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Abstract: Additively manufactured metal components often have rough and uneven surfaces, ne-
cessitating post-processing and surface polishing. Hardness is a critical characteristic that affects
overall component properties, including wear. This study employed K-means unsupervised machine
learning to explore the relationship between the relative surface hardness and scratch width of
electroless nickel plating on additively manufactured composite components. The Taguchi design of
experiment (TDOE) L9 orthogonal array facilitated experimentation with various factors and levels.
Initially, a digital light microscope was used for 3D surface mapping and scratch width quantification.
However, the microscope struggled with the reflections from the shiny Ni-plating and scatter from
small scratches. To overcome this, a scanning electron microscope (SEM) generated grayscale images
and 3D height maps of the scratched Ni-plating, thus enabling the precise characterization of scratch
widths. Optical identification of the scratch regions and quantification were accomplished using
Python code with a K-means machine-learning clustering algorithm. The TDOE yielded distinct
Ni-plating hardness levels for the nine samples, while an increased scratch force showed a non-linear
impact on scratch widths. The enhanced surface quality resulting from Ni coatings will have signifi-
cant implications in various industrial applications, and it will play a pivotal role in future metal and
alloy surface engineering.

Keywords: unsupervised machine learning; K-means clustering; additive manufacturing; nickel
plating; hardness; scratch test

1. Introduction

Machine learning (ML) has received a great deal of attention recently, particularly as a
result of recent developments in the field of deep learning [1,2]. Artificial intelligence has
become a central focus across various research fields and in additive manufacturing, like
engineering disciplines [3–6], as it offers a unified framework through which to integrate
intelligent decision making into numerous fields [7,8]. There are several forms of additive
manufacturing, such as binder-jetting-based metal additive manufacturing (BJAM). In this
study, we focused on stainless-steel and bronze composite samples that were manufactured
using the binder-jetted method [9]. Binder jetting is a 3D printing process that involves the
deposition of an adhesive binding agent onto thin layers of powdered material. The printer
head moves over the build platform depositing binder droplets, and it then prints each
layer in a way that is not dissimilar to 2D printers that print ink on paper. After each layer
is complete, the powder bed moves downward, and the printer spreads a new layer of
powder onto the build area. The process goes on layer by layer until all parts are complete.
After printing, the parts are in a green, or unfinished, state, and they require additional
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post-processing before they are ready to use. Often, the operator adds an infiltrating
substance to improve the mechanical properties of the parts. The infiltrate substance is
usually bronze in the case of metal 3D prints [9,10]. The BJAM process has a significant
scope of improvement with the application of ML and deep learning [11,12]. The further
advancement of AM is critically dependent on the post-processing of completed parts and
the use of ML in solving problems.

While BJAM and other additive manufacturing processes have been widely used for
rapid prototyping [13,14], some of its constraints revolve around reliability and control [15,16].
Compared to subtractive manufacturing procedures, AM creates objects with poor surface
smoothness [9,17]. As produced, surface quality has a negative effect on the tribological
behavior of printed parts. It is well understood that rough surfaces tend to experience faster
wear compared to smooth surfaces [18,19]. Therefore, it becomes crucial to thoroughly
investigate and regulate the surface roughness of AM parts via different approaches to deal
with interior and exterior surface quality [20]. The study and control of surface roughness
in AM components are essential in order to enhance their durability, reduce wear, and
improve overall performance. By understanding and managing the surface roughness,
it is possible to optimize the tribological characteristics and extend the lifespan of AM
parts [21]. In the context of BJAM, coatings are indispensable for maintaining integrity in a
reactive environment. Due to the use of soft and hard materials, a binder-jetted part may
be susceptible to corrosion and may display non-uniform mechanical properties. Hence,
a protective coating, depending upon the end use, may be a necessity when utilizing
BJAM parts.

Among various coatings, electroless nickel coating has been widely applied and
studied for conventional engineering components. Electroless nickel plating has been
extensively studied with various plating baths so as to identify the optimal conditions for
achieving desired qualities such as corrosion resistance, wear resistance, and hardness.
Through systematic experimentation and analysis, researchers have aimed to identify the
ideal parameters and bath compositions that can lead to electroless nickel coatings with
excellent performance in terms of corrosion resistance, wear resistance, and hardness.
These efforts contribute to the development and application of electroless nickel plating
as a reliable surface treatment method for enhancing the functional properties of various
materials [22,23].

