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Abstract: The importance of amorphous and nanocrystalline Fe-based soft magnetic materials is
increasing annually. Thus, characterisation of the chemical compositions, alloying additives, and
crystal structures is significant for obtaining the appropriate functional properties. The purpose
of this work is to present comparative studies on the influence of Nb (1, 2, 3 at.%) and Mo (1, 2,
3 at.%) in Fe substitution on the thermal stability, crystal structure, and magnetic properties of a
rapidly quenched Fe79.4Co5Cu0.6B15 alloy. Additional heat treatments in a vacuum (260–640 ◦C)
were performed for all samples based on the crystallisation kinetics. Substantial improvement in
thermal stability was achieved with increasing Nb substitution, while this effect was less noticeable
for Mo-containing alloys. The heat treatment optimisation process showed that the least lossy states
(with a minimum value of coercivity below 10 A/m and high saturation induction up to 1.7 T) were
the intermediate state of the relaxed amorphous state and the nanocomposite state of nanocrystals
immersed in the amorphous matrix obtained by annealing in the temperature range of 340–360 ◦C
for 20 min. Only for the alloy with the highest thermal stability (Nb = 3%), the α-Fe(Co) nanograin
grows, without the co-participation of the hard magnetic Fe3B, in a relatively wide range of annealing
temperatures up to 460 ◦C, where the second local minimum in coercivity and core power losses
exists. For the remaining annealed alloys, due to lower thermal stability than the Nb = 3% alloy, the
Fe3B phase starts to crystallise at lower annealing temperatures, making an essential contribution to
magneto-crystalline anisotropy, thus the substantial increase in coercivity and induction saturation.
The air-annealing process tested on the studied alloys for optimal annealing conditions has potential
use for this type of material. Additionally, optimally annealed Mo-containing alloys are less lossy
materials than Nb-containing alloys in a frequency range up to 400 kHz and magnetic induction up
to 0.8 T.

Keywords: soft magnetic materials; materials characterisation; toroidal cores; crystal structure

1. Introduction

Although amorphous and nanocrystalline soft magnetic materials have been stud-
ied for many years, they are constantly being developed and underestimated. The (Fe,
Co)-based alloys have constituted an important group of soft magnetic materials where ap-
plications for high magnetic flux densities are required (data storage, pole tips for high-field
magnets, and transformers) [1,2]. Their magnetic properties are tailored by compositional
variation and structure induced by the annealing process [3,4]. The combination of superior
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soft magnetic properties, low power losses, and high saturation magnetisation has fueled
interest in Fe-based nanocrystalline materials. Today, Finemet alloys have excellent soft
magnetic properties [5], while Nanoperm alloys were developed to achieve high satura-
tion magnetisation [6]. Moreover, by introducing Co to Nanoperm, Hitperm alloys were
developed to increase the Curie temperature [7]. Many other studies have shown that a
small amount of Co-doping coupled with appropriate annealing is an effective method of
improving the saturation magnetisation of many Fe-based alloys [8–11]. Co leads to the
alignment of Fe moments, thus increasing the atomic magnetic moment of individual Fe
atoms [12]. Unfortunately, high Co addition deteriorates soft magnetic properties due to
its large magneto-crystalline anisotropy, which is in accordance with the Slater-Pauling
curves [13,14].

Cu is insoluble in Fe-based alloys and can refine the primary particles and promote the
uniformity of grain dispersion. In Fe-based alloys, during the annealing process, Cu atoms
agglomerate in clusters and act as nucleation sites for the α-Fe particles. The crystallisation
behaviour of Cu-free alloys is completely different from that of Cu-containing alloys.
Additionally, the appropriate amount of Cu addition can optimise and allow the highest
possible magnetic properties [15,16]. The co-presence of Nb and Cu can further refine the
microstructure. Nb promotes the Cu cluster’s nucleation on a much finer scale, impacts the
grain size, and hinders the growth of the α-Fe particles [17].

