However, using a regression model, an increasing
trend in the average vibration amplitude was observed as the depth and width of the cut
increased from low values, through to medium values, and then to high values. This rise in
the vibration amplitude is likely due to the higher kinetic energy and momentum of the
abrasive waterjet in these cases.

Overall, the analysis of the charts provides valuable insights into the relationship be-
tween surface roughness, material type, pressure, and feed rate. These insights are essential
for optimizing manufacturing processes and selecting the most appropriate materials for
specific applications.

4. Numerical Modeling of Vibration and Roughness Parameters Using Machine
Learning Models

Based on the obtained experimental studies, numerical modeling of vibration and
roughness parameters was carried out using machine learning. Due to the characteristics
of the data, five regression methods were selected:

• Random Forest Regressor;
• Linear Regression;
• Gradient Boosting Regressor;
• LGBM Regressor;
• XGBRF Regressor.

To choose a candidate for parameter optimization, the methods mentioned above were
initially tested. The R2 (coefficient of determination) score, mean absolute error (MAE),
and root mean square error (RMSE) metrics were used to compare the models’ levels of
accuracy.

The initial parameters for the Random Forest Regressor were the loss function in the
form of squared error and the number of trees in the forest equal to 100. It was assumed
that the nodes expand until all leaves are pure or when the leaf contains less than two
samples. Figure 27 shows measured vs. predicted values for Random Forest Regressor, and
Figure 28 shows a correlation plot for measured and predicted values. This model achieved
an R2 score of 0.920, an MAE equal to 0.990, and an RMSE of 1.460.

Materials 2023, 16, x FOR PEER REVIEW 20 of 30 
 

 

during the machining of titanium, they could not establish a direct correlation between 

the process outcome and the amplitude of vibrations. However, using a regression model, 

an increasing trend in the average vibration amplitude was observed as the depth and 

width of the cut increased from low values, through to medium values, and then to high 

values. This rise in the vibration amplitude is likely due to the higher kinetic energy and 

momentum of the abrasive waterjet in these cases. 

Overall, the analysis of the charts provides valuable insights into the relationship be-

tween surface roughness, material type, pressure, and feed rate. These insights are essen-

tial for optimizing manufacturing processes and selecting the most appropriate materials 

for specific applications. 

4. Numerical Modeling of Vibration and Roughness Parameters Using Machine 

Learning Models 

Based on the obtained experimental studies, numerical modeling of vibration and 

roughness parameters was carried out using machine learning. Due to the characteristics 

of the data, five regression methods were selected: 

• Random Forest Regressor; 

• Linear Regression; 

• Gradient Boosting Regressor; 

• LGBM Regressor; 

• XGBRF Regressor. 

To choose a candidate for parameter optimization, the methods mentioned above 

were initially tested. The R2 (coefficient of determination) score, mean absolute error 

(MAE), and root mean square error (RMSE) metrics were used to compare the models’ 

levels of accuracy.  

The initial parameters for the Random Forest Regressor were the loss function in the 

form of squared error and the number of trees in the forest equal to 100. It was assumed 

that the nodes expand until all leaves are pure or when the leaf contains less than two 

samples. Figure 27 shows measured vs. predicted values for Random Forest Regressor, 

and Figure 28 shows a correlation plot for measured and predicted values. This model 

achieved an R2 score of 0.920, an MAE equal to 0.990, and an RMSE of 1.460. 

 

Figure 27. Measured and predicted values of acceleration (amax) vs. feed rate (vf) for Random Forest 

Regressor model (for steel, aluminum alloy, and titanium alloy). 

Figure 27. Measured and predicted values of acceleration (amax) vs. feed rate (vf) for Random Forest
Regressor model (for steel, aluminum alloy, and titanium alloy).



Materials 2023, 16, 6474 20 of 29Materials 2023, 16, x FOR PEER REVIEW 21 of 30 
 

 

 

Figure 28. Correlation plot for measured and predicted values of acceleration, amax (for Random For-

est Regressor model). 

The Linear Regression model achieved an R2 score of 0.037, an MAE of 4.280, and an 

RMSE of 5.070. Figure 29 shows measured vs. predicted values for the Linear Regression 

model, and Figure 30 shows correlation plot for measured and predicted values. 

