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Abstract: In recent years, Zn and its alloys have become some of the most promising degradable
metals as in vivo implants due to their acceptable biocompatibility and more suitable degradation
rate compared with Mg-based and Fe-based alloys. However, the degradation rate of Zn-based
materials after implantation in the body for orthopedic applications is relatively slow, leading to
long-term retention of the implants after fulfilling their missions. Moreover, the excessive release of
Zn2+ during the degradation process of Zn-based implants usually leads to high cytotoxicity and
delayed osseointegration. To provide a feasible solution to the problem faced by Zn-based implants, a
Zn-Ca composite was fabricated by an air pressure infiltration method in this work. The XRD pattern
of the composite suggests that the composite is fully composed of Zn-Ca intermetallic compounds.
The degradation tests in vitro show that the composite has a much higher degradation rate than pure
Zn, and the high Ca content regions in the composite can preferentially degrade as sacrificial anodes.
In addition, the composite can efficiently induce Ca-P deposition during immersion tests in Hank’s
solution. Cytotoxicity tests indicate that L-929 cells exhibit around 82% cell viability (Grade 1) even
after being cultured in the 100% extract prepared from the Zn-Ca composite for 1 day and show
excellent cell viability.

Keywords: biodegradable metals; Zn-Ca composite; Zn-Ca intermetallic compound; cytotoxicity

1. Introduction

As biodegradable orthopedic implant materials for temporary implantation in vivo, Zn
and its alloys have received widespread attention in recent years due to their more suitable
degradation rates compared with Mg-based and Fe-based materials. However, recent
studies have shown that the degradation rates of Zn-based materials after implantation in
the body are relatively slow, leading to long-term retention of the implants after fulfilling
their missions [1]. Meanwhile, due to the much lower tolerance values of organisms to Zn
compared with that of Mg and Fe [1,2], the excessive release of Zn2+ of Zn-based implants
during the degradation process can also lead to severe cytotoxicity in vitro and delayed
bone osseointegration in vivo [1]. In view of the fact, improving the degradation rate of
Zn-based implants while effectively decreasing the cytotoxicity of implants has become a
research hotspot in the degradable Zn-based implant field.

Many studies found that when alloying elements such as Li [3–9], Sr [3,10,11], Ca [10,
12–15], Y [16], Mg [16–22], Ti [23–26], Mn [3,12,27–34], Fe [3,35,36], Cu [3,9,23–25,34,37–41],
and Ag [3,42–44] are introduced into Zn for alloying treatment, these alloying elements
generally react with Zn to form intermetallic compounds containing Zn elements. These
compounds not only significantly affect the strength and plastic deformation ability of the
Zn alloys but also have a significant impact on their degradation property and cytotoxicity.
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Among these alloying elements, Ca is an essential constant element for the human
body. The content of Ca in the human body (1200 g) is much higher than that of other
major metal elements such as K, Na, and Mg [2]. The dietary average daily intake
(ADI, 743 mg) and recommended daily intake (RDI, 800–1200 mg (19–24 years old)) of
Ca are also significantly higher than the corresponding values of other alloying elements
such as Mg, Fe, Mn, Cu, Li, etc. [2]. Although the LD50 (lethal dose, 50%) of CaCl2 obtained
via oral supplement of the mouse (2301 mg/kg) is lower than the 5000 mg/kg of MgCl2;
the value is also significantly higher than that of other chlorides such as FeCl3, MnCl2,
CuCl2, and LiCl [2]. Clearly, when Zn is alloyed with Ca, the dissolved Ca2+ during the
degradation process of the alloys is difficult to cause toxicity to human cells and tissues. In
addition, Li et al. [10] investigated the degradation property of the Zn-1Ca alloy in Hank’s
solution, and the results showed that the Zn-1Ca alloy has a more negative corrosion
potential and faster degradation rate than pure Zn in Hank’s solution. Zou et al. [13]
investigated the degradation property of Zn-xCa (x = 0.5, 1, 2, 3 wt.%) alloys in Hank’s
solution, and the results showed that the Zn-xCa alloys also had a more negative corrosion
potential and faster degradation rate than pure Zn. Yang et al. [3] also obtained similar
experimental results when they investigated the degradation behavior of Zn-xCa (x = 0.1,
0.4, 0.8 wt.%) alloys in simulated body fluids. In addition, the cytotoxicity test results
conducted by Yang et al. [3] also suggested that the concentration of Zn2+ in the 100%
extraction solution of Zn-xCa alloys decreased when the Ca content increased, and the cell
activity of the alloys on MC3T3-E1 also increased accordingly.