Additionally, 3% Nb is the maximum limit of effective grain refining [18]. For Si-
containing alloys, Mo and W are less effective than Nb in limiting grain growth [19]. Both
elements (Mo and Nb) are good grain growth inhibitors in Si-containing alloys [20,21].
Moreover, both elements provide improved GFA, thermal stability, and a shift to higher tem-
peratures at the beginning of the alpha-Fe phase crystallisation [22–24]. For this reason, they
are crucial to obtaining amorphous materials and enabling proper, controlled processing.
However, Mo and Nb are paramagnetic elements and magnetically affect the local atomic
environment around Fe. A larger addition of these elements may negatively affect the
magnetic properties of the alloy (e.g., saturation induction); hence, it is not recommended to
use < 5 at.% Mo or Nb for materials that require a high Bs value [25–27]. It is worth noting
that, currently, a large proportion of commercially available Fe-based metallic ribbons
contain the addition of Nb to obtain the appropriate structure and magnetic properties.

Zhu et al. reported the possibility of partial Nb replacement by Mo in Fe80(Nb1-xMox)B15
alloys, which improved the material’s thermal stability and magnetic properties. Similar
work was carried out by Ramasamy et al., comparing the effect of Mo and Nb addition
on Fe37.5Co37.5B20Si5 alloy in the form of rods, showing that at 4 at.% Mo addition, the
material has better soft magnetic properties and retains similar thermal stability as the
material with Nb addition. However, a further increase in Mo reduced the magnetic and
thermal properties [25]. Therefore, it is necessary to study the effect of minor additions of
Nb and Mo on the magnetic properties, thermal stability, and crystallisation kinetics of the
Si-free Fe-B metallic ribbons.

This work comparatively studies the influence of Nb and Mo additions on the B-rich
Fe79.4Co5Cu0.6B15 alloy. The effect of the increase in the amount of grain refining elements
(Nb and Mo) for Fe up to 3 at.% on magnetic properties, such as the B(H) relationship, core
losses, and complex magnetic permeability as a function of annealing temperature during
the conventional isothermal annealing process, is evaluated. For optimised heat-treated
conditions, the crystal structure is then verified by X-ray diffraction and transmission
electron microscopy. This information provides deeper insight into the impact of grain
refining on comprehensive magnetic properties.

2. Materials and Methods

The amorphous alloys with nominal composition Fe79.4-xCo5MxCu0.6B15, M = Nb, Mo,
x = 1, 2, 3 at.% in the form of a ribbon with a thickness of approximately 18–23 µm and a
width of 5–7 mm were obtained via the melt spinning technique on a 650 mm diameter Cu
wheel in an air atmosphere. The primary alloys were produced from pure chemical ele-
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ments (Fe (3N), Co (3N), and Cu (3N)) and FeNb65 (2.5N) and FeB18 (2.5N) alloys using the
induction furnace SecoWarwick VIM-LAB 50–60 (SecoWarwick S.A., Swiebodzin, Poland).
For the annealing process and subsequent magnetic measurements, the amorphous ribbon
was wound into toroidal cores with an inner diameter of ~20 mm and an outer diameter of
~30 mm. The toroidal cores were isothermally annealed for 20 min in a vacuum furnace
(10−3 mbar) at different temperatures (260–640 ◦C) to achieve the nanocrystalline state.
The structural properties of the as-spun and heat-treated ribbons were studied by X-ray
diffraction (XRD). XRD measurements were performed at room temperature using a Rigaku
MiniFlex 600 diffractometer (Rigaku Co., Tokyo, Japan) equipped with CuKα radiation
(λ = 0.1542 nm), Kβ Ni filter, and the D/teX Ultra-high-speed silicon strip detector. The
crystallisation processes were monitored using differential scanning calorimetry (DSC)
performed with a 10 ◦C/min heating rate using the thermal analyser Netzsch DSC 214
Polyma (NETZSCH, Houston, TX, USA). Transmission electron microscopy (TEM) images
in the bright-field (BF) mode and selected area diffraction patterns (SADPs) were recorded
for the selected annealed samples using the Tecnai G2 F20 (200 kV) electron microscope
(FEI, Hillsboro, OR, USA). The Remacomp C-1200 (MAGNET-PHYSIK Dr. Steingroever
GmbH) magnetic measurement system was used to determine hysteresis and magnetic
properties (saturation induction Bs, coercivity Hc, core power losses P10/50, i.e., in B = 1 T
and f = 50 Hz) of the annealed samples. Additionally, for samples annealed at optimum
conditions, the Ps parameter was measured in the frequency range f = 50 Hz–400 kHz
and the magnetic induction B = 0.1–0.8 T. For samples annealed at characteristic temper-
atures, the complex magnetic permeability at room temperature in the frequency range
f = 104–108 Hz was determined using the Agilent 4294A impedance analyser (Agilent,
Santa Clara, CA, USA).