 

Figure 29. Measured and predicted values of acceleration (amax) vs. feed rate (vf) for Linear Regres-

sion model (for steel, aluminum alloy, and titanium alloy). 

 

Figure 30. Correlation plot for measured and predicted values of acceleration, amax (for Linear Re-

gression model). 

In Gradient Boosting, regressor models are built in an additive manner, which, at 

each stage, adjusts the regression tree to the negative gradient of a given loss function, 

which is assumed to be a squared error [41]. As other initial parameters, a learning rate of 

Figure 28. Correlation plot for measured and predicted values of acceleration, amax (for Random
Forest Regressor model).

The Linear Regression model achieved an R2 score of 0.037, an MAE of 4.280, and an
RMSE of 5.070. Figure 29 shows measured vs. predicted values for the Linear Regression
model, and Figure 30 shows correlation plot for measured and predicted values.

Materials 2023, 16, x FOR PEER REVIEW 21 of 30 
 

 

 

Figure 28. Correlation plot for measured and predicted values of acceleration, amax (for Random For-

est Regressor model). 

The Linear Regression model achieved an R2 score of 0.037, an MAE of 4.280, and an 

RMSE of 5.070. Figure 29 shows measured vs. predicted values for the Linear Regression 

model, and Figure 30 shows correlation plot for measured and predicted values. 

 

Figure 29. Measured and predicted values of acceleration (amax) vs. feed rate (vf) for Linear Regres-

sion model (for steel, aluminum alloy, and titanium alloy). 

 

Figure 30. Correlation plot for measured and predicted values of acceleration, amax (for Linear Re-

gression model). 

In Gradient Boosting, regressor models are built in an additive manner, which, at 

each stage, adjusts the regression tree to the negative gradient of a given loss function, 

which is assumed to be a squared error [41]. As other initial parameters, a learning rate of 

Figure 29. Measured and predicted values of acceleration (amax) vs. feed rate (vf) for Linear Regression
model (for steel, aluminum alloy, and titanium alloy).

Materials 2023, 16, x FOR PEER REVIEW 21 of 30 
 

 

 

Figure 28. Correlation plot for measured and predicted values of acceleration, amax (for Random For-

est Regressor model). 

The Linear Regression model achieved an R2 score of 0.037, an MAE of 4.280, and an 

RMSE of 5.070. Figure 29 shows measured vs. predicted values for the Linear Regression 

model, and Figure 30 shows correlation plot for measured and predicted values. 

 

Figure 29. Measured and predicted values of acceleration (amax) vs. feed rate (vf) for Linear Regres-

sion model (for steel, aluminum alloy, and titanium alloy). 

 

Figure 30. Correlation plot for measured and predicted values of acceleration, amax (for Linear Re-

gression model). 

In Gradient Boosting, regressor models are built in an additive manner, which, at 

each stage, adjusts the regression tree to the negative gradient of a given loss function, 

which is assumed to be a squared error [41]. As other initial parameters, a learning rate of 

Figure 30. Correlation plot for measured and predicted values of acceleration, amax (for Linear
Regression model).

In Gradient Boosting, regressor models are built in an additive manner, which, at each
stage, adjusts the regression tree to the negative gradient of a given loss function, which is
assumed to be a squared error [41]. As other initial parameters, a learning rate of 0.1 and
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the number of boosting stages of 100 were also adopted. The model achieved an R2 score
of 0.924, an MAE of 0.970, and an RMSE of 1.420. Figure 31 shows measured vs. predicted
values for the Gradient Boosting Regressor, and Figure 32 shows a correlation plot for the
measured and predicted values.

Materials 2023, 16, x FOR PEER REVIEW 22 of 30 
 

 

0.1 and the number of boosting stages of 100 were also adopted. The model achieved an 

R2 score of 0.924, an MAE of 0.970, and an RMSE of 1.420. Figure 31 shows measured vs. 

predicted values for the Gradient Boosting Regressor, and Figure 32 shows a correlation 

plot for the measured and predicted values. 

 

Figure 31. Measured and predicted values of acceleration (amax) vs. feed rate (vf) for Gradient Boost-

ing Regression model (for steel, aluminum alloy, and titanium alloy). 

 

Figure 32. Correlation plot for measured and predicted values of acceleration, amax (for Gradient 

Boosting Regression model). 

