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Abstract: The FeNiCrAlCoCuTi alloy system has great advantages in mechanical properties such
as high hardness and toughness. It has high performance potential and research value and the
key in research is designing alloy compositions with target properties. The traditional method,
experimental analysis, is highly inefficient to properly exploit the intrinsic relationship between
material characteristics and properties for multi-component alloys, especially in investigating the
whole composition space. In this work, we present a research way that uses first principles calculation
to obtain the properties of multi-component alloys and uses machine learning to accelerate the
research. The FeNiCrAlCoCuTi alloy system with its elastic properties is used as an example to
demonstrate this process. We specifically design models for each output, all of which have RMSE
values of less than 1.1, and confirm their effectiveness through experimental data in the literature,
showing that the relative error is below 5%. Additionally, we perform an interpretable analysis on
the models, exposing the underlying relationship between input features and output. By means of
spatial transformation, we achieve the prediction of the full-component spatial performance from
binary to multiple components. Taking the FeNiCrAlM (M = Co, Cu, Ti) quinary alloy system as
an example, we design a single-phase BCC structure composed of an Fe0.23Cr0.23Al0.23Ni0.03Cu0.28

alloy with a Young’s modulus of 273.10 GPa, as well as a single-phase BCC structure composed of
an Fe0.01Cr0.01Al0.01Ni0.44Co0.53 alloy with a shear modulus of 103.6 GPa. Through this research
way, we use machine learning to accelerate the calculation, which greatly shortens research time and
costs. This work overcomes the drawbacks of traditional experiments and directly obtains element
compositions and composition intervals with excellent performance.

Keywords: multi-component alloy; first principles calculation; machine learning; elastic property

1. Introduction

The conventional compositional design strategy of alloys always begins with only
one or two principal elements and followed by the additional elements [1]. Recently,
multi-component alloys (MCAs) and high entropy alloys (HEAs) [2,3] were introduced
with mixed multiple elements in equimolar or near-equimolar compositions, as a novel
type of alloy design approach. In the dilemma of limited material types, multi-component
alloys have gradually become a research hotspot. The increase in the variety of elements
and the expansion of the composition range have led to a rapid increase in the potential
variety and performance of multi-component alloys. Benefitting from their unique features
including a high entropy effect, a severe lattice distortion effect, a hysteretic diffusion
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effect and a cocktail effect [4,5], as well as their unusual properties, such as outstanding
mechanical properties [6–9], a high hardness and wear resistance [10,11] and an exceptional
high-temperature strength [12,13], they receive intensive attention. So far, MCAs provide
opportunities for material researchers to design new materials with desired properties,
based on the wide compositional space in which MCAs can be formed [14]. The increasing
number of MCAs also expands the potential candidates for next-generation materials in a
wide range of fields than traditional alloys. The FeNiCrAlCoCuTi alloy system, a typical
multi-element alloy system, has great advantages in mechanical properties [15–17]. It has a
high performance potential and research value and the key in research is designing alloy
compositions with target properties.

Changing the composition and range of elements to achieve better performance is
a common approach in the study of multi-component alloys. Heretofore, the traditional
development process of new materials still adopts the trial-and-error method, and the
experimental steps are cumbersome. It takes 15–25 years or even longer cycles from research
and development to application. The long cycle and high cost limitations make it difficult
to accelerate the development of materials [18]. In addition, more and more techniques are
used for material characterization, and the corresponding data volumes and dimensions
are becoming more and more complex. Traditional methods of experimental analysis
that rely on manual methods sometimes fail to properly exploit the intrinsic relationship
between material characteristics and properties [19]. At the same time, investigating this
large compositional space of alloy designs using the conventional trial-and-error method
is highly inefficient. As an alternative, the rise of computational simulation has become
a powerful tool for discovering new materials. High-precision calculation methods such
as the DFT-based first principles calculation [20], the Monte Carlo simulation [21], the
molecular dynamics simulation [22], the phase field method [23] and the finite element
analysis [24] are widely used in new materials discovery. Especially for the first principles
calculation, material researchers have previously used this approach to predict the phase
stability of alloys or to analyze the strengthening mechanism of alloys [25–31]. However,
it is often applied only to specific systems; the computation of complex systems and the
development of theoretical methods that do not meet the requirements for quantitative
characterization of material properties is unaffordable [32]. Therefore, those who design
MCAs need an approach that will allow them to quickly and efficiently search for an MCA
with desired properties. It is necessary to introduce new methods into the research line to
accelerate the calculations.

Machine learning (ML), a data-driven approach, has been employed to predict the
mechanical properties, such as yield strength, hardness, elastic modulus and critical re-
solved shear stress of MCAs as well as several other alloys [33–36]. Furthermore, material
researchers have found that this can overcome the limitations of the above-mentioned
approaches [37–39]. The aforementioned studies successfully predicted properties using
ML, but most of them did not design alloys or conduct experimental verifications of the
designed alloys. ML balances the computing cost and calculation accuracy well in the
development of novel materials. The advance in applying ML to first principles calculation
provides new opportunities for balancing calculating accuracy and cost [40–42]. This is be-
cause the ML workflow bypasses the computationally costly step of solving the Schrödinger
equation [43]. Compared with solving the Schrödinger equation, the computational speed
of the ML process is faster by several orders of magnitude.

