
Citation: Glushkov, E.V.; Glushkova,

N.V.; Ermolenko, O.A.; Tatarinov

A.M. Study of Ultrasonic Guided

Wave Propagation in Bone Composite

Structures for Revealing Osteoporosis

Diagnostic Indicators. Materials 2023,

16, 6179. https://doi.org/10.3390/

ma16186179

Academic Editor: Young-Hag Koh

Received: 1 August 2023

Revised: 30 August 2023

Accepted: 9 September 2023

Published: 12 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Study of Ultrasonic Guided Wave Propagation in Bone
Composite Structures for Revealing Osteoporosis
Diagnostic Indicators
Evgeny V. Glushkov 1,* , Natalia V. Glushkova 1 , Olga A. Ermolenko 1 and Alexey M. Tatarinov 2

1 Institute for Mathematics, Mechanics and Informatics, Kuban State University, Krasnodar 350040, Russia;
nvg@math.kubsu.ru (N.V.G.); o.ermolenko.a@gmail.com (O.A.E.)

2 Institute of Electronics and Computer Sciences, LV-1006 Riga, Latvia; alta2003@apollo.lv
* Correspondence: evg@math.kubsu.ru

Abstract: Tubular bones are layered waveguide structures composed of soft tissue, cortical and
porous bone tissue, and bone marrow. Ultrasound diagnostics of such biocomposites are based on
the guided wave excitation and registration by piezoelectric transducers applied to the waveguide
surface. Meanwhile, the upper sublayers shield the diseased interior, creating difficulties in extracting
information about its weakening from the surface signals. To overcome these difficulties, we ex-
ploit the advantages of the Green’s matrix-based approach and adopt the methods and algorithms
developed for the guided wave structural health monitoring of industrial composites. Based on
the computer models implementing this approach and experimental measurements performed on
bone phantoms, we analyze the feasibility of using different wave characteristics to detect hidden
diagnostic signs of developing osteoporosis. It is shown that, despite the poor excitability of the most
useful modes associated with the diseased inner layers, the use of the improved matrix pencil method
combined with objective functions based on the Green’s matrix allows for effective monitoring of
changes in the elastic moduli of the deeper sublayers. We also note the sensitivity and monotonic
dependence of the resonance response frequencies on the degradation of elastic properties, making
them a promising indicator for osteoporosis diagnostics.

Keywords: composite bone phantoms; guided wave modal excitability; restoration of effective elastic
moduli; resonance diagnostics

1. Introduction

Among the developed quantitative ultrasound (QUS) approaches, the one based
on guided waves relies on the waveguide properties of cortical long bones (e.g., see
books [1,2] and reviews [3,4] for more details). This QUS method (often referred to as
axial transmission) is applied to appendicular skeletal sites, such as the tibia and radius,
and—to a lesser extent—the skull and phalanges. Ultrasonic-guided waves (GWs) are
generated and registered by piezoelectric transducers applied to the soft tissue covering the
cortical bone. The frequency response and dispersion characteristics of the traveling waves
propagating from the source to sensors are mostly due to the specific geometry and elastic
properties of the layered biocomposites: soft tissue–bone tissue–bone marrow. Since the
ultrasound propagation parameters reflect the material properties, understanding the GW
dependence on factors related to bone health helps to reveal hidden signs of osteoporosis.
A recent and historical background on this topic is available in Ref. [5], while various
aspects of QUS studies with both bio-mimicking samples and ex vivo samples can be found
in Refs. [6–18].

Ultrasonometry has advantages over the widely used X-ray densitometry, such as
the absence of ionizing radiation, compactness, and lower costs. There are also other
methods for bone inspection based on various physical phenomena and principles, such as
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magnetic resonance imaging [19,20], pulse-echo measurements [21], and ultrasound back
scattering [22]. They aim to assess bone porosity and thickness by measuring the free water
content in the bone volume or the reflected and scattered waves.