In the LGBM Regressor model, the initial parameters were the number of leaves, 31; 

the learning rate, 0.1; and the number of boosted trees, 100. This model achieved an R2 

score of 0.028, an MAE of 4.280, and an RMSE of 5.100. Figure 33 shows measured vs. 

predicted values for the LGBM Regressor, and Figure 34 shows correlation plot for the 

measured and predicted values. 

Figure 31. Measured and predicted values of acceleration (amax) vs. feed rate (vf) for Gradient
Boosting Regression model (for steel, aluminum alloy, and titanium alloy).

Materials 2023, 16, x FOR PEER REVIEW 22 of 30 
 

 

0.1 and the number of boosting stages of 100 were also adopted. The model achieved an 

R2 score of 0.924, an MAE of 0.970, and an RMSE of 1.420. Figure 31 shows measured vs. 

predicted values for the Gradient Boosting Regressor, and Figure 32 shows a correlation 

plot for the measured and predicted values. 

 

Figure 31. Measured and predicted values of acceleration (amax) vs. feed rate (vf) for Gradient Boost-

ing Regression model (for steel, aluminum alloy, and titanium alloy). 

 

Figure 32. Correlation plot for measured and predicted values of acceleration, amax (for Gradient 

Boosting Regression model). 

In the LGBM Regressor model, the initial parameters were the number of leaves, 31; 

the learning rate, 0.1; and the number of boosted trees, 100. This model achieved an R2 

score of 0.028, an MAE of 4.280, and an RMSE of 5.100. Figure 33 shows measured vs. 

predicted values for the LGBM Regressor, and Figure 34 shows correlation plot for the 

measured and predicted values. 

Figure 32. Correlation plot for measured and predicted values of acceleration, amax (for Gradient
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In the LGBM Regressor model, the initial parameters were the number of leaves, 31;
the learning rate, 0.1; and the number of boosted trees, 100. This model achieved an R2

score of 0.028, an MAE of 4.280, and an RMSE of 5.100. Figure 33 shows measured vs.
predicted values for the LGBM Regressor, and Figure 34 shows correlation plot for the
measured and predicted values.
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The following initial parameters were used for the XGBRF Regressor model: size of
the forest equals 100, maximum depth of a tree is 6, and learning rate is 0.3. This model
achieved an R2 score of 0.924, an MAE of 1.010, and an RMSE of 1.430. Figure 35 shows
measured vs. predicted values for the XGBRF Regressor, and Figure 36 shows a correlation
plot for the measured and predicted values.
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regression model (for steel, aluminum alloy, and titanium alloy).
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The metrics for individual models are presented in Table 6; additionally, Figure 37
shows the chart of actual vs. predicted.
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Table 6. Models’ metrics.

Model R2 Score MAE RMSE

Random Forest Regressor 0.920 0.990 1.460
Linear Regression 0.037 4.280 5.070

Gradient Boosting Regressor 0.924 0.970 1.420
LGBM Regressor 0.028 4.280 5.100
XGBRF Regressor 0.924 1.010 1.430
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The Gradient Boosting Regressor model has the highest accuracy for all metrics; the
XGBRF Regressor model achieves the same value for the R2 score metric, but in the case of
MAE and RMSE, its results are worse. The XGBRF Regressor and Linear Regression models
achieved the weakest results among the selected models. Figure 37 shows the actual vs.
predicted values for selected models.

The model with the best fit was selected for the optimization process—Gradient
Boosting Regressor. The optimization process was carried out using the Grid Search
algorithm with parameters defining the maximum depth of the individual regression
estimators, dmax, and the number of boosting stages to perform, en. The en parameter was
optimized for the value from the set [110, 100, 90, 80, 60, 50, 45, 30, 20], and dmax from the
set [0, 2, 3, 4, 5, 6, 7, 8], where 0 means the expansion of nodes until all leaves are pure or
the leaves contain less than two samples. After the optimization process, the following
parameters were obtained: dmax = 0 and en = 110; the model obtained an R2 score that was
increased by 0.0124, an MAE decreased by 0.7, and an RMSE decreased by 0.117 than the
base model.