In this research, we explored electroless nickel coatings for BJAM parts. The major
challenge was experienced in analyzing the hardness of nickel coating via the standard
scratch test process. A standard method for determining surface hardness using scratch
testing involves running a diamond stylus across the coated surface while applying in-
creasing force until adhesion failure is observed [24]. In the study, it was observed that
the surface of the Ni-plated samples exhibited minor scratches, which posed challenges
when aiming to accurately capture 3D images with a light microscope. The highly reflective
surface resulted in an oversaturation and lens reflection artifacts in the images, making
it difficult to quantify scratch widths effectively. To overcome this limitation, scanning
electron microscopy (SEM) was employed to generate a 3D height map of the area, thus
providing a higher resolution for measuring scratch widths. To address this challenge
in the postprocessing of BJAM parts, we applied ML. ML algorithms have proven valu-
able in addressing various problem-solving tasks such as regression, classification, and
forecasting [25]. ML can be broadly categorized into four types based on the learning
approach used: supervised, unsupervised, semi-supervised, and reinforcement learning.
In unsupervised ML, the algorithm predicts outputs without any explicit supervision, and
it relies on unlabeled datasets. One prominent approach in unsupervised ML is clustering,
which involves extracting natural groups from data based on their similarities [26,27].
The K-means algorithm is the most well-known and often-used unsupervised clustering
method [28]. The K-means cluster seeks to determine the centroid of each cluster and assign
the data points to the nearest centroid. The centroid is the arithmetic mean of all the points
belonging to the cluster [29]. It iteratively calculates the cluster centroids repeatedly, and
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adjusts the parameters until a negligible change is observed [30]. There is no need for a
training dataset since it is a type of unsupervised ML, and computation is conducted on
the real dataset [31].

To the best of our knowledge, for the first time, we explored the application of the
K-means ML approach to successfully analyze the scratch on electroless nickel films coated
on BJAM. To automate the analysis process and extract scratch data from the images
and height maps, a Python script was originally developed. The script utilized the K-
means algorithm, an unsupervised machine learning method, to segment and identify
the scratches. Applying the K-means algorithm meant that the scratch data could be
effectively extracted, thus allowing for a quantitative analysis and characterization of the
scratches. The outcomes of this study demonstrated the utility of unsupervised machine
learning techniques, such as the K-means algorithm, in addressing challenges encountered
in materials science. By leveraging these methods, researchers can overcome limitations in
traditional image analysis approaches and obtain valuable insights from complex surface
data, such as scratch measurements.

2. Materials and Methods

The focus of this paper is on the application of ML-based image analysis approaches
for successfully studying scratches that are created on nickel-coated BJAM samples. The
BJAM samples used in this study were manufactured by the ExOne® (Huntington, PA,
USA). The stainless-steel 420 powder was shaped with a binder jet 3D printer that was
made by ExOne®. Binder jetting works by spreading powder into a layer, and an inkjet
printhead is used to selectively deposit a binder into the layer of powder. As the process
proceeds, the powder and binder are layered to form a 3D shape in the powder bed. The
average particle size is between 15 and 30 microns, and the binding agent is a polymer. The
print is then heated to 200 ◦C to evaporate the solvent from the binder. Once dried, the parts
are removed from the powder bed and set up for post-processing. The post-process consists
of adding the part to a crucible filled with a measured amount of bronze alloy. The crucible
with the part and bronze is heated to around 1100 ◦C for 1–2 h, which allows the bronze to
melt and infiltrate the porous stainless-steel print. Infiltration is driven by the wetting of
the molten bronze and the steel, the surface tension of the molten bronze, and the resulting
capillary forces between the stainless-steel particles. Once solidified, the resulting part is a
stainless-steel and bronze metal-matrix composite, which is approximately 60% stainless
steel and 40% bronze by volume. In the follow-up SEM and EDS analyses with Phenom XL
SEM purchased from Nanoscience®, (Phoenix, AZ, USA), we observed elemental analysis
results that were specific to how many 420 stainless-steel powder particles were present
in the imaging area, as well as the variation in the shape and size of each particle. Hence,
due to the limitation of EDS in providing consistent results, we report on the percentage of
stainless steel and bronze based on the manufacturing process.