3. Results and Discussion

The X-ray diffraction method verified the amorphousness of the quenched as-spun
ribbons; all recorded patterns possessed only diffused maxima characteristics for a fully
amorphous state. Figure 1a depicts the DSC curves of the as-spun alloys, showing that the
crystallisation of all ribbons proceeded in two stages: primary crystallisation of α-Fe(Co)
and secondary Fe-B phase crystallisation. The onset of the primary crystallisation peak
(Tx1) value and both crystallisation peaks (Tp1, Tp2) were marked in the figure, while
all crystallisation temperatures with the temperature interval (∆Tx = Tx2 − Tx1) were
gathered in Table 1. Nb and Mo for Fe substitution increased the primary crystallisation
temperature (Tx1) with substitution content. However, the temperature interval (∆Tx)
increased substantially for Nb-containing alloys. The effect of Mo substitution on ∆Tx was
lower than for Nb. This indicates that Nb substitution might enhance the thermal stability
of the alloy matrix, which is beneficial for crystallisation heat treatment.

Table 1. Characteristic crystallisation temperatures: Tp1, Tp2, Tx1, Tx2, ∆Tx.

Composition Tx1 [◦C] Tp1 [◦C] Tx2 [◦C] Tp2 [◦C] ∆Tx = Tx2 − Tx1 [◦C]

Fe78.4Co5Nb1Cu0.6B15 398.4 411 513 520.7 114.6
Fe77.4Co5Nb2Cu0.6B15 417.4 428.6 546.4 554.2 129
Fe76.4Co5Nb3Cu0.6B15 426.9 438.2 581.6 589.7 154.7
Fe78.4Co5Mo1Cu0.6B15 409.5 421.4 500.3 508.5 90.8
Fe77.4Co5Mo2Cu0.6B15 416.6 427 521 528.6 104.4
Fe76.4Co5Mo3Cu0.6B15 425.3 435.2 525.5 534.8 100.2
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Figure 1. (a) DSC signals for as-spun alloys. (b) Kissinger plots with calculated activation energy for
as-spun alloys.

The kinetics of α-Fe type phase crystallisation (primary crystallisation peak) were
studied using the DSC method by performing measurements with heating rates ranging
from 10 to 50 ◦C/min. The Kissinger model [28] was used to determine the average
activation energies for such a non-isothermal crystallisation process. This method is based
on Equation (1):
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where φ is the heating rate, Tp is the temperature of the crystallisation peak, Ea is the
activation energy, R is the gas constant, and A0 is the pre-exponential factor. By linear
fitting of ln

(
φ/T2

p

)
vs. 1/Tp curves, the average activation energy Ea of the process was

determined from the slopes of these curves. The Kissinger plots and calculated Ea values are
presented in Figure 1b. The Ea values correlated positively with Tx1 for the Mo-containing
ribbons, where Ea increased with Tx1 from 219.8 kJ/mol for Mo = 1% up to 236.3 kJ/mol for
Mo = 3%. There was some peculiar behaviour for the Nb-containing alloys, where ribbons
with Nb = 2% and Nb = 3% Ea values were similar (Ea = 231 kJ/mol), while there were no
changes in the Tx1 increase. Calculated Ea values, as an extension of the values obtained for
Fe85B15 (199.1 kJ/mol) and Fe84.6Cu0.6B15 (223.4 kJ/mol) alloys, fit into the obtained trend
of values [29].