Optimization of Process Parameters

Based on the developed Gradient Boosting Regressor model, the parameter optimiza-
tion process was carried out using the differential evolution method [42]. The algorithm
alters each candidate solution by combining it with other candidate solutions to produce a
trial candidate at each run across the population. The best1bin strategy was adopted for
optimization. Table 7 presents the optimal process parameters that minimize the vibration
value.

Table 7. Optimal parameters.

Material Pressure
pi (MPa)

Feed Rate
vfi (mm/min) Estimated amax

Steel, b1 217.714 35.745 7.353
Aluminum alloy, b2 320.742 30.746 3.220
Titanium alloy, b3 279.784 49.452 6.855
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In order to analyze the relationship between roughness and amax, a statistical analysis
was carried out using polynomial regression. A second-order polynomial was used for
the analysis because higher-order polynomials tended toward overfitting. In the case of
the relationship between Ra and amax, a slight increase relationship was found. For the
first-order polynomial adjustment, the slope of the linear function was 0.035. For the
second-order polynomial fit, the obtained regression equation is Equation (1). Figure 38
shows the dependence of Ra on amax

Ra = 0.001·k2·amax
2 + 0.002·k1·amax + 6.052·k0 (1)

where k0, k1, and k2 are unit coefficients; and amax (m/s2) is the maximum acceleration.
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Figure 38. The dependence of Ra on amax.

In the case of the relationship between RSm and amax, for an increase in the value of
amax, there is an increasing relationship to the value of 13.953, and then there is a downward
trend. The following regression equation was obtained: Equation (2). Figure 39 shows the
dependence of RSm on amax.

RSm = −0.642·k2·amax
2 + 17.693·k1·amax + 63.811·k0 (2)

where k0, k1, and k2 are unit coefficients; and amax (m/s2) is the maximum acceleration.
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The relationship between Rz and amax has similar characteristics to the relationship
between Rz and amax, except that the relationship changes at an amax of 15.287. In the
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described case, the following regression equation was obtained: Equation (3). Figure 40
shows the dependence of Rz on amax.

Rz = −0.0363·k2·amax
2 + 1.123·k1·amax + 14.909 k0 (3)

where k0, k1, and k2 are unit coefficients; and amax (m/s2) is the maximum acceleration.
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The coefficient of determination, R2, was Ra: 0.0804, RSm: 0.2871, and Rz: 0.2179, re-
spectively. The results obtained from the polynomial regression analysis of the relationship
between roughness parameters (Ra, RSm, and Rz) and amax, the maximum acceleration,
reveal different trends. In the case of Ra and amax, a second-order polynomial regression
model best fits the data, indicating a slight increase relationship with an Equation (1). This
indicates that the roughness average (Ra) increases with the maximum acceleration (amax),
although the relationship is not strong, as indicated by the small coefficients.

In contrast, the relationship between RSm and amax showed an increase until amax
reached 13.953 m/s2, after which there was a downward trend, as indicated by Equation (2).
This suggests that the mean peak-to-valley height (RSm) increases with amax up to a point,
after which it starts to decrease. This could be due to the limitations in the material or
equipment used in the experiment, which cannot sustain higher roughness beyond a certain
acceleration.

Similarly, the relationship between Rz and amax showed a change at amax of 15.287 m/s2,
as indicated by Equation (3). This suggests that the maximum height of the profile (Rz)
increases with amax until 15.287 m/s2, after which it starts to decrease. This trend is similar
to the one observed for RSm and could be due to the same limitations.

It is interesting to note that while Ra showed a continuous increase with amax, both RSm
and Rz showed a peak and then a decline. This could be due to the nature of the parameters,
where Ra is the arithmetic mean of the absolute values of the surface heights measured
from a mean line and, hence, might not capture the peaks and valleys as accurately as
RSm and Rz, which are based on the maximum and mean values of the peaks and valleys,
respectively.

In conclusion, the relationship between roughness parameters and maximum accelera-
tion is complex and varies for different parameters. While there is a continuous increase in
Ra with amax, both RSm and Rz show a peak and then a decline at different values of amax.
This could have implications in industrial applications where the roughness of a surface
needs to be controlled or predicted based on the maximum acceleration used in the process.
Further studies may be needed to understand the underlying mechanisms and to establish
more accurate predictive models.
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5. Conclusions

This conducted experimental research focused on evaluating the influence of three
key technological parameters of waterjet cutting, namely working pressure, pi; feed speed,
vf; and material type (S235JR steel, Al2024 aluminum alloy, and Ti-6Al4V titanium alloy),
on the amplitude of acceleration during the waterjet cutting process.