In this work, we present a material research way that uses first principles calculation
to obtain structure and properties of multi-component alloys and uses machine learning to
accelerate the process, as shown in Figure 1. The FeNiCrAlCoCuTi alloy system with its
structure and elastic properties is used as an example to demonstrate this process. Using this
research way, we systematically study the relationship between the composition, structure
and properties. The typical research way consists of three necessary steps. First, first
principles calculation is used to obtain the system energy, cell volume, Young’s modulus
(E), bulk modulus (B) and shear modulus (G) of the unit and binary system in the MCA,
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resulting in a total of five properties as ML outputs. Then we use feature engineering
to simplify the inputs in order to simplify the models, from which the composition is
transformed into descriptors including phase parameters and mechanical parameters.
Special descriptors are designed for each output by calculating the mean squared error and
the importance, which are then used as inputs for ML models. Thus, the construction of
composition–structure and composition–property datasets are completed. Second, three
algorithms are selected to train ML models, and the best model is determined through the
mean squared error, relative error and regression figure of the model, which ensures the
accuracy of the first principles calculation under the condition of saving calculation cost.
Subsequently, we perform an interpretability analysis on the models, intuitively reflecting
the contribution of each input feature to the outputs. The models specially designed for
each output show good prediction effects. This point is verified through validation via
comparing experimental data in other studies and our predicted results. Third, through
spatial transformation, we realize the prediction of the steady-state structure and elastic
properties of the full component space from the binary system to the multivariate system.
We also directly obtain the composition corresponding to the best performance. Taking the
FeNiCrAlM (M = Co, Cu, Ti) quinary alloy system as an example, we design single-phase
alloys with higher moduli.
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Figure 1. A research way of first principles calculation and machine learning for steady-state structure
and property prediction of multi-component alloys based on their composition.

Our material research way overcomes the drawbacks of traditional experiments and
simulation calculations, to quickly and effectively search for multi-component alloys with
the required properties, and directly obtain element compositions and composition in-
tervals with excellent performance. When designing new materials, the characteristics
and advantages of multiple alloys can be better utilized, and new materials with better or
similar mechanical properties can be designed in less time. This gives effective guidance
for performance prediction and composition. It can also accelerate the design process of
new MCAs.

2. Modeling and Dataset
2.1. First Principles Calculations

Machine learning was carried out on a dataset consisting of input and output parts,
and involved four main steps: (I) data collection and preprocessing, (II) feature engineering,
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(III) model selection and training and (IV) model evaluation and optimization. Data can be
collected from the published literature or reference books, obtained from simulations and
calculations, obtained in laboratory experiments through high-throughput experimental
techniques, citing data from high-quality databases, or a combination of the above methods.
In materials science, BCC, FCC and HCP have a common tetrahedral unit which contains
information about the atomic positions and interactions. Modeling the disordered phase
structure of high-entropy alloys poses a significant challenge. But when focusing on several
atoms at the cluster scale, they exhibit similar characteristics of tetrahedral units which
results in common structures and properties. In the case of the increase in the number
and type of atoms in a material system, the prediction of the structure and properties of
the multi-component material become possible because of the interaction between various
atoms and the corresponding tetrahedral structural units divided in the multi-component
system. Thus, we used first principles calculation to obtain the system energy, cell volume,
Young’s modulus, bulk modulus and shear modulus of the unit and binary system as the
outputs of the machine learning models. Thereunto, the system energy and cell volume
were used to set the composition–structure dataset, while the Young’s modulus, bulk
modulus and shear modulus were used to set the composition–property dataset. It is
hoped that these data can be used to achieve a leap towards a multi-component system.
It is worth noting that first principles calculations provide the intrinsic structure and
properties of alloys without considering the influence of temperature.

A total of 21 different unit cell models were established for three different structures,
which are BCC, FCC and HCP. In the case of binary systems, 336 models were created with
different compositions and structures, including perfect A2B2, A1B3 and defective A1B2
structures. In order to reduce the computational time, the model size should be simplified
as much as possible. Shell scripts were also used in the calculation process to replace the
corresponding elements of the A and B positions, to create batches of crystal structures
of binary systems and to submit tasks, from which we achieved high-throughput first
principles calculations.