Although the above experimental results indicate that Zn-Ca compounds in Zn-Ca
alloys are beneficial to increasing the degradation rate and cell activity of Zn alloys, there
are few studies that report the degradation properties, cytotoxicity, and other relevant
properties of Zn-Ca compounds themselves. In view of this fact, this paper used an
air compression infiltration method to prepare a Zn-Ca composite composed of Zn-Ca
compounds. The microstructures and phase structures of the composite were characterized,
and the mechanical properties, biodegradability, and cytotoxicity of the composite were
also investigated.

2. Materials and Methods
2.1. Fabrication of a Zn-Ca Composite

Commercially pure Zn ingot (≥99.995%) and Ca particles (≥99.0%) were used as raw
materials. Zn-Ca intermetallic compounds having a nominal Zn/Ca atomic ratio of 2 were
fabricated by a vacuum induction melting furnace. The obtained compounds were crushed
and sieved with 100 and 200 meshes of standard sieves, and Zn-Ca compound powder
with a size of around 75–150 µm was then obtained. The SEM images of the obtained Zn-Ca
compound powder are shown in Figure 1. The particle size of the compounds is relatively
uniform, and these particles have irregular shapes and sharp edges. The XRD pattern of
the powder is presented in Figure 2. In addition to the CaZn2 phase, CaZn3.04 and CaZn
phases were also found in the powder. The presence of CaZn3.04 and CaZn phases is due to
the high viscosity of the Zn-Ca alloy melt during the preparation of CaZn2, resulting in
uneven distribution of Ca in the alloy melt. According to the Zn-Ca phase diagram [45,46],
the CaZn and CaZn3 phases are the most likely phases to be formed besides the CaZn2
phase under the current condition.

A Zn-Ca composite was fabricated by an air pressure infiltration method (APIM).
The schematic illustration of the APIM setup is depicted in Figure 3. The obtained Zn-Ca
compound powder was firstly filled into a steel mold with an inner diameter of 20 mm; the
mold was then heated to 405 ◦C and held at that temperature for at least 60 min. Secondly,
the Zn melt with a temperature of 560 ◦C was cast into the mold (the weight ratio of
Zn to Zn-Ca compound powder is around 2.5:1), and the mold was quickly filled with
0.3–0.4 MPa compressed air and held for several minutes. When the mold was cooled to
room temperature, the specimen was removed from the mold, and a Zn-Ca composite
was obtained.
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2.2. Microstructures and Phase Structures

The microstructures of specimens were observed by an optical microscope (Axio
Imager M2m, Cari Zeiss, Oberkochen, Germany) and a scanning electron microscope (SEM,
S-4800, Hitachi, Tokyo, Japan). The phase structures of specimens were characterized by an
X-ray diffractometer (XRD, D8 FOCUS, Bruker, Billerica, Germany) with Cu Kα radiation
(12◦/min).

2.3. Compress Tests

Compressive mechanical properties of the Zn-Ca composite were characterized on a
WDW-300 electronic universal testing machine (Zhongzheng, Jinan, China) at room tem-
perature. The specimens for the tests were cut into cylinders with a size of ϕ4 mm × 8 mm
using wire electrical discharge machining. The tests were carried out under displacement
control with a crosshead speed of 1 mm/min. At least 5 specimens were tested.