The QUS of bone biocomposites represents a specific application of ultrasonic non-
destructive testing (NDT) and guided wave structural health monitoring (SHM)
technologies [23,24]; these technologies were developed to detect incipient defects and
monitor changes (degradation) in the strength properties of laminate composite materials
used in various industrial applications, e.g., carbon–fiber-reinforced polymers in aerospace
units, pipelines, etc. One would expect QUS to operate by the same methods. But unlike
traditional laminate composites fabricated from similar sublayers (prepregs), the sublay-
ers of bone biocomposites have very different elastic properties. And since osteoporosis
develops from inside the tubular bone [25,26], the degradation of inner sublayers is of
prime concern.

The upper sublayers composed of soft and cortical bone tissue act as shields to the
diseased interior, creating difficulties in extracting useful information about its weakening
from signals vi(t) = v(xi, t) received on the surface (here, v(x, t) = u̇z(x, t) is the velocity
of the normal component of the displacement vector u = (ux, uy, uz) at a surface point
x = (x, 0, 0)). Therefore, NDT and SHM methods need to be refined and improved to
diagnose specific bone structures.

The identification of diagnostic features requires solutions to complex mathematical
problems arising in the simulations of wave processes in multilayered samples (phantoms),
mimicking waveguide properties of tubular bones. Phantoms are commonly used as substi-
tutes for hard-to-find sets of real bone samples [8,10]. First, there are direct problems of GW
propagation in the layered composite structures. Based on their solutions, it is possible to
analyze the GW dependencies on the factors that indicate the presence or development of
disease, e.g., the thickness and elastic properties of the cortical layer, the increase in porosity,
the weakening of the inner sublayers, etc. Second, there are inverse problems in recovering
the sublayer thicknesses and effective elastic parameters from data arrays vij = vi(tj) of
the digitized signals recorded at surface points xi. The effective parameters are usually
obtained by minimizing the discrepancy between the experimental and calculated wave
characteristics, as the input material constants and sample geometry vary.

Nowadays, numerical simulations of elastodynamic behaviors of layered composites
are conventionally performed using mesh or hybrid numeric–analytical methods, such
as the finite element method (FEM) or semi-analytical finite elements (SAFEs). In our
research, we develop a meshless semi-analytical approach based on the explicit integral
and asymptotic representations in terms of the Green’s matrix of the composite structure
considered. This not only reduces the computational costs but also provides direct insight
into the wavefield structure by providing the amplitude and dispersion characteristics of
each GW mode excited by the source. The developed algorithms of the Green’s matrix allow
simulating the wave propagation in arbitrarily anisotropic [27,28], functionally graded [29],
or fluid-filled porous [30] layered structures. Therefore, this approach has already proved
its effectiveness in solving various NDT and SHM problems, such as crack detection [31]
and time-reversed defect location [32], the restoration of effective elastic moduli of fiber-
reinforced composite plates [33], nitride nanowire-based composite materials [34], trapped
mode resonance identification [35,36], and others. The main objective of the current studies
is to leverage the benefits of the Green’s matrix-based approach in identifying concealed
diagnostic indicators of developing osteoporosis from recorded surface signals.

Since the experimental measurements provide arrays of recorded transient signals,
a problem that emerges with the independent meaning arises: extracting the frequency
characteristics of the excited GW modes, with a focus on their dispersion characteristics.
Conventionally, the discrete Fourier transform over time t and distance x is applied to
such arrays, yielding a so-called function H(α, f ) that approximates the Fourier symbol
V(α, f ) of the signals’ field v(x, t) [37] ( f is the frequency and α is the Fourier parameter
for the transform over x, which is also a wavenumber for the waves propagating in the
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x direction). The local maxima of the H-function indicate dispersion curves α = ζn( f ),
visualizing fragments of their trajectories in the frequency–wavenumber plane ( f , α).