We initiated calculations from the binary phase of the FeNiCrAlCoTiCu system and
employed vacancy construction unit systems to design composition gradients with an
interval of 0.25. Considering the significant influence of the phase composition on the
material properties, calculations were performed for three types of phase structures: BCC,
FCC and HCP. Consequently, a total of 336 sets of structural property data and 152 sets
of elastic property data were obtained, and their distributions are shown on the right
side of Figure 2.
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Figure 2 shows that five output values are evenly distributed in the graph as the types
and structures of the elements vary. Therefore, it is necessary to organize and analyze the
data systematically. We came to the following conclusions. In the cell system, the variation
in the energy of the monatomic unit with the change in atomic species exhibits a similar
trend in the three structures of BCC, FCC and HCP. There are two peaks, located at the
positions of the elements Cr and Ti, respectively. The pure elements Fe and Cr exhibit
the most stable BCC structure, while Ni, Al and Cu have the most stable FCC structure.
Co and Ti exhibit the most stable HCP structure, which is consistent with the actual situation.
In a binary system, the system energy is primarily concentrated in the range of 5–10 eV
and exhibits the same changing trend with variations in the atomic species of element B.
It is also found that positions A and B possess certain equivalences. When element A is
Fe or Cr, the system has a lower energy, and phases containing these two elements are
relatively easier to form. When element A is Al, Cu or Ni, the system has a slightly higher
energy, and the formation of phases containing these three elements requires more external
energy input. The energy of the BCC and FCC structures is generally lower than that of
HCP, making these system structures relatively more stable.

The overall trend of the cell volume change in the elemental crystal cells is relatively
consistent, with peaks observed in Al and Ti. In binary systems, the trends of the crystal
cell volume for the A1B1, A1B2 and A1 components are consistent with the trends observed
in the single component system, showing an increase when the B element is Al or Ti, with
A1B1 and A1 showing a more significant increase. Among these components, Al exhibits
a much higher increase compared to the others, while A1B3 and A2B2 show relatively
small overall changes. In the HCP structure, A1B1 exhibits a significant decrease when the
substitution elements at positions A and B are the same.

In the elastic constants of unit cell systems, BCC Al, Ni and Ti; FCC Fe and Cr; and
HCP Cr have negative values for their Young’s moduli and shear moduli, indicating
unstable structures. The changes in the trends of the Young’s moduli and shear moduli are
basically consistent. When calculating binary elastic constants, the influence of different
initial magnetic moments set by spin polarization on the calculation results is significant,
mainly based on the bonding situation. The trends in the Young’s moduli and shear moduli
for the three different structured components are consistent.

The first principles calculations were performed with the Vienna Ab-initio Simulation
Package (VASP). The generalized gradient approximation (GGA) was employed in all
calculations. The pseudopotential method using ultra-soft pseudopotentials in the plane
wave basis set was employed to describe the interaction between ions and electrons. A
plane wave basis with a cut-off energy of 500 eV and 9 × 9 × 9 k-sampling in the Brillouin
zone were used for all calculations. The electronic convergence accuracy was 10−8 eV.
The first principles calculation strategy we adopted starts from the elemental composition
and structure of multi-component alloy systems with generality and high throughput
characteristics, making it suitable for various types of multi-component alloys. Through
the aforementioned process, we successfully completed the data acquisition for the outputs
of the composition–structure and the composition–property datasets.

2.2. Feature Engineering

Although we aim to study the relationship between composition, structure and properties
in multi-component alloys, the composition cannot serve as a direct input for machine learning
models. The immense compositional space will inevitably increase the complexity of the
machine learning model and decrease its accuracy. Selecting appropriate descriptors related
to the composition can effectively solve this problem. To reduce the complexity of the
model, the number of descriptors can be limited to a certain value without compromising the
performance of the model [44]. In fact, some reports claim that the model degrades the results
when there are too many variables because the redundant feature variables interfere with the
ML model [45]. Thus, it is essential to down-select the most significant and relevant features
to construct ML models. We selected a series of descriptors including phase parameters and
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mechanical parameters from the literature, as listed in Supplementary Tables S1 and S2. In
addition to the parameters listed in Supplementary Table S1, the phase formation parameter
was also included. We collected values for the atomic radius, valence electron density and
melting point for lattice parameters and elastic constants calculated through first principles
calculations for binary systems of seven elements in diverse alloy systems. We then used the
formulas listed in Supplementary Tables S1 and S2 to calculate the values of all descriptor
parameters for each binary system. Partial least squares regression (PLS) was used to calculate
the effect of the number of features on the models’ mean square error (MSE), as shown in
Figure 3a,b. The MSE calculation method was specified as a resubstitution, with a Monte
Carlo repetition of 1 in the cross-validation. And a 10 folds cross-validation was used to
analyze the above features.

Materials 2023, 16, x FOR PEER REVIEW 6 of 17 
 

 

zone were used for all calculations. The electronic convergence accuracy was 10−8 eV. The 
first principles calculation strategy we adopted starts from the elemental composition and 
structure of multi-component alloy systems with generality and high throughput charac-
teristics, making it suitable for various types of multi-component alloys. Through the 
aforementioned process, we successfully completed the data acquisition for the outputs 
of the composition–structure and the composition–property datasets. 