2.4. In Vitro Biodegradation Tests

The potentiodynamic polarization curves of specimens were measured on a CHI660E
electrochemical workstation using a standard three-electrode system. The testing specimen,
a saturated calomel electrode (SCE), and a graphite rod served as the working electrode,
the reference electrode, and the counter electrode, respectively. A Hank’s solution was
employed as the corrosive medium, whose chemical composition was presented in Table 1.
A 1 M HCl solution and 7.4% NaHCO3 solution were used to adjust the pH value of Hank’s
solution to 7.4 at 37 ◦C. The testing specimen was first immersed in Hank’s solution at
37 ◦C to measure open circuit potential (OCP). When the OCP was stable, the polarization
curve of the specimen was then measured at a scanning rate of 0.5 mV/s.

Table 1. Chemical composition of Hank’s solution.

Number Reagent Concentration

1 CaCl2 0.14 g/L
2 NaCl 8.00 g/L
3 KCl 0.40 g/L
4 NaHCO3 0.35 g/L
5 Glucose (C6H12O6) 1.00 g/L
6 MgSO4·7H2O 0.06 g/L
7 KH2PO4 0.06 g/L
8 Na2HPO4·12H2O 0.06 g/L
9 MgCl2·6H2O 0.10 g/L

Immersion tests were also conducted in Hank’s solution at 37 ◦C. The specimens
with a size of ϕ20 mm × 3 mm were immersed in 125 mL of Hank’s solution for different
periods. After immersion, the specimens were removed from the solutions and gently
washed with deionized water and then dried at room temperature. At last, the corrosion
products deposited on the specimens were washed with 200 g/L CrO3 solution.

2.5. Cytotoxicity Tests

An indirect contact method was used to evaluate the cytotoxicity of the Zn-Ca compos-
ite. The employed cells were L-929 murine fibroblast cells (Cell Bank of Chinese Academy
of Sciences, Shanghai City, China). The detailed process can be found in our previous
work [47]. Firstly, the sterilized specimens were soaked in Roswell Park Memorial Institute
(RPMI) 1640 medium containing 10% calf serum (0.2 mg/L, Zhejiang Tianhang Biotechnol-
ogy Co., Ltd., Huzhou City, China) for 24 h at 37 ◦C. After that, the solution in the extract
container was reserved as 100% extract. Secondly, 100 µL of solution having L-929 cells,
whose concentration was 2 × 104 cells /mL RPMI 1640 medium containing 10% calf serum,
were incubated in a 96-well cell culture plate for 24 h at 37 ◦C in a humidified atmosphere
containing 5% CO2. After that, 100 µL of 100%, 50%, 25%, 12.5%, and 6.25% extracts were
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added to the different wells of the culture plate, respectively. The negative control group
was added to RPMI 1640 medium containing 10% calf serum, and the positive group was
added to 10% dimethyl sulphoxide (DMSO). The culture plate was then incubated in a
humidified atmosphere containing 5% CO2 for 24 h at 37 ◦C. Then, 10 µL of MTT (thiazolyl
blue tetrazolium bromide) (5 mg/mL) were added to different wells and continuously
incubated for 4 h. After incubation, 180 µL of DMSO were added to the wells of the plate.
The optical density (OD) was then measured at 570 nm by a microplate reader, and the cell
relative growth rate (RGR) was calculated by the following formula.

RGR(%) =
ODSpecimen

ODControl
. (1)