In recent years, an approach based on the application of the matrix pencil method
(MPM) [38,39] to arrays vij has gained popularity. It provides a set of desired points ( fp, ζp)
lying on the dispersion curves. Moreover, unlike the method of H-functions, the MPM
yields complex wavenumbers ζn. This allows quantifying not only the phase velocities
cn = ω/Reζn of the excited GWs but also the logarithmic decrements δn = 2πImζn/Reζn
of their attenuation caused by the softening of bone tissue due to the increase in porosity.
Hence, this characteristic can be considered as a potential diagnostic sign of osteoporosis
development. The obtained pairs ( fp, ζp) are used as experimental reference values in
the objective functions of the inverse problem of determining the effective parameters.
In QUS, similar approaches based on forming a response matrix from the acquired data
arrays and finding its eigenvalues (wavenumbers) are being actively developed by the
Laugier–Minonzio group [8–11] and other research teams (e.g., [17]). Apart from MPM, a
singular value decomposition method is also used here to extract wavenumbers from the
response matrix, but without their imaginary parts.

In our studies, to extract wavenumbers from the measurement data, a modified
MPM [40] is used with additional filtering by the H-function [41]. The objective function
of the inverse problem is expressed in terms of the Green’s matrix elements calculated at
the points of GW dispersion curves selected from the recorded signals. Such an objective
function, proposed in [34,42], reduces computational costs by 2–3 orders of magnitude
compared to the conventional fitting of theoretically calculated and experimentally obtained
dispersion curves.

The foundation of the present studies traces back to bone ultrasonometry research
conducted in Riga starting in the 1980s [43,44]. In the 2000s, the research temporarily
moved to Artann Laboratories, USA [7,45], and has since resumed in Riga [46], while the
numerical analysis is carried out by the Krasnodar team [41,47,48].

The research objective of the present work is to search for and analyze wave character-
istics, the change of which could indicate the development of osteoporosis. The effective
material parameters obtained by solving the inverse problem directly specify the bone’s
state. Therefore, their change can serve as a direct diagnostic indicator, while the change in
dispersion curves can indirectly indicate the osteoporosis development. Another promising
indirect diagnostic sign is a change in the pattern of resonance peaks in the frequency
response. The diagnostic indicators revealed from using the developed computer model
are discussed in Section 6, after describing the experimental technology (Section 2), math-
ematical model (Section 3), and data processing methods (Sections 4 and 5). Section 3
also considers the possibilities of traditional dispersion curve indicators. It is shown that
despite an appreciable variability in the theoretical dispersion curves, their real use is
theoretically limited by the poor excitability of the ‘useful’ modes associated with the
internal diseased sublayers.

2. Bone Phantoms and Experimental Measurements

Bone is a complicated biological composite that boasts a pronounced hierarchical
structure, ranging from mineral–collagen to osteon levels. It is extremely difficult to artifi-
cially mimic the bone structure and the properties arising from it in close approximation,
especially if the purpose is to provide its predictable grades. The primary aim of axial trans-
mission measurements is to identify diagnostic indicators. These indicators become evident
in the transformation of wave characteristics accompanying osteoporotic changes in bone
properties. At the same time, the material properties themselves are not as important for
wave studies as the relationships between body wave velocities and trends in their changes.
By frequency tuning, it is possible to achieve the required wavelength-to-thickness ratios;
therefore, the sample material does not necessarily have to provide the same body wave
velocities as in the bone.
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Experimental and theoretical studies are usually performed with artificial guides
mimicking the wave properties of real bones, the so-called bone-mimicking phantoms [8,10].
To account for the cylindrical form of tubular bones, the phantoms are often fabricated in
the form of layered pipes (e.g., [12]). However, the response of the bone’s wall to a localized
surface loading is similar to that of an elastic plate, and comparative measurements show
that laminate plates with properly chosen effective elastic properties can provide the same
waveguide properties [8]. Such a replacement of tubular waveguides by plates is not a
straightforward procedure, since the impact of bone curvature depends on the relations
between the wall thickness, the outer diameter of the tubular bone, the driven wavelength,
the probe characteristics, and many other factors. Nevertheless, it is widely used in research,
for example, in the guided wave structural health monitoring of industrial pipelines [49].