2.2. Feature Engineering 
Although we aim to study the relationship between composition, structure and prop-

erties in multi-component alloys, the composition cannot serve as a direct input for ma-
chine learning models. The immense compositional space will inevitably increase the 
complexity of the machine learning model and decrease its accuracy. Selecting appropri-
ate descriptors related to the composition can effectively solve this problem. To reduce the 
complexity of the model, the number of descriptors can be limited to a certain value with-
out compromising the performance of the model [44]. In fact, some reports claim that the 
model degrades the results when there are too many variables because the redundant fea-
ture variables interfere with the ML model [45]. Thus, it is essential to down-select the 
most significant and relevant features to construct ML models. We selected a series of de-
scriptors including phase parameters and mechanical parameters from the literature, as 
listed in Supplementary Tables S1 and S2. In addition to the parameters listed in Supple-
mentary Table S1, the phase formation parameter was also included. We collected values 
for the atomic radius, valence electron density and melting point for lattice parameters 
and elastic constants calculated through first principles calculations for binary systems of 
seven elements in diverse alloy systems. We then used the formulas listed in Supplemen-
tary Tables S1 and S2 to calculate the values of all descriptor parameters for each binary 
system. Partial least squares regression (PLS) was used to calculate the effect of the num-
ber of features on the models’ mean square error (MSE), as shown in Figure 3a,b. The MSE 
calculation method was specified as a resubstitution, with a Monte Carlo repetition of 1 in 
the cross-validation. And a 10 folds cross-validation was used to analyze the above fea-
tures. 

 

Materials 2023, 16, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 3. The mean square error of (a) system energy, cell volume and (b) Young’s modulus, bulk 
modulus and shear modulus calculated as a function of the number of input features; the im-
portance of each feature for predicting (c) structure and (d) elastic property outputs. 

In Figure 3a, the MSE of the system energy and cell volume decreases rapidly with 
an increasing number of inputs, followed by a slower decrease. The MSE of the cell vol-
ume further reduces significantly when the number of inputs reaches 15–20, and then sta-
bilizes for a period before increasing again. In Figure 3b, the MSE of the modulus E de-
creases initially and then slightly increases with an increasing number of inputs, while 
remaining at a relatively high level. The moduli B and G on the other hand, show little 
variation with the number of inputs. Taking into consideration the impact of the number 
of inputs on the MSE of all outputs and the risk of overfitting associated with excessive 
inputs, we ultimately selected six as the number of input features for the subsequent 
model training. 

After analyzing and determining the optimal number of inputs, further consideration 
is given to selecting which six descriptors can achieve the highest accuracy of the model. 
In this work, we calculated the importance of thirty features in predicting the system en-
ergy, cell volume and elastic properties. Feature importance is determined by assigning a 
value to input features based on how relevant they are in predicting a target property [44], 
which is shown in Figure 3c,d. Regarding the energy of the system, the most prominent 
features are the phase formation, δ, ΔHmix, χ, VEC and ΔSmix, all of which relate to phase 
parameters. This is consistent with the pattern formed as described in reference [46]. Re-
garding the cell volume, the top six features in order are the phase formation, δ, am, Ec, E 
and F, with two of them being phase parameters. Among the elastic constants, the im-
portance of the bulk modulus stands out compared to the others. Therefore, the bulk mod-
ulus was given priority in the sorting. The upper right corner of Figure 3d shows an en-
larged view of the importance scores of the Young’s modulus and shear modulus. For the 
bulk modulus, the top-ranked features are the phase formation, δ, ΔHmix, χ, VEC and ΔSmix, 
all of which are phase parameters. Regarding the Young’s modulus, it primarily depends 
on the phase formation, χ, am, a, A and D.G., whereby two of these are phase parameters. 
In regards to the shear modulus, the main factors include the phase formation, D.χ, am, a, 
G and D.G, wherein two of these are phase parameters. 

We performed data sorting on each output without the phase formation for further 
analysis, as shown in Figure 4a. It is evident that the feature values of each feature are 
controlled within a certain range, which effectively ensures the accuracy of the machine 
learning models. In order to simplify the calculations, we further merged identical fea-
tures to construct the composition–structure and composition–property datasets. 
Through the aforementioned feature engineering, we simplified the input and in turn sim-
plified the model. 
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of each feature for predicting (c) structure and (d) elastic property outputs.