3. Results and Discussion
3.1. Microstructures and Phase Structures of the Zn-Ca Composite

The optical images of the Zn-Ca composite are shown in Figure 4. It can be seen
that the particles with irregular shapes are uniformly distributed in the composite, and
a shell layer is wrapped around the outer surface of many particles. The SEM images
of the composite are presented in Figure 5. There is indeed a shell layer around the
particles. The EDS spectrum result suggests that the atomic ratio of Ca/Zn of the particle
(area A in Figure 5a) is 1:2.13, which is very close to 1:2. Therefore, it can be deduced that
the particle is likely CaZn2. Comparing the EDS spectrum results of area A, point B, area
C, and point D (Figure 5d–g), it can be found that the farther away from the particle, the
lower the Ca content in the specimen. It is noted that the atomic ratio of Ca/Zn of point D
(Figure 5g) is 1:12.42, which is close to 1:13. Thus, it can be deduced that the phase existing
at point D may be CaZn13. In addition, the EDS results of points E and F suggest that the
composite contains some O element, especially the white particle (point F), which has a
higher oxygen content. Although the oxygen content of the specimen cannot be precisely
determined by EDS, the results also indicate that the composite inevitably underwent a
certain degree of oxidation during the preparation process, and further experiments are
needed to investigate the effect of oxides on the properties of the composite. In addition to
that, it is found in Figure 5 that the particles in the specimen are sunken compared with
the surrounding region. Not only that, the shell layers around the particles also exhibit
a relatively light degree of depression. Since the specimen shown in Figure 5 has been
corroded by a 4% nitric acid alcohol solution, it can be determined that the particles with
the highest Ca content in the specimen are the least corrosion-resistant. As the Ca content
decreases, the corrosion resistance of the specimen also increases accordingly. In addition,
it is also noted that the composite is not dense, and there are some pores in the specimen.
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The XRD pattern of the obtained Zn-Ca composite is shown in Figure 6, and the inset
is a magnification pattern within the range of 32–44 degrees. The detected phases in the
composite include CaZn13, CaZn2, and CaZn5. No Zn phase is found in the specimen, and
the CaZn3.04 and CaZn phases existing in the original Zn-Ca compound powder are also
not found. Combined with the SEM images and EDS spectra of the Zn-Ca composite in
Figure 5, it can be inferred that the XRD result is due to the diffusion of Ca element from the
Zn-Ca compound powder to the Zn melt as well as the formation of new phases and the
disappearance of old phases during the preparation of the composite. When the Zn melt
was pressed into the pores of the Zn-Ca compound powder during the infiltration process,
the Ca element in the surface layer of the compound particles inevitably diffused into the
surrounding Zn melt under the high-temperature action of the Zn melt. On the basis of
Fick’s law, the farther away from the particles, the lower the diffused Ca content. The
diffused Ca element then reacted with Zn to form new Zn-Ca compounds such as CaZn5
and CaZn13 (Figure 5g). The formation of these solid compounds not only consumed a
large amount of Zn melt but also increased the resistance of Ca element within CaZn2
particles to diffuse outwards so that the diffusion of Ca element in the core region of the
particles had not yet occurred. As a result, the core region of the particles could still retain
its original high Ca content (such as CaZn2 shown in Figure 5a,d). On the contrary, the Ca
content in the surface layer of these particles was significantly reduced (Figure 5e), and
a shell layer with a low Ca content was formed around the particles (Figures 4 and 5a).
The disappearance of CaZn3.04 and CaZn phases existing in the original Zn-Ca compound
powder was obviously due to the diffusion of Ca elements and the occurrence of new
reactions during the infiltration process. With the diffusion of the Ca element and the
reactions of Ca with Zn, the Zn in the pores of the Zn-Ca compound particles was almost
depleted, which ultimately led to the absence of the Zn phase in the XRD pattern of the
composite. As a result, the obtained composite is entirely composed of Zn-Ca compounds.
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3.2. Compressive Mechanical Properties of the Zn-Ca Composite

The compressive stress–strain curve of the Zn-Ca composite is depicted in Figure 7. Unlike
as-cast pure Zn [10,48] and some Zn alloys such as Zn-1Ti [49], Zn-1X (X = Mg, Ca, Sr) [10],
Zn-2Mg [50], and Zn-3Cu [50] that have good compressive plasticity, the composite exhibits
typical brittle fracture characteristics. Clearly, the result can be attributed to the fact that
both the matrix and reinforcing phases of the composite are Zn-Ca compounds. The calcu-
lated mean compressive strength of the composite is 281.1 ± 55.3 MPa. The compressive
strength value is obviously not high among the Zn alloys that also have brittle fracture
characteristics (e.g., Zn-3Mg-1Ti alloy with eutectic structure has a compressive strength of
625.1 MPa [49]), which is due to the fact that the specimen is not dense (Figure 5). Since
no extensometer was used during the compressive process, the elastic modulus of the
specimen was not calculated.
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3.3. In Vitro Biodegradable Properties of the Zn-Ca Composite