Importantly, this paper is mainly about post-manufacturing surface property im-
provement where the surface properties of BJAM is a critical factor. As a part of post-
processing, we developed an empirical model targeting the smooth surface morphology
of several micron-thick nickel depositions on nine binder-jetted 420 stainless steel/bronze
components. The electroless plating solution was acquired from the Surface Technology
Incorporated® company. The experiment plan for nine samples was based on the Taguchi
design of experiment, which enables the study of multiple variables and their levels in
fewer experiments when compared to the experimental plan where one variable is varied
at a time [32]. In this investigation, there were four factors with three levels each. The
plating bath solution’s phosphorus levels consisted of low (1–4%), medium (6–9%), and
high (10–13%). The temperature levels included low (recommended −10 ◦C), medium
(recommended), and high (recommended +10 ◦C). For low and medium phosphorus, the
recommended temperature was set at 90 °C, while for high phosphorus, it was 85 °C. The
surface cleaning preparation factor encompassed three levels: organic solution cleaning,
plasma cleaning, and chempolishing. Chempolishing-based surface finishing details are
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published elsewhere [17]. The plasma was produced by 100 W of RF power, at a 30 SCCM
Ar flow rate, and at 320 mTorr pressure to etch the binder-jetted samples isotropically.
Plasma cleaning was done with SPI Plasma Prep II (West Chester, PA, USA). The fourth
factor, plating thickness, also comprised three levels. We targeted depositing at 20, 30, and
40 µm thicknesses, which were determined from the manufacturer-provided data sheet
for the three plating solutions. Table 1 depicts the L9 orthogonal array and each sample’s
name ID, which are utilized in the discussion section when referring to each sample.

Table 1. The L9 orthogonal array of the nine experiments for investigating nickel plating.

Exp. Run Phosph. Level Temp. (◦C) Surface Prep. Thickness
(µm) ID

1 Low 85 Organic 20 OC1
2 Low 95 Plasma 30 PC1
3 Low 105 Chempolish 40 CP1
4 Medium 85 Plasma 40 PC2
5 Medium 95 Chempolish 20 CP2
6 Medium 105 Organic 30 OC2
7 High 75 Chempolish 20 CP3
8 High 85 Organic 30 OC3
9 High 95 Plasma 40 PC3

After completing the nickel-plating process as per the plan mentioned in Table 1,
scratch testing was performed with a Taber Scratch tester®. Scratch geometry analysis
is a critical step in determining the toughness of films, and the surface hardness of the
composite samples was evaluated by varying the scratch load gradually from 8 N to 15 N.
The samples were divided into three groups based on their surface preparation. In general,
the trend observed in the graphs indicates that, as the scratch load remains constant, the
hardness tends to decrease as the scratch width becomes deeper and wider. This implies
that a deeper and wider scratch shows a low surface hardness. Moreover, the relationship
between scratch width and applied scratch load is directly proportional, meaning that,
as the applied load increases, the scratch width also increases. However, it is important
to note that the increase in scratch width is non-linear, suggesting that the relationship
between load and width may not be strictly linear. However, since nickel plating makes
the surface quite shiny, it became difficult to determine the scratch depth and width profile
accurately from an analysis of the optical images. We developed a solution to this problem
by relying on the SEM images of the scratches, which produced better depth contrast. The
SEM images were visually marked for the location of the scratch, and the K-means machine
learning algorithm was applied. The following section describes the K-means algorithm
adopted in this study.

K-means clustering is an iterative method that aims to divide a dataset into a prede-
termined number, K, of distinct clusters or subgroups based on their attributes. The goal
is to create clusters that are as dissimilar from each other as possible while making the
data points within each cluster as similar as possible. The process begins by randomly
assigning K centroids, which serve as the initial center points for the clusters, as shown in
Figure 1b. Each data point in the dataset is then assigned to the cluster with the nearest
centroid based on a chosen distance metric, typically the Euclidean distance, as shown in
Figure 1c. This assignment step ensures that data points are allocated to the group that
is closest to them in terms of attribute similarity. After assigning all the data points to
clusters, the algorithm recalculates the centroids of each cluster by computing the mean
(arithmetic average) of all the data points within the cluster. This updating step adjusts the
centroids’ positions to reflect the clusters’ new center points based on the reassigned data
points, as shown in Figure 1d. The algorithm iterates between the assignment and update
steps until convergence is reached. Convergence is determined by assessing whether there
has been a substantial change in the centroids compared to the previous iteration. If the
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centroids remain largely unchanged, or if the maximum number of iterations is reached,
the algorithm terminates. To determine whether a data point belongs to a particular cluster,
the algorithm compares the distance between the data point and the centroid of that cluster.
Centroid of the cluster is shown by the red and black “x” for two groups in Figure 1b–d. If
the distance is less than a certain threshold, which is often represented by the within-cluster
sum of squares or a cost function, the data point is assigned to that cluster. Throughout the
iterations, the algorithm strives to minimize the cost function by adjusting the positions of
the centroids. This process leads to the formation of well-defined clusters that are distinct
from each other, with reduced variability within each cluster. The data points within each
cluster become more homogeneous or similar to each other in terms of their attributes.
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data points assigned to each cluster and repeat until convergence.