In Figure 3a, the MSE of the system energy and cell volume decreases rapidly with an
increasing number of inputs, followed by a slower decrease. The MSE of the cell volume
further reduces significantly when the number of inputs reaches 15–20, and then stabilizes
for a period before increasing again. In Figure 3b, the MSE of the modulus E decreases
initially and then slightly increases with an increasing number of inputs, while remaining
at a relatively high level. The moduli B and G on the other hand, show little variation
with the number of inputs. Taking into consideration the impact of the number of inputs
on the MSE of all outputs and the risk of overfitting associated with excessive inputs, we
ultimately selected six as the number of input features for the subsequent model training.
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After analyzing and determining the optimal number of inputs, further consideration
is given to selecting which six descriptors can achieve the highest accuracy of the model. In
this work, we calculated the importance of thirty features in predicting the system energy,
cell volume and elastic properties. Feature importance is determined by assigning a value to
input features based on how relevant they are in predicting a target property [44], which is
shown in Figure 3c,d. Regarding the energy of the system, the most prominent features are
the phase formation, δ, ∆Hmix, χ, VEC and ∆Smix, all of which relate to phase parameters.
This is consistent with the pattern formed as described in reference [46]. Regarding the
cell volume, the top six features in order are the phase formation, δ, am, Ec, E and F, with
two of them being phase parameters. Among the elastic constants, the importance of the
bulk modulus stands out compared to the others. Therefore, the bulk modulus was given
priority in the sorting. The upper right corner of Figure 3d shows an enlarged view of the
importance scores of the Young’s modulus and shear modulus. For the bulk modulus, the
top-ranked features are the phase formation, δ, ∆Hmix, χ, VEC and ∆Smix, all of which are
phase parameters. Regarding the Young’s modulus, it primarily depends on the phase
formation, χ, am, a, A and D.G., whereby two of these are phase parameters. In regards to
the shear modulus, the main factors include the phase formation, D.χ, am, a, G and D.G,
wherein two of these are phase parameters.

We performed data sorting on each output without the phase formation for further
analysis, as shown in Figure 4a. It is evident that the feature values of each feature are
controlled within a certain range, which effectively ensures the accuracy of the machine
learning models. In order to simplify the calculations, we further merged identical fea-
tures to construct the composition–structure and composition–property datasets. Through
the aforementioned feature engineering, we simplified the input and in turn simplified
the model.

2.3. Machine Learning Design

To predict the steady-state structure and elastic properties of the full component space
from the binary system to the multivariate system, we chose three commonly used algo-
rithms, including support vector machine (SVM), ensemble regression (ER) and Gaussian
processes (GP), to establish ML models describing the relationship between composition,
structure and elastic properties. Support vector machine is a linear classifier that finds
the maximum margin in the feature space [47]. Its core idea is to achieve data separation
by constructing a separating hyperplane. Ensemble regression does not rely on a single
learner but constructs multiple learners with a certain strategy and combines them together
to accomplish learning tasks more effectively than individual learners [48]. According
to the relationship between individual learners, it can be divided into three categories,
including bagging, boosting and stacking. Gaussian processes is a non-parametric model
that performs regression analysis on data [49]. The significant difference from other re-
gression algorithms is that it obtains the function distribution rather than the output value
corresponding to the input, and is suitable for modeling nonlinear systems. The advantage
of Gaussian processes is that it can flexibly adjust the complexity of the model according to
the training data, and it can also guarantee the boundedness of the prediction error to a
certain extent.

By adjusting the model parameters, the accuracy of a regression can be improved.
Underfitting and overfitting are common issues in small datasets during the training
process [50,51]. Appropriate parameter design can effectively solve this problem. Therefore,
we chose 2 as the polynomial order for the SVM algorithm. We chose 1 as the LearnRate
value for the ER algorithm. We chose 0.01 as the regulation for the GP algorithm. You
can find more details for the algorithm parameters in Supplementary Table S3; they are
reproducible and can guide others in parameter design. We used k-fold cross-validation
to cross-validate the machine learning models for each algorithm. We also employed
normalization to further enhance the accuracy of the models.
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In order to evaluate the effectiveness of a machine learning model and its parameters,
we should not only consider the correlation and coincidence between the predicted values
and the actual values, but also take into account the overall dispersion and stability, so
the correlation coefficient (R), the mean square error (MSE) and the absolute relative error
(ARE) were selected to evaluate the effectiveness of the model.

3. Results and Discussion
3.1. Feature Analysis

Multi-component alloys are diverse in type, and as the number of elements increases,
they have a microstructure that is completely different from traditional alloys. Compared to
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the composition of various intermetallic compounds in traditional alloys, multi-component
alloys tend to form simple solid solution structures due to the high entropy effect. The
microstructure of multi-component alloys plays a decisive role in their performance, so it is
essential to identify the phase composition and microstructure of multi-component alloys in
order to study their properties. Figure 4a displays the input features that were specifically
selected for the five outputs. Among the five outputs, phase formation represents one of
the six descriptors that were ultimately selected. It can be observed from the figure that
the phase formation has a significant impact on the output, which is consistent with the
findings of other studies [50]. And for both the system energy and bulk modulus, the six
descriptors selected are consistent. Among the parameters such as phase formation, δ,
∆Hmix, χ, VEC, ∆Smix, am, a and D.G, several were selected more than once, and they have
a greater impact on the model’s prediction performance among the 30 features selected.
For predicting the stable structure and elastic constants of the system, the proportion of
the mechanical parameters selected is lower than that of the phase parameters. Except
for predicting the system energy and bulk modulus, which are both phase parameters,
the proportion of the other mechanical parameters is 0.33. Therefore, identifying the
equilibrium phase composition corresponding to different types and multi-component
alloys is of great significance for performance research.