The potentiodynamic polarization curve of the Zn-Ca composite is shown in Figure 8.
For comparison, the polarization curve of an as-cast pure zinc is also plotted in Figure 8.
The corrosion potentials (Ecorr) and the corrosion current densities (Icorr) derived from
the polarization curves are listed in Table 2. Clearly, the corrosion potential of the Zn-Ca
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composite is more negative than that of pure Zn. Moreover, the composite also exhibits a
higher degradation rate than pure Zn.
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Table 2. Corrosion potentials and corrosion current densities derived from the polarization curves.

Specimens Ecorr (VSCE) Icorr (µA/cm2)

Pure Zn −1.070 3.98
Zn-Ca composite −1.131 229

The SEM images of the Zn-Ca composite after immersion in Hank’s solution for 5 h are
shown in Figure 9. A thin layer of corrosion products composed of spherical particles has
been deposited on the Zn-Ca composite. Due to the dehydration of the specimen during
the drying process after immersion, the corrosion product layer was warped. Nevertheless,
it still can be inferred that the surface of the specimen has been completely covered by the
corrosion product layer after immersion for only 5 h. Under the warped corrosion product
layer, the original scratches on the specimen surface after sanding and polishing can still
be seen, although some corrosion product particles were deposited. The EDS spectrum
result (Figure 9c) suggests that the corrosion product layer is rich in Zn, O, Ca, and P
elements. Figure 10 shows the SEM images of the Zn-Ca composite after immersion in
Hank’s solution for 10 h. Although the corrosion product layer also cracked, the cracked
corrosion product layer did not undergo severe warping. This result is mainly due to the
thickening of the corrosion product layer. In addition, the corrosion product layer on the
specimen surface has partially detached, and there is still corrosion product deposition on
the exposed surface. Unlike after immersion for 5 h (Figure 9), the original scratches on the
exposed surface of the partially detached corrosion product layer are no longer obvious.
The EDS result of the exposed surface (area A in Figure 10b) suggests that the surface is
still rich in Zn, O, Ca, and P elements. However, the EDS spectrum of point B in Figure 10b
shows that the corrosion product layer is rich in O, Ca, and P as well as a small amount
of Mg, while the Zn content is very low. This result further indicates that the corrosion
product layer deposited on the composite surface is already thick enough to prevent the
collection of Zn information from the specimen itself after soaking for 10 h.
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The SEM images of the Zn-Ca composite after immersion in Hank’s solution for 5 h
and 10 h and then removal of corrosion products with chromic acid solution are shown
in Figure 11. After immersion for only 5 h, obvious localized corrosion was observed on
the surface of the specimen. Corrosion pits were mainly found in the core regions of the
reinforcing particles with core–shell structures. As seen in Figure 11a–c, the core regions of
some particles with core–shell structures were heavily corroded. However, there are also
particles where the core regions are not severely corroded (red arrow in Figure 11b). In
addition, it should be noted that the pits present between the reinforcing particles (white
arrows in Figure 11) were not caused by localized corrosion but were formed during the
preparation process of the specimen. After immersion for 10 h, the core regions of many
reinforcing particles have corroded off a layer and formed obvious depressions. Unlike the
core regions, the shell layers surrounding these regions and their outer regions (Zn-rich
region) still did not undergo significant degradation. However, it can be inferred that these
Zn-rich regions will also undergo serious corrosion with the extension of immersion time.