Various aspects of sample selection (the effects of soft tissue coating, bone curvature,
anisotropy, porosity, absorption, and so on) are thoroughly discussed in the studies by
the Laugier–Minonzio group, e.g., [9,10]. For example, to account for porosity-induced
anisotropy, a transversely isotropic composite of short glass fibers embedded in an epoxy
matrix was used as bone-mimicking material [9]. On the other hand, the numerical analysis
carried out in Ref. [48] indicates a minimal effect of accounting for such anisotropy on key
wave characteristics, such as the patterns of dispersion curves of well-excitable GW modes
in multilayered bone-mimicking samples with soft coating. Therefore, for the present
studies, we used samples fabricated from isotropic poly(methyl methacrylate) (PMMA)
plates (hereafter, PMMA will also be referred to as plexiglass).

Plexiglass has already been considered as an ultrasound reference material, especially
considering its acoustic impedance closely aligns with that of bone [50], as well as its
uniformity, and precision-shaping abilities [51,52]. In our studies, we trace the influence of
the development of porosity from the inside to the periosteum. It is necessary to distinguish
between the states of porous thin bone due to the peculiarities of the human constitution
and different degrees of bone porosity caused by osteoporosis. To model these conditions
with a high degree of reproducibility, a workable plexiglass is a good choice.

In the experiments, we used a set of phantoms made of 120 mm by 25 mm plexiglass
plates with a thickness h from 2 to 6 mm, which is a typical thickness variation of the cortical
layer in the metaphyses of large tubular human bones (Figure 1a,b). Soft organic tissue
was modeled by a plastic layer of thickness hso f t from 0 (no coating) to 5 mm, covering the
plexiglass plate. Osteoporosis leads to a thinning of the cortical layer and an increase in
intracortical porosity from the inner (endosteal) side [25,26]. To simulate this manifestation,
0.5 mm diameter holes were drilled from the bottom of the plates to mimic the effect of
porosity by reducing about 20% of the material volume. The holes were drilled using a
computer numerical control (CNC) machine with a programmable sequence of the holes.
The drilling depth hpore varied from 0 (no pores) to the full plate thickness h, so that there
were two sublayers of the thicknesses h− hpore and hpore with different effective densities
and elastic moduli given in Table 1.

Table 1. Effective material parameters used in the numerical simulation.

Material cp (m/s) cs (m/s) ρ (kg/m3) ν

Soft plastic 1550 369 1060 0.47
Plexiglass (PMMA) 2700 1226 1190 0.37

Its drilled part 2025 920 952 0.37

The measurements were carried out at the experimental setup (Figure 1, bottom)
according to the measurement scheme shown in Figure 2. A contact piezo actuator (emitter),
applied to the sample’s surface, produced a normal surface load σz = q(x, t) that generated
ultrasound GWs propagating along the sample. The signals vi(t) = u̇z(xi, t) (velocity of
the normal surface displacement component) were acquired at Nx + 1 receiving points
xi = x0 + i∆x, i = 0, 1, 2, . . . , Nx (in most experiments, the distance from the emitter
x0 = 50 mm, the points’ spacing ∆x = 1 mm, and Nx = 23). The acquired signals were
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recorded with a time increment ∆t: tj = t0 + j∆t, forming data arrays vij = vi(tj); in the
experiments, ∆t = 0.03 µs.

Since the contact area was relatively small and, therefore, had little effect on the GW
characteristics, the source was modeled by a point load: q(x, t) = δ(x)p(t). In the experi-
ments and simulations, the driving impulse was taken either in the form of a modulated
two-cycle sinusoidal pulse with a central frequency fc:

p(t) = sin(2π fct) sin(π fct/2), 0 ≤ t ≤ 2T, T = 1/ fc,

or as a sweep signal p(t) = sin(2π f (t)t) with a linear frequency decrease from f = 500 kHz
to 50 kHz within 0.02 ms (Figure 3).