For a general multi-component system, the Gibbs energy can be expressed by the
following Equation (1)

G = G + RgTΩ(( 1
V1

− ∑n
i=2 (ci − ∑n

j=2 cij))ln(1 − V1∑n
i=2 (ci − ∑n

j=2 cij))

+∑n
i=2 ((ci − ∑n

j=2 cij)ln((ci − ∑n
j=2 cij)V1))

+∑n
i=2 ((

1
Vi

− ∑n
i=2 cij)ln(1−∑n

j=2 cijVi) + ∑n
j=2 cijln(cijVi))

−Ω[∑n
i=2 ∑n

j=2
εijcij

2 + ∑n
i=2 εi1(Zci − ∑n

j=2 cij) + ε11(
Z

2Ω − Z∑n
i=2 ci+

∑n
i=2 ∑n

j=2 cij/2)]

(1)

where G (J/mol) represents the Gibbs energy term that is independent of the system’s
internal state variables and configurational entropy. Ω (m3/mol) denotes the volume of the
system, while Z is the number of neighboring atoms. cij (mol/m3) represents the atomic
concentration of component i, which is the nearest neighbor to component j. Finally, εij
(J/mol) is the energy associated with the bond between atoms of components i and j. And
the mixed Gibbs free energy can be expressed by the following Equation (2)

∆Gmix = ∆Hmix − T∆Smix (2)

where ∆Hmix (J/mol) is the enthalpy of mixing, ∆Smix (J·mol−1·K−1) is the entropy of
mixing, ∆Gmix (J/mol) is the Gibbs free energy of mixing, and T (K) is the temperature.
Based on the above formulas, there is a close relationship between the ∆Hmix and ∆Smix
of the system and its free energy. The system’s volume is closely related to the lattice
parameters, corresponding to am and a. Most of the selected features are based on the
mixing rule, including the atomic concentration term, which corresponds well to the free
energy formula. The bond energy between atoms greatly affects the electronegativity of the
system, corresponding to χ and D.χ. E, F, G and D.G are parameters related to mechanical
performance. Ec and A themselves are energy terms. Therefore, the Gibbs free energy of
multi-component systems can be described by a certain linear combination of the selected
descriptors. This description not only exhibits numerical correlations, but also aligns well
with thermodynamic expressions, and possesses certain physical significance.

3.2. Model Evaluation and Interpretable Analysis

The superiority of our model can be examined by comparing the accuracy of the model
with other possible ML models with various feature sets and model types. However, a
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direct comparison of the performance with models published in the literature referenced
in the above section was not attempted. This is because the purposes and inputs of those
models are different from ours. It may not be fair to compare the ML modeling performance
of models with different purposes because the performance can vary depending on the
target properties. Thus, in our process of establishing ML models, we select three commonly
used algorithms and aim to select the most suitable algorithm and corresponding model
by evaluating it with metrics including the regression figure, MSE and ARE. Taking the
shear modulus as an example, the GP model presents a higher R value, as shown in the
regression figure and a smaller ARE and MSE when compared to the SVM and ER models.
The regression results of the GP model for the shear modulus are shown in Figure 5. The
MSE of the GP model is 2.23 × 10−2 GPa2 while that of the ER model is 3.21 × 10−2 GPa2

and that of the SVM model is 2.89 × 10−2 GPa2. The R value of the GP model is 0.98136
while that of the ER model is 0.90321 and that of the SVM model is 0.84193. The maximum
value of the ARE of the GP model is approximately equal to 35% while that of the ER model
is 120% and that of the SVM model is 700%. Therefore, for the shear modulus, the GP
model shows the best regression results. We selected it for further performance predictions.
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With a similar system energy, cell volume, Young’s modulus and bulk modulus, the
GP models have a better regression performance compared to the ER and SVM models.
Specific data can be found in Supplementary Figure S1. We provide the MSE, regression
figure and ARE for all models established using the three algorithms in Supplementary
Figure S1. Therefore, in this work, we ultimately chose the GP model for subsequent
performance prediction work. From Supplemental Figure S1, it can be seen that the
machine learning model we have designed does not excessively pursue high R values
and low errors, because machine learning is prone to overfitting and underfitting states.
Even if all AREs are controlled within 5%, overfitting states may still occur which lead
to bad predictions. And when the ARE is above 50%, it is easy to encounter underfitting
states. Our goal in this work is to design optimal ML models through parameter design
and to apply them to perform predictions, in order to achieve full coverage of property
data in all component spaces, rather than just designing machine learning models with
minimum error and not applying them to actual situations. Metrics such as the MSE
are used as references during model training rather than as targets, so we compare the
three algorithms we use, and select one without blindly comparing our MSE values with
those of other articles. During the model training process, we also make adjustments based
on the predicted results. Finally, we obtain the best GP model. We compare the predictive
results from the ML models with the elastic properties of materials reported in other studies
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to demonstrate the effectiveness of our model. Table 1 displays the validation results for
machine learning models in the FeNiCrAlCo system. The relative errors between the results
predicted by the machine learning model and the experimental data in the literature are
all below 5%, which falls within the range of engineering errors and is acceptable. Other
machine learning models also exhibit the same effects. The results fully verify the reliability
of the ML models we constructed.