The reason for the above phenomena can be attributed to the preferential degradation
of the local regions with more negative corrosion potential in the specimen as sacrificial
anodes. It is known that the standard electrode potential of Ca is −2.87 VSHE, which is
significantly lower than that of Zn (−0.762 VSHE). Therefore, it can be inferred that the
electrode potentials of Zn-Ca compounds are also lower than that of Zn. Now, the inference
has been confirmed by the polarization curves shown in Figure 8. Similarly, MgZn2 and
Mg2Zn11 produced by the reaction of Zn with the element Mg, which also has a more
negative standard electrode potential than Zn (−2.372 VSHE vs. −0.762 VSHE), have a more
negative corrosion potential than Zn in the corrosion solution [51]. Then, it can be further
inferred that the Zn-Ca compound having a higher Ca content, such as CaZn2, will have
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a more negative corrosion potential. As the Ca content in the compound decreases, the
corrosion potential of the compound will be closer to that of Zn. Consequently, corrosion
couples will be formed between the CaZn2 core regions and their shell layers, as well as
the shell layers and their outer matrix (Ca content is relatively lower) due to the difference
in corrosion potential, ultimately leading to the preferential degradation of the core regions
that have the most negative corrosion potential. As for the shell layers around the core
regions did not show obvious degradation compared with their outer matrix during soaking
for 5 h and 10 h; this result is mainly due to the small difference in Ca content between the
shell layers and its outer matrix (Figure 5). Clearly, the potential difference between the
two electrodes constituting a corrosion couple significantly affects the degradation of the
sacrificial anode. When the potential difference between the two electrodes is small, it will
take a longer time to observe significant degradation of the sacrificial anode.
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The preferential degradation of the sacrificial anodes (the core regions of the reinforcing
particles) not only led to severe localized corrosion but also made the degradation rate
of the Zn-Ca composite significantly higher than that of pure Zn (Figure 8 and Table 2).
The corrosion current density of the Zn-Ca composite is almost 57.5 times that of pure
Zn. However, the corrosion current densities of the Zn-0.8Ca, Zn-1Ca, and Zn-2Ca alloys
measured by Yang et al. [3], Li et al. [10], and Zou et al. [13] are only 1.23, 1.19, and
2.33 times that of pure Zn, respectively. The result is clearly attributed to the fact that the
Zn-Ca composite is entirely composed of Zn-Ca compounds.

In addition, the preferential degradation of the sacrificial anodes also accelerated the
cathodic reaction (2) occurring on the protected cathodes, thereby significantly increasing
the pH value of the soaking solution.

2H2O + O2 + 4e→ 4OH−. (2)

Koji et al. [52] measured the pH change in Hank’s solution soaking of bulk CaZn2
during immersion tests. After 24 h of immersion, the pH value of the solution was basically
stabilized at approximately 8.7. Zhao et al. [53] believed that the OH− ions produced
by the reaction (2) are essential for inducing the deposition of Ca and P elements on
biodegradable Zn-based materials. Moreover, the higher the pH of the soaking solution,
the more favorable the deposition of calcium phosphates [54]. Although the pH value of
Hank’s solution is only 8.7, measured by Koji et al. [52], the pH value of Hank’s solution
soaking of the Zn-Ca composite should possess a higher pH value due to the accelerated
reaction (2) on the protected cathodes. The higher the pH value of the soaking solution,
the greater the amount of OH− ions accumulated on the surface of the composite should
be. Thus, the compounds containing Ca and P elements are more easily deposited on the
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surface of the Zn-Ca composite. As a result, a corrosion product layer containing Ca and
P elements was deposited on the Zn-Ca composite only after 5 h of immersion in Hank’s
solution (Figure 9). For the porous Zn scaffold, only some tiny corrosion products were
dispersedly deposited on the porous Zn scaffold even after 1 d of immersion in Hank’s
solution under the same condition [55]. It can be seen that the Zn-Ca composite is far easier
to induce Ca and P deposition and exhibits excellent bioactivity.