In K-means clustering, the hyper-parameter K is predetermined before the training
process begins. The letter “K” represents the number of clusters that the algorithm aims to
create. This value is typically determined based on prior knowledge or domain expertise.
The objective function in K-means clustering involves minimizing the total within-cluster
sum of squares, also known as inertia or distortion. The objective function can be mathe-
matically expressed as follows:

J =
k

∑
j=1

n

∑
i=1

∥∥∥X j
i − Cj

∥∥∥2
(1)

where J is the objective function, and k and n are the numbers of clusters and cases,
respectively. X is the case i, and C is the centroid for cluster j. The term in absolute value is
known as the distance function.

The number of clusters in the K-means method represent the moving centroids within
the data. The elbow method helps determine the optimal number of clusters by evaluating
the distortion or inertia for the different values of “K”. The elbow point shown in Figure 2,
where the distortion begins to reduce linearly, is chosen as the ideal number of clusters.
This method ensures a balance between capturing the right data structure and avoiding
overfitting.



Materials 2023, 16, 6301 6 of 12Materials 2023, 16, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 2. The elbow method being used to find the best K value for the K-means clustering in this 
paper. 

3. Results and Discussion 
The surface hardness of the composite samples was evaluated by conducting a 

scratch test, where the scratch load was gradually increased from 8 N to 15 N. The contin-
uous and highly reflective films did not exhibit noticeable micropores. The samples were 
divided into three groups based on their surface preparation. In general, the trend ob-
served in the graphs indicated that, as the scratch load remains constant, the hardness 
tends to decrease as the scratch width becomes wider. This implies that a wider scratch 
shows a low surface hardness. Moreover, the relationship between scratch width and ap-
plied scratch load is directly proportional, meaning that, as the applied load increases, the 
scratch width also increases. However, it is important to note that the increase in scratch 
width is non-linear, suggesting that the relationship between load and width may not be 
strictly linear. 

The process of quantifying the scratch width is depicted in Figure 3. In Figure 3b, the 
shaded area represents the region identified as the scratch. To accomplish this, an indi-
vidual performed the shading manually using basic image editing software, such as Mi-
crosoft Paint. Since the image is in grayscale, consisting of shades of black and white, a K-
means clustering algorithm was employed to separate the darker scratched area from the 
rest of the image. The K-means clustering algorithm is a technique used to partition data 
into distinct clusters based on their similarity. In this case, it was applied to the grayscale 
image to create two clusters: one representing black and one representing white. By ana-
lyzing the intensity values of the pixels in the image, the algorithm assigned each pixel to 
one of the two clusters based on its similarity to either black or white. 

After the K-means clustering was performed, the resulting clusters provided the co-
ordinates of the pixels within the image that belonged to the black cluster, which repre-
sented the scratched area. These coordinates were then utilized to identify the correspond-
ing region on the SEM height map, which provides three-dimensional information about 
the sample’s surface. Figure 3c illustrates the scratch area on the SEM height map. By us-
ing the coordinates obtained from the K-means clustering, the scratched region was pre-
cisely located and delineated by a boundary line. This enabled a visual representation of 
the boundaries of the scratch. Finally, in Figure 3d, a more detailed view of the scratch 
limits is depicted on the contour plot produced by the Phenom XL SEM 3D reconstruction 
software. The boundary line clearly indicates the extent and shape of the scratch, thereby 
providing a comprehensive understanding of the scratch width and its specific location 
on the sample’s surface. 

Figure 2. The elbow method being used to find the best K value for the K-means clustering in this
paper.

3. Results and Discussion

The surface hardness of the composite samples was evaluated by conducting a scratch
test, where the scratch load was gradually increased from 8 N to 15 N. The continuous and
highly reflective films did not exhibit noticeable micropores. The samples were divided
into three groups based on their surface preparation. In general, the trend observed in the
graphs indicated that, as the scratch load remains constant, the hardness tends to decrease
as the scratch width becomes wider. This implies that a wider scratch shows a low surface
hardness. Moreover, the relationship between scratch width and applied scratch load is
directly proportional, meaning that, as the applied load increases, the scratch width also
increases. However, it is important to note that the increase in scratch width is non-linear,
suggesting that the relationship between load and width may not be strictly linear.