The saturation induction Bs (Figure 2), coercivity Hc (Figure 3), and core power losses
P10/50 (Figure 4) of Nb- and Mo-containing alloys were assessed after annealing for 20 min
at varying annealing temperatures (Ta). For as-quenched alloys, saturation induction
decreased from 1.4 T to 1.3 T with Nb content, which can be attributed to the weaker
ferromagnetic exchange coupling. Mo-containing alloys did not exhibit such an effect, and
Bs was equal to 1.35 T for all studied samples. The Bs values of all alloys (except an Nb = 3%
alloy) increased with increasing Ta, with noticeable fluctuations in the 350–420 ◦C tempera-
ture range. The maximum value of induction saturation for all samples was detected for
annealed alloys with a Ta over 400 ◦C. The maximum induction saturation value reached
~1.7 T for Nb = 1% alloy and ~1.6 T for Nb = 2% and Nb = 3% alloys. However, the Nb = 3%
alloy had a significant drop in Bs values for Ta > 500 ◦C, usually as a deterioration effect.
For Mo-containing alloys, a rather flat plateau occurred in Bs(Ta > 420 ◦C) dependence,
and Bs decreased with Mo content from ~1.64 T for Mo = 1% to ~1.56 T for Mo = 2% and
~1.53 T for Mo = 3%. This Bs(Ta) behaviour is completely different from previously studied
Fe85B15 and Fe84.6Cu0.6B15 alloys, where the saturation induction deteriorated substantially
just over the temperature value of optimal annealing (at 330 ◦C) [29]. Herein, for Nb and
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Mo-containing alloys, such a high induction region was broadened to 600 ◦C. Regarding
Hc(Ta) and P10/50(Ta) (Figures 3 and 4, respectively) dependences, a large increase in both
values (log scale) was observed in the same Ta region (350–420 ◦C) where Bs values fluctu-
ated. Additionally, for the Nb = 3% alloy, a strong “double-minima shape” dependence
was identified, while for other alloys, this dependence shape was rather weak (in log-scale)
or unidentified, like for Mo = 1% and Mo = 2% alloys. The global minimum of the Hc and
P10/50 values were identified for Ta = 340 ◦C (for Nb = 1%, Nb = 2%, and Mo = 1% alloys)
and Ta = 360 ◦C (for the remaining alloys). The least lossy alloy content was obtained
for 3% Nb or Mo with P10/50 = 0.15 W/kg and P10/50 = 0.14 W/kg, respectively. For the
Nb = 3% alloy second-local minimum in Hc(Ta) and P10/50(Ta), dependencies existed for
Ta = 460 ◦C. However, Hc and P10/50 were approximately ten times greater. By comparing
with the previously studied Fe85B15 and Fe84.6Cu0.6B15 alloys, the Nb- and Mo- addition
extended the relatively narrow thermal stability window of the optimal annealing process;
however, the Hc(Ta) and Ps(Ta) first minima had similar values and shapes as the minima
for Fe85B15 and Fe84.6Cu0.6B15 alloys [29]. For optimal annealing conditions defined by Ta
with a global minimum P10/50 value, an additional test for the air-annealing process was
performed. As shown in Figures 2–4, results presented for magnetic properties confirmed
that all study materials were sufficiently resistant to oxygen content during annealing in the
temperature range of 340–360 ◦C for 20 min. This seems to be a cheaper, less demanding
alternative manufacturing process option that may be used on an industrial scale.
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Figure 5 shows the µ’ of the alloy complex permeability at two different stages: in
optimal annealing conditions at Ta = 340 ◦C and Ta = 360 ◦C in a vacuum and air (Figure 5a)
and for annealing close to the second-local minimum of P10/50(Ta) dependence at 460
and 500 ◦C in a vacuum (Figure 5b). Figure 5a shows that vacuum-annealed Mo and Nb
samples influence µ’, increasing from 631 for Nb = 1% alloy to 1746 for Nb = 3% alloy and
from 907 for Mo = 1% alloy to 2543 for Mo = 3% alloy. For air-annealed samples, similar
increases in µ’ were observed for Nb, while the Mo content effect was similar with small
differences in values. The magnetic permeability of vacuum-annealed alloys at higher
temperatures (Figure 5b) shows a significant drop in values up to µ’ = 100–300 for all
samples. Similar effects have previously been observed for Fe85B15 and Fe84.6Cu0.6B15
alloys [29]. Additionally, the abrupt change in the µ’ slopes shifts into lower frequency
values for Nb-containing alloys. These frequencies are identified from maximum µ’ values,
designated as the cut-off frequency (fcut-off), and strongly depend on the crystal structure
(grain size and phase content). The µ’ values, together with the rest of the magnetic
parameter values, are presented in Table 2. For the interpretation of all the magnetic
property fluctuations, it is necessary to verify the crystal structure at both states: optimal
annealing temperature (340–360 ◦C) and second-local minimum (460–500 ◦C).
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Table 2. Magnetic properties for selected heat-treated samples (vac—vacuum-annealing, air—air-
annealing).