(a)

(c)

(b)

(d)

Figure 1. (a) Phantom blanks: plexiglass plates drilled from below for different depths; (b) top view
of plates drilled in a checkerboard pattern; (c) experimental setup; and (d) setup with a specimen
covered by mammalian tissue.
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x
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O
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ý
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Figure 2. Multilayer model of the bone composite structure and measurement scheme.

To illustrate the dynamic response of the phantoms, Figure 4 presents examples of
signals v0(t) received at the point x0 on various phantoms successively subjected to the
three pulses shown in Figure 3 (three signals were collected in each subplot for illustrative
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purposes; in the experiments, only one of these pulses was used in each measurement).
Waveform profiles vi(t) collected from all receiving points xi show the propagation of
fast and slow wave packets over the phantom’s surface (Figure 5). The frequency spectra
vi( f ) = Ft[vi(t)] and time–frequency wavelet images wi(t, f ) =W [vi(τ)] of the received
signals are analyzed; Ft andW are the Fourier and wavelet transform operators in the
time domain:

Ft[v] =
∞∫

0

v(t)eiωtdt, W [v] =
∞∫

0

v(τ)Ψ(t− τ)eiωτdτ, (1)

Ψ(t) = e−(at)2
, a = 2/∆t, ω = 2π f .
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Figure 3. Examples of driving pulses p(t) (top) and their frequency spectra |P( f )| (bottom).
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Figure 4. Examples of measured signals on the phantoms successively subjected to the three pulses
shown in Figure 3: uncoated (a) and coated (b) samples with intact plates; and uncovered (c) and
covered (d) 2/3 drilled plates; h = 3 mm.
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Figure 5. Examples of time–space waveform profiles measured at the 2/3 drilled phantoms
(h = 3 mm, hpore = 2 mm; left column) and intact thick-plate phantoms (h = 6 mm, hpore = 0 mm;
right column); uncoated (a,b) and coated with hso f t = 2 mm (c,d) and hso f t = 4 mm (e,f) soft layer;
points’ spacing ∆x = 1 mm, time discrete ∆t = 0.03 µs. Straight lines emphasize the propagation of
fast and slow wave packets.

Differences in wave patterns in Figures 4 and 5 indicate the presence of changes in
the sample structures. However, it is not easy to interpret their meanings based on the
unprocessed measurement data. To identify diagnostic features, the expansions of the
registered surface waves in terms of GW modes should be obtained and analyzed first.

3. Guided Waves in Bone Phantoms

In the computer simulation, we use M-layered models of bone structure. The soft
tissue is modeled by a homogeneous layer, while the bone itself is divided into sublayers,
and a layer of bone marrow can also be added (Figure 2). The frequency spectrum u(x, f )
of the displacement wave field u(x, t) generated in the phantom by a surface load q is
simulated by the solution to the corresponding boundary value problem (BVP) for a forced
steady-state time harmonic oscillation ue−iωt of the elastic layered structure considered
(Figure 2); ω = 2π f is the angular frequency, f is the frequency. Since the measurements
are performed along the symmetry axis, we consider 2D BVPs for the in-plane displacement
u = (ux, uz); x = (x, z). In this case, the general representation of its solution based on the
Green’s matrix [28,29] takes the following form:

u(x) =
1

2π

∫
Γ

K(α, z)Q(α)e−iαxdα, (2)

where K = Fx[k(x)], Q = Fx[q(x)], and U = Fx[u] = KQ are Fourier symbols in the
wavenumber–frequency domain (α, f ); Fx is the Fourier transform operator with respect

to horizontal coordinate x; k(x) = (k1
...k2) is the 2 by 2 Green’s matrix, and q = (0, q) is

a normal surface load. Columns kj are the solution vectors corresponding to the surface
point loads q = δ(x)ij, j = 1, 2, applied along the basic coordinate vectors i1 = (1, 0) and
i2 = (0, 1); δ is Dirac’s delta function. The integration path Γ goes in the complex plane α
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along the real axis rounding the real poles ζn of the matrix K elements in accordance with
the principle of limiting absorption.