The process of quantifying the scratch width is depicted in Figure 3. In Figure 3b,
the shaded area represents the region identified as the scratch. To accomplish this, an
individual performed the shading manually using basic image editing software, such as
Microsoft Paint. Since the image is in grayscale, consisting of shades of black and white, a
K-means clustering algorithm was employed to separate the darker scratched area from
the rest of the image. The K-means clustering algorithm is a technique used to partition
data into distinct clusters based on their similarity. In this case, it was applied to the
grayscale image to create two clusters: one representing black and one representing white.
By analyzing the intensity values of the pixels in the image, the algorithm assigned each
pixel to one of the two clusters based on its similarity to either black or white.

After the K-means clustering was performed, the resulting clusters provided the coor-
dinates of the pixels within the image that belonged to the black cluster, which represented
the scratched area. These coordinates were then utilized to identify the corresponding
region on the SEM height map, which provides three-dimensional information about the
sample’s surface. Figure 3c illustrates the scratch area on the SEM height map. By using
the coordinates obtained from the K-means clustering, the scratched region was precisely
located and delineated by a boundary line. This enabled a visual representation of the
boundaries of the scratch. Finally, in Figure 3d, a more detailed view of the scratch limits is
depicted on the contour plot produced by the Phenom XL SEM 3D reconstruction software.
The boundary line clearly indicates the extent and shape of the scratch, thereby provid-
ing a comprehensive understanding of the scratch width and its specific location on the
sample’s surface.
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Figure 3. SEM images of the Ni-plated composite surface. (a) Raw image obtained using a full
backscatter detector (BSD), (b) shaded section used to differentiate between scratches and Ni-plating,
(c) scratch mask coordinates obtained using K-means clustering of the shaded section in (b), and (d) a
contour map of the height map obtained from SEM with a scratch mask for quantifying scratch width.

Once the scratch width data were obtained, they were grouped according to the sur-
face cleaning preparations, as shown in Figure 4. The data were divided into three groups:
the first group consisted of samples that underwent chempolishing surface-cleaning prepa-
ration, the second group comprised samples that were prepared with organic cleaning, and
the third group included samples that were prepared with plasma cleaning. In Figure 4a,
the first group is depicted, which contains three samples that underwent chempolishing
surface preparation. The CP1 sample shows a scratch width in the ~80–~100 µm range as
the load increased from 8 to 12 N. Around 13 N, the scratch width varied, indicating the
appearance of more burrs along the scratch contour, thus causing significant jaggedness.
Further increase in the load brought the scratch width into the short range (Figure 4a). ML
scratch analysis was effective in observing an increase in the average scratch width for the
CP2 samples that were subjected to an increasing load (Figure 4a). The average scratch
width increased marginally from 60 to 80 µm as load increased 8 to 11N; after that, the
load scratch width fluctuated between ~60 to ~100 µm with a large standard deviation
that showed the change in material response from a smooth plastic transformation to more
burs along the scratch profile. Interestingly, for the 15 N load, a non-uniformity in scratch
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width was observed, similar to CP1 (Figure 4a). A similar trend was also observed for
CP3 as the scratch load increased from 8–15 N. However, for the CP3 sample, the starting
average scratch width was around 120 µm for 8 N. This study suggests that the nickel
plating hardness on the CP2 sample was around two times more than the plating hardness
of the CP3 sample (Figure 1a). By comparing CP1, CP2, and CP3 data, it becomes clear that
a significant and clear transition in failure mode occurs between the 12–14 N load range.

The effect of different plating parameters was also studied on the organically cleaned
sample (OC group) in Figure 4b. The OC1 sample showed a rather quick jump in average
scratch width from the average ~85 µm to the ~120 µm range; the OC1 scratch width
remained rather consistent for most of the load range. For the 15 N load, the scratch width
was quite non-uniform and appeared with a large variation (Figure 4b). Similarly, the OC2
sample followed the trend observed with OC1. However, the starting scratch width was
significantly lower than that observed on OC1. Interestingly, for OC3, the scratch width
increased gradually up to 11 N from the ~90 µm to ~120 µm range; after that, the scratch
width kept increasing. It appears that for the OC samples, the scratching mechanism was
altered in the early stage when compared to the CP samples.