Composition Ta [◦C] Bs [T] Hc [A/m] P10/50[W/kg] µ’ fcut-off [kHz]

Fe78.4Co5Nb1Cu0.6B15 340 vac 1.62 16.7 0.25 631 1472
340 air 1.63 15.6 0.26 678 1394
500 vac 1.7 437 6.7 287 78

Fe77.4Co5Nb2Cu0.6B15 340 vac 1.53 11.5 0.18 1165 1022
340 air 1.53 11.4 0.18 932 1472
500 vac 1.62 675 11 150 45

Fe76.4Co5Nb3Cu0.6B15 360 vac 1.43 9.9 0.15 1746 791
360 air 1.43 10.5 0.17 1614 791
460 vac 1.6 126 1.7 291 3951

Fe78.4Co5Mo1Cu0.6B15 340 vac 1.6 13.4 0.18 907 1182
340 air 1.58 14.2 0.2 1306 867
460 vac 1.64 615 11 187 3351

Fe77.4Co5Mo2Cu0.6B15 360 vac 1.51 10.5 0.15 2416 519
360 air 1.5 11 0.17 1904 483
460 vac 1.56 801 14 159 3950

Fe76.4Co5Mo3Cu0.6B15 360 vac 1.47 9.3 0.14 2543 529
360 air 1.45 10.1 0.15 2681 483
460 vac 1.53 989 16 119 8993

From inspection of the XRD patterns for the optimal annealing temperature (Figure 6a),
the initial state of the α-Fe(Co) phase crystallisation with the dominant contribution of the
amorphous state as an amorphous diffraction halo. Only a small diffraction peak emerging
from the first-order amorphous halo at 2 Theta = 43–45 deg is seen. The crystal structure
of annealed alloys at higher temperatures (Figure 6b) shows an almost fully crystalline
two-phase (α-Fe(Co) + Fe3B) system structure for all alloys except the Nb = 3% alloy, where
only the α-Fe(Co) phase exists as a dominant contribution with a small amount of amor-
phous diffused content. A bright-field (BF) image and selected area electron diffraction
(SAED) pattern are shown in Figure 7. It can be seen from the BF TEM image that nanoscale
grains precipitate randomly, and the residual amorphous matrix is the minority component.
Statistical analysis and careful grain size determination using the Gatan Digital Microscopy
suite helped to determine the average nanograin size of ~50 nm. The SAED pattern in-
dicated that only the α-Fe(Co) phase existed with randomly oriented nanocrystals. TEM
observations agree with the XRD results presented in Figure 6. Based on structural studies
and thermal analysis, we can interpret the origin of the changes in magnetic properties.
The α-Fe(Co) phase is identified here as the soft magnetic phase, while the Fe3B phase
belongs to the hard magnetic counterpart [30,31]. During the annealing process in the
temperature range of 340–380 ◦C, the atoms rearrange locally in a short-range order and
form clusters immersed in the amorphous matrix. The coupling of these clusters leads
to magnetocrystalline anisotropy. With increased annealing temperature, the mean grain
size decreases, and only for the Nb = 3% alloy, the crystallisation products remain the
same up to 460–500 ◦C. The ferromagnetic exchange between the α-Fe(Co) nanocrystals
is enhanced, as seen in the increasing value of saturation induction in Figure 2. A further
increase in the annealing temperature causes further grain coarsening, hard magnetic Fe3B
phase precipitation, and a strong drop in the Bs(Ta) dependence. This effect of stably
coarsening the α-Fe(Co) phase is only possible thanks to the high thermal stability ∆Tx of
155 ◦C shown in the DSC studies. For all other alloys with lower thermal stability, the hard
magnetic Fe3B phase co-precipitates with α-Fe(Co), blocking the stable α-Fe(Co) coarsening.
According to the random anisotropy model proposed by Herzer [32], the Hc is proportional
to the fourth power of magneto-crystalline anisotropy. As previously reported, this value
for the Fe3B phase is equal to 430 kJ/m3 and is substantially larger than for the α-Fe(Co)
phase [33]. High-induction soft magnetic materials are especially used in high-frequency
applications where the core power losses of the materials are significant. Thus, for samples
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annealed at optimum conditions, the Ps parameters were measured in the frequency range
f = 50 Hz–400 kHz and the magnetic induction B = 0.1–0.8 T. Table 3 presents results for four
different f and B measurement combinations: 50 Hz/0.8 T, 50 kHz/0.8 T, 100 kHz/0.4 T,
and 400 kHz/0.1 T. The core power losses decrease with increasing Mo and Nb content.
Moreover, the Mo-containing alloys are ~20% less lossy than the Nb-containing ones, which
agrees with the change tendency of the coercivity values.
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Table 3. Core losses Ps measured at selected f and B.