This research aimed at identifying the optimal technological conditions for the cutting
process in terms of surface quality and cutting efficiency.

Based on the research, the following conclusions were made:

1. The amplitude of vibration acceleration varies and depends on both the specifics of the
material being cut and the controllable technological parameters of the cutting process.

2. Small changes in technological parameters such as the cutting speed (vfi) and pressure
(pi) can lead to significant differences in the value of vibration acceleration amplitude.

3. During the analysis of the cutting process, three distinct and repeatable zones occur-
ring during the cutting process were identified: the zone of entry of the water–waterjet
into the material of the cut workpiece, the zone of stabilization of the process (during
full cutting), and the zone of exit of the jet from the cut material.

4. Regardless of the adopted technological parameters of pressure (pi) and feed speed
(vfi), the lowest values of acceleration were characterized by the process of cutting
Al2024 aluminum alloy. The authors of the publication [34] state that, in the case
of aluminum alloys, an increase in the stream velocity (vf) led to the deterioration
of surface smoothness (resulting in higher roughness parameters). Modifying the
height (h) of the sample did not have a consistent impact on the studied parameters.
Although a strong correlation between the abrasive flow rate and the roughness
characteristics of the sample surfaces was not observed, there was a slight tendency
for the roughness of parts processed at higher abrasive flow rates to decrease.

5. Significantly higher values of vibration acceleration amplitude (reaching up to 60 m/s2)
during cutting were registered for steel and titanium alloy for all zones and phases of
the process (cutting zone, cutting zone, and exit zones).

6. A nonlinear effect of the pressure value (pi) and the feed motion speed (vfi) on the
value of vibration amplitude during the cutting process was observed.

In the case of steel cutting, an increase in pressure up to the limit of 300 MPa causes a
linear increase in maximum accelerations (Figure 21) at each of the analyzed feed speeds,
vf. At the next pressure value of 350 MPa, there is a decrease in vibrations.

The results of the experiments presented in this study clearly show that vibration
affects the efficiency of material removal during hydro-abrasive machining. In particular, it
was noted that an increase in the amplitude of vibration leads to an increase in the rate of
material removal. This observation is consistent with the results of studies by other authors,
who noted that vibration can increase material removal rates by “breaking” the water layer
between the abrasive particles and the machined surface, which facilitates the transport of
abrasive particles into the machining zone.

However, our research also showed that there is a certain threshold of vibration ampli-
tude beyond which the material removal rate begins to decrease. A possible explanation
for this observation could be the variations in experimental parameters, such as the water
pressure, abrasive particle size, and hardness of the material being machined.

In addition, our results suggest that vibration can affect the shape and quality of
the surface after machining. In experiments with a higher vibration amplitude, post-
treatment surfaces were rougher and showed a greater tendency to form microcracks. This
phenomenon may be due to the higher interaction forces between the abrasive particles
and the machined surface at increased vibration amplitudes.

Among the selected models (Random Forest Regressor, Linear Regression, Gradient
Boosting Regressor, LGBM Regressor, and XGBRF Regressor), the Gradient Boosting Re-
gressor model had the best fit to the data. This model achieved the highest values for the
R2 score, MSE, and RMSE metrics, which were, respectively, 0.924, 1.010, and 1.430. The
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XGBRF Regressor model was also characterized by a high level of fit, as its R2 score was at
the same level as the Gradient Boosting Regressor model, but the other metrics were worse.
The Linear Regression and LGBM Regressor models were characterized by the smallest
fit. The differential evolution method made it possible to determine the optimal process
parameters that minimize the amax value.

The conducted studies provide valuable cognitive conclusions, allowing for the assess-
ment of cause-and-effect relationships between the amplitude of acceleration in the waterjet
cutting process and the technological parameters of cutting. This information is indirectly
beneficial for optimizing the process and can significantly contribute to improving the
efficiency and quality of cutting. As a result, it can lead to significant time savings in various
cutting applications. By understanding how different technological parameters impact
the vibration amplitudes, engineers and manufacturers can make informed decisions to
enhance the overall performance and productivity of the waterjet cutting process.
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