In the case of plasma-treated samples (PC1–3), scratch widths were analyzed. The
PC1 sample showed an average scratch width in the ~70 to ~100 µm range as the load
increased from 8 to 14 N (Figure 4c). Interestingly, the scratch widths for the PC2 samples
increased linearly as the load increased from 8 to 15 N, and the smallest variation was
observed in this sample. For the PC3 sample, the scratch width roughly increased with
the load. This large variation was attributed to the chempolishing impact on surface
morphology because chempolishing can selectively etch one of the components of the
BJAM part, thus resulting in a rougher surface. The CP2 samples exhibited a lower average
scratch width when compared to CP1 and CP3. This meant that the CP2 samples that had
a medium phosphorous (P) nickel coating applied were harder. The CP3 samples showed a
significantly larger scratch width with high scattering. It is possible that the nickel coating
quality varied significantly when a high-P nickel coating was attempted. Moving on to
Figure 4b, the second group represents the three samples that underwent organic cleaning
preparation. It is noteworthy that, unlike chempolishing, the organic cleaning process
did not impact the BJAM sample surface. Due to better surface smoothness, there was, in
general, less scattering. Mid-P nickel coating produced a ~70 µm scratch width, which
was nearly 30% lower than the low- and high-phosphorous nickel coatings (Figure 4b).
On average, this group was the second hardest, with OC2 (the second organically cleaned
sample) showing a high surface hardness that was quite close to the PC2 (the second plasma
cleaning) sample. Figure 4c displays the third group, which comprises the samples that
underwent plasma cleaning preparation. Plasma cleaning isotopically cleaned the BJAM
sample to render a smoother surface. As a result, in general, there was less scattering in the
scratch width data. The PC2 samples showed a ~60 µm scratch width, which was clearly
more severe than the PC1 samples where low-P solutions were used for Ni coating. Notably,
PC2—which represents a combination of a mid-phosphorus level, a temperature 10 degrees
lower than the recommended value, and optimal time parameters—demonstrated the
highest hardness among all of the samples and had the smallest scratch width. Based
on these ML-enabled findings, it is recommended to utilize plasma and organic cleaning
methods when aiming for a harder surface. The plasma cleaning method, particularly
represented by PC2, resulted in the hardest surface, while the organic cleaning method,
particularly represented by OC2, showed a relatively high surface hardness comparable to
PC2. Therefore, for applications where a harder surface is desired, the utilization of plasma
and organic cleaning methods is recommended based on an analysis of the scratch width
and surface hardness data.
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4. Conclusions

The K-means unsupervised ML algorithm was employed to address the challenges
associated with optically obscure scratches on nickel-plated AM samples. In this context,
the samples were prepared using the L9 orthogonal array TDOE methodology. Due to
the nature of Ni-electroless plating, some of the samples exhibited a shiny appearance,
making them difficult to analyze accurately when using a digital light microscope. This
was primarily due to issues such as light saturation and reflection. To overcome this,
SEM was utilized to generate grayscale images and corresponding 3D height maps of the
scratched Ni-plating surfaces. Subsequently, the K-means ML clustering approach was
applied to visually detect the scratch areas within the SEM images. Through this approach,
it was observed that the TDOE methodology resulted in distinct levels of Ni-plating
hardness for each of the nine samples. Furthermore, as the scratch force increased, the
scratch widths exhibited a non-linear increase, thus highlighting the complex relationship
between applied force and scratch width. Our image analysis capabilities highlighted
that mid-P nickel coating produced harder coating when compared to low- and high-P
content-based nickel coatings. This study also showed that the chempolishing treatment
on BJAM produces a higher roughness that impacts the uniformity and quality of nickel
coatings. Our research suggests that surface preparation must be chosen with great care to
target the specific attributes of electroless nickel coatings, and microscopic high-resolution
SEM images should be considered for an adequate understanding of the morphologies
that evolve due to interacting parameters. A scratch width analysis with a Taguchi design
of experiment should be focused on specific properties. The CP2, PC2, and OC2 samples,
where the medium-phosphorous solution was used, appeared to yield harder coatings. Our
ML-enabled scratch width analysis was able to capture the differences in various factors
leading to the differences in scratch widths and deviations. The difference in standard
deviations at each load for each sample category was reflective of the difference in the
surface microstructure after different processing techniques and electroless nickel coatings
were applied. The K-means clustering approach utilized in this work was able to capture
the variation in load. The demonstrated methodology of combining SEM imaging, K-means
clustering, and scratch width quantification offered a practical solution in surface analysis
when faced with obstacles such as optically obscure scratches. In future work, different
clustering and ML approaches may be applied to analyze scratch widths.
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