Table 1. Comparison of prediction results of the optimal model with the literature.

No.
Element Mass Fraction/wt E/GPa B/GPa G/GPa

Literature
Fe Ni Cr Al Co EV PV EV PV EV PV

1 0.25 0.25 0.25 - 0.25 214 209.86 147 140.87 86 90.55 [52]
2 0.20 0.20 0.20 0.20 0.20 230 233.11 154.13 149.69 94.56 93.32 [52]
3 0.25 0.25 0.23 0.02 0.25 203 199.78 - - - - [53]
4 0.29 0.11 0.26 0.07 0.27 235 232.76 - - - [53]
5 0.12 0.29 0.04 0.40 0.15 187 185.49 - - - - [53]

Note: EV—experiment value in the literature; PV—mean predictive value.

Currently, most ML models lack interpretability, and as black box models we cannot
uncover the relationships within them. The required interpretability of the algorithm, just
like the reason behind the result, is a problem. So, it is essential to conduct an interpretabil-
ity analysis of ML models. In this work, we use Shapley values to interpret the relationship
between property optimization and the phase and mechanical parameters. This relation-
ship has a certain physical significance, providing the basis for element and component
design. The Shapley values of input features can intuitively reflect their contributions to
the output [54]. The results of the model’s perturbation explanation are shown in Figure 6.
The ordinate of each input feature represents the output quantity with the same Shapley
value, and the Shapley values of each input feature are within a limited range. Among
them, the most obvious distinction in Shapley values is for the bulk modulus, as shown in
Figure 6d. When the difference in atomic radius δ is small, the differences in ∆Hmix, ∆Smix
and χ become larger, leading to greater bulk modulus values. However, the influence of
VEC on the bulk modulus is not significant. The phase formation that has a significant
impact on the performance exhibits different trends in the moduli E, B and G. When the
constituent phase is BCC or FCC, the material is more likely to have a high bulk modulus,
while the values of the Young’s modulus and shear modulus are lower. Additionally,
the lattice constants am and a have the same effect on the Young’s modulus and shear
modulus. The larger the lattice constants, the higher the modulus values, indicating a better
performance. At the same time, when calculating the system energy, the absolute value of
the negative numerical value is considered. Figure 6a shows that with an increase in ∆Hmix
and a decrease in ∆Smix at a fixed temperature, the probability of a larger absolute value
of the system energy increases, indicating that the system tends to be more stable. This is
consistent with the principles of thermodynamics, as shown in Equation (2).

3.3. Multivariate System Prediction

By utilizing machine learning models specifically designed for each output, we achieve
predictions of steady-state structures and elastic properties from binary to multi-component
systems through spatial transformations. Figure 7a shows some binary prediction results.
For energy predictions, the predicted results for the corresponding single-element systems
on the left and right of the binary system are consistent with the actual stable structures. In
the Ni-Cu system shown here for cell volume predictions, the cell volume of the FCC and
HCP dense pack structures is generally smaller than that of the BCC structure, indicating a
denser structure, which is consistent with the actual situation and corresponds to a larger
density. For the Cr-Ni system, there is an extremum in the Ni content around 0.3 or 0.8.
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We take the FeNiCrAlM (M = Co, Cu, Ti) quinary system as an example to demonstrate
the predictive performance of the model. Considering the influence of the phase formation
on the elastic properties, we use the predicted minimum value of the system energy
obtained from the multi-component system to screen out the steady-state structure. Based
on this, we predict the elastic properties of the quinary system, as shown in Figure 7c,d.
During the prediction process, we find that the predicted result of B is significantly lower
than those of E and G, and there is a certain relationship among E, B and G, as shown in
Equation (3)

B =
EG

9G − 3E
(3)

where E (GPa) is the Young’s modulus, B (GPa) is the bulk modulus and G (GPa) is the
shear modulus. Therefore, we select E and G for predicting the entire composition space
and focus more on optimizing the machine learning model of E and G based on this
result. B can be obtained based on E and G. The blue region in Figure 7c,d indicates lower
values, while the red region indicates higher values. For the modulus E, when the relative
fraction of Co is above 0.5, the material’s Young’s modulus slightly increases, and its tensile
strength is also higher. The predicted graphs for Ti and Cu are very similar, with blue
regions appearing at composition points of 0.2 and 0.76, corresponding to smaller E values.
At 0.32, a higher modulus value is observed. By comparison, it can be seen that Ti has more
red regions in the predicted graph compared to Cu. It also exhibits larger modulus values
at contents above 0.8 and below 0.24, demonstrating a better strengthening effect. As for
the shear modulus, the addition of different components, Co, Cu and Ti, has a significant
impact. When the fraction of Co is between 0.30 and 0.45, G is relatively lower, indicating
poorer compressive resistance, whereas it is higher in the remaining regions. The addition
of Ti with a relative fraction of 0–0.18 slightly increases G, and a maximum value of G
is observed for the FeNiCrAlTi system at fractions of 0.25–0.4. When the fraction of Cu



Materials 2023, 16, 6226 14 of 17

is between 0 and 0.20 and 0.28and 0.45, the FeNiCrAlCu system has a higher G, and a
minimum value is observed at a fraction of around 0.78. In terms of the modulus G, Co
demonstrates a better improvement effect compared to Cu and Ti.