Composition Ta [◦C] 50 Hz/0.8 T [W/kg] 50 kHz/0.8 T [W/kg] 100 kHz/0.4 T [W/kg] 400 kHz/0.1 T [W/kg]

Fe78.4Co5Nb1Cu0.6B15 340 vac 0.0025 15 13 7.3
Fe77.4Co5Nb2Cu0.6B15 340 vac 0.0018 13 11 6.6
Fe76.4Co5Nb3Cu0.6B15 360 vac 0.0015 11 8.8 4.7
Fe78.4Co5Mo1Cu0.6B15 340 vac 0.0018 12 10 5.5
Fe77.4Co5Mo2Cu0.6B15 360 vac 0.0014 9.1 7.6 5.0
Fe76.4Co5Mo3Cu0.6B15 360 vac 0.0012 7.4 5.9 3.6

4. Conclusions

In this work, comparative studies on the influence of Nb (1, 2, 3 at.%) and Mo (1, 2, 3
at.%) for Fe substitution on the thermal stability, crystal structure, and magnetic properties
of a rapidly quenched Fe79.4Co5Cu0.6B15 alloy were performed. The research results can be
summarised as follows:

• Successive Nb substitution enhances thermal stability more efficiently than Mo, which
is beneficial for crystallisation heat treatment.

• The 20-min vacuum-annealing process was optimised for a wide temperature range
from 260 to 640 ◦C. For the Nb = 3% alloy, the highest thermal stability favours the
precipitation of only α-Fe(Co) nanograins in the amorphous matrix at a broadened
annealing temperature range of up to 460 ◦C. Hc(Ta) and P10/50(Ta) dependences
correlate strongly with crystal structure evolution. For example, the α-Fe(Co) grain
growth and Fe3B phase precipitation significantly increase the magneto-crystalline
anisotropy, leading to an increase in the Hc value. A double minimum of Hc(Ta)
dependence exists with different α-Fe(Co) nanograin contents. The first minimum
is related to a relaxed amorphous state, while the second is related to a relaxed α-
Fe(Co)/amorphous nanocomposite.

• For all alloys except Nb = 3%, the limited thermal stability of <150 ◦C does not only
allow for α-Fe(Co) nanograins to precipitate at higher temperatures. Rather, the fast
co-precipitation of the hard magnetic Fe3B phase also substantially increases magnetic
saturation while stabilising Hc and P10/50.

• Optimally vacuum-annealed alloys (when the P10/50 is at a minimum) exhibit excellent
magnetic properties with high saturation induction up to 1.7 T and low coercivity
below 10 A/m. Optimally vacuum-annealed Mo-containing alloys are 20% less lossy
than Nb-containing alloys in the whole B (up to 0.8 T) and f (up to 400 kHz) ranges.

• The air-annealing process may be an alternative and effective heat treatment process for
use on an industrial scale. There are no significant differences in magnetic properties
between the vacuum- and air-annealed materials under optimal annealing conditions.
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