3.4. Cytotoxicity of the Zn-Ca Composite

The cell viability of L-929 after incubation in the 100%, 50%, 25%, 12.5%, and 6.25%
extracts for 1 d is presented in Figure 12. It can be seen that the cell viability of L-929 after
culturing in the 100% extract reaches 82.26 (Grade 1) and shows excellent viability. When
the 100% extract is diluted to 50%, 25%, 12.5%, and 6.25%, the cell viability of L-929 is
higher than 100% (Grade 0). Clearly, these extracts show no cytotoxicity to L-929 cells.
Generally, the cytotoxicity of the extracts prepared from biodegradable Zn-based materials
is closely related to the concentration of Zn2+ in them. Although different cells have
different tolerance concentration thresholds to Zn2+, the thresholds are generally very low.
For example, Yang et al. [56] reported that the ZnCl2 solution containing 23.9 µg/mL of Zn2+

exhibited severe cytotoxicity on MC3T3-E1 cells, while 12.1 µg/mL of Zn2+ significantly
promoted cell proliferation. He et al. [57] also reported that when the Zn2+ concentration in
ZnCl2 solution was lower than 19.62 µg/mL, the solution showed good cell viability on
MC3T3-E1 cells. However, when the Zn2+ concentration increased to 29.43 µg/mL, the
cell viability decreased to around 3.7%. For the L-929 cells, the highest safe concentration
of Zn2+ is only 5.233 µg/mL, as reported by Kubásek et al. [22]. Although Zn metal has
a relatively slow degradation rate, the released Zn2+ ions during degradation are still
excessive to cells. As a result, pure Zn [56,58,59] and other Zn-based implants such as
Zn-4Cu alloy [40] and porous Zn scaffold [55] usually exhibit pronounced cytotoxicity
in vitro. When these materials with in vitro cytotoxicity are implanted into the body, a
layer of fibrous connective tissue is often observed around the implants [56,58,60–62]. The
connective tissue layer prevents new bone from directly bonding to the implant, resulting
in delayed osteointegration.
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Although the Zn2+ concentration in the 100% extract prepared from the Zn-Ca com-
posite was not measured, it still can be inferred that the released Zn2+ concentration should
not be high during the degradation. Clearly, this result is attributed to the protective
effect of the sacrificial anodes with high Ca content on the cathodes with high Zn content.
In addition, Yang et al. [3] pointed out that the appropriate content of Ca is helpful in
eliminating the toxicity of Zn. Therefore, the dissolved Ca2+ during the degradation of the
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Zn-Ca composite may also play a certain role in improving the cell viability of the material.
Further experiments are required to verify the inference.

4. Conclusions

A Zn-Ca composite was successfully fabricated by an air pressure infiltration method
using Zn-Ca intermetallic compound powder and Zn ingot. The microstructure, phase
structures, compressive mechanical properties, in vitro degradation properties, and cyto-
toxicity of the composite were investigated. The main conclusions are as follows:

(1) The Zn-Ca composite is fully composed of Zn-Ca intermetallic compounds. The
reinforcing phases are Ca-rich particles with core–shell structures, while the matrix
phases are rich in Zn elements.

(2) The composite exhibits typically brittle fracture characteristics during compressive
tests, and the compressive strength of the composite is around 281.1 MPa.

(3) The core regions of the reinforcing particles degrade preferentially as sacrificial anodes,
resulting in severe localized corrosion of the composite during immersion tests. The
preferential degradation of the sacrificial anodes also makes the composite have a
much faster degradation rate than pure zinc and a better ability to induce Ca and P
deposition than pure Zn in Hank’s solution.

(4) The preferential degradation of the Ca-rich core regions also provides the composite
with excellent cell viability.

In conclusion, the utilization of Ca-rich Zn-Ca compounds as sacrificial anodes acceler-
ates the degradation of the Zn-based implant while also maintaining excellent cell viability.
This strategy provides a new pathway for the preparation of degradable Zn-based implants
with relatively fast degradation rates as well as good biocompatibility.
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