Based on the above work, we conduct an inverse prediction to design multi-component
alloys with a high elasticity performance. Our goal is not to design multi-component alloys
with the highest elastic modulus, but to design alloys that have higher modulus values
than existing ones with the best performance. Taking the five-component alloy system as
an example, we can find elements and compositions that have higher elastic moduli. It is
noteworthy that the system we select is a single-phase system and we exclude multi-phase
alloy systems because the alloy we predict is single-phase alloy. In the predicted results,
for modulus E, the Fe0.01Cr0.01Al0.01Ni0.69Co0.28 alloy with an HCP phase has a modulus
of 242.10 GPa, the Fe0.06Cr0.06Al0.06Ni0.09Ti0.73 alloy with an HCP phase has a modulus of
189.76 GPa, and the Fe0.23Cr0.23Al0.23Ni0.03Cu0.28 alloy with a BCC phase has the highest
modulus value of 273.10 GPa. For modulus G, the Fe0.01Cr0.01Al0.01Ni0.44Co0.53 alloy with
a BCC phase has a modulus of 103.6 GPa, the Fe0.01Cr0.01Al0.01Ni0.83Ti0.14 alloy with a BCC
phase has a modulus of 87.09 GPa, and the Fe0.25Cr0.25Al0.25Ni0.01Cu0.24 alloy with a BCC
phase has a modulus of 102.8 GPa. It can be observed that the alloys selected by us exhibit
higher moduli in comparison to the alloys mentioned in Table 1 in other studies. From
the above results, it can be seen that most of the modulus maximum values correspond
to the BCC phase, which has a better strengthening effect compared to the FCC and HCP.
The above results only show the maximum values of the five-component alloy. There may
be greater modulus values in some binary and ternary systems, which have better elastic
property. The selected component compositions include cases with 0.01 components, which
are difficult to accurately obtain in actual preparation processes and should be adjusted
based on actual situations.

4. Conclusions

This work predicts the elastic properties of the FeNiCrAlCoTiCu alloy in both binary
and multi-component systems. By employing input feature selection and parameter design
for machine learning models, the risks of overfitting and underfitting, which are typical
problems in small dataset machine learning are effectively reduced. We specifically design
models for each output that have RMSE values of less than 1.1, and their effectiveness is
confirmed through experimental data in the literature. The average relative error between
our predicted results and the experimental data in the literature is less than 5%, which
meets the requirement for engineering accuracy. We perform interpretable analysis on the
ML models, accurately reflecting the changes caused by atomic properties and obtaining
thermodynamic verification. This forms a theoretical framework for guiding element and
composition design. In the predicted results, we discover composition configurations
that exhibit superior elastic properties compared to existing ones. Taking the FeNiCrAlM
(M = Co, Cu, Ti) quinary alloy system as an example, we design a single-phase BCC-
structure Fe0.23Cr0.23Al0.23Ni0.03Cu0.28 alloy with a Young’s modulus of 273.10 GPa, as well
as a single-phase BCC-structure Fe0.01Cr0.01Al0.01Ni0.44Co0.53 alloy with a shear modulus
of 103.6 GPa. Compared to the alloys that have already been reported above, they exhibit
better elastic properties.

We propose a first principles calculation and machine learning-based method for
predicting the steady-state structure and elastic properties of multi-component alloys.
This includes a first principles calculation process that considers the phase composition
and has a gradient component space, as well as a machine learning model training that
accelerates calculations without sacrificing accuracy. Using our research way, we achieve
a fast improvement in the calculation speed of first principles calculation for steady-state
structure and elastic property predictions, covering the entire composition space of multi-
component alloys. Our research way provides a general computing paradigm to accelerate
first principles calculations. Our interpretable ML models provide a fast and full-coverage
prediction of the elastic properties of multi-component alloys with the accuracy of DFT
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calculations. By changing the initial element types and data, our research way can be used
for a variety of multi-component alloy performance prediction problems.

Our research way only uses the calculation results of unit and binary systems. By
transforming the input space, we have achieved rapid property prediction for multi-
component systems, resulting in a significant reduction in the cost of first principles
calculations. Based on the predicted results, reverse prediction can be performed to screen
for elements and composition ratios with higher elastic moduli, thus helping accelerate the
design of multi-component alloy materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16186226/s1, Table S1: Features for the phase parametric
candidates of machine learning models; Table S2. Features for the mechanical parametric candidates
of machine learning models; Table S3. The specifically designed parameters of Gaussian Processes
models; Figure S1. The (a) MSE, (b) regression figures and (c) ARE of five outputs ML models trained
with ER, SVM and GP algorithms.
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