Note that with a point load q = δ(x)p(t), the Fourier symbol Q is reduced to the
frequency spectrum P( f ) of the driving pulse p(t): Q(α, f ) = Fxt[q(x, t)] = P( f ). And
in accordance with Equation (2), only element K22 of matrix K and pulse spectrum P( f )
control the Fourier symbol V(α, f ) = Fxt[v(x, t)] of the signal’s field:

V(α, f ) = −iωUz(α, f ) = −iωK22(α, f )P( f ). (3)

The poles ±ζn (Reζn, Imζn ≥ 0) are zeros of the K22 denominator, arranged in as-
cending order of imaginary parts: (Imζn+1 ≥ Imζn). They are the roots of the characteris-
tic equation

K−1
22 (α, f ) = 0 (4)

that gives the same dispersion curves α = ζn( f ) as those obtained from the dispersion
equation derived in the framework of the conventional modal analysis.

The residue technique reduces integral (2) to a sum of guided waves:

u(x) =
N

∑
n=1

an(z)eiζnx + O(e−ImζN+1x), x > 0, (5)

an = −iresK|α=−ζn Q(−ζn), ζ0x >> 1.

Here, N is the number of terms (GW modes) retained in the expansion; it includes the
contribution of all real poles ζn and, possibly, several complex ones close to the real axis; ζ0
is a characteristic wavenumber.

The terms of expansion (5) are source-generated GWs, where the poles denote the
wavenumbers. Accordingly, cn = ω/Reζn and vn = dω/dReζn are the phase and group
velocities of the corresponding GWs, and sn = 1/cn is their slownesses. The amplitude
factors an determine the wave energy amount carried by each guided wave. The shapes of
their dependencies on depth z are the same as those of the modal eigenforms; however,
unlike the latter, they are uniquely determined, while the eigensolutions are determined by
constant factors.

Typical dispersion curve patterns for the phantoms under study are shown in Figures 6 and 7.
Figure 6 depicts dispersion curves in the frequency–slowness plane ( f , s), which is more
convenient than traditional phase velocity curves from infinity; solid and dashed horizontal
lines indicate the slowness of the P and S body waves in each sublayer. To illustrate the
effects of progressive bone weakening, the numerical examples are for the intact, half-
drilled, and drilled-through plates (hpore = 0, h/2, and h). The uncoated samples (hso f t = 0)
are marked I, II, and III, and the same plates coated with the hso f t = 2 mm soft layer
are labeled IV, V, and VI, respectively; by default, h = 3 mm, and other h cases are
additionally marked.

Within the isotropic model, each sublayer is defined by its body wave velocities
cp =

√
C11/ρ and cs =

√
C44/ρ, and its density ρ. Cij represent the elastic moduli.

The input material parameters for these samples are shown in Table 1 above.
Body wave velocities in the drilled part and its density were determined by measure-

ments. Poisson’s ratio ν is shown here as additional information.
The drilled material is transversely isotropic with the horizontal plane of isotropy

(x, y), and the velocities cp and cs in the table are for the body wave propagation in the
horizontal direction. However, the numerical analysis showed a weak effect of accounting
for such anisotropy; this was true even when considering factors like material viscosity or
detailed layering up to multilayered sandwich-like models with internal bone marrow and
external soft tissue, e.g., [47,48]. The wave patterns on the surface primarily depend on the
elastic properties of the upper sublayers.
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Figure 7. Group velocities vn for the same samples as in Figure 6.

As for the influence of artificial porosity, one can see a noticeable change in the level at
which the slowness curves of the fundamental modes A0 and S0 progress with increasing
frequency in samples II and III compared to intact plate I (Figure 6, top). The same trend is
observed for the higher modes, and their outlet points (cutoff frequencies) shift to the left.
Thus, with the weakening, the GWs become slower, in general, which is also noticeable in
the group velocity curves (Figure 7), although to a lesser extent. The soft covering results
in the emergence of many additional slower GW modes with velocities (slownesses) that
are practically independent of the hard sublayer porosity (Figure 6, bottom). At the same
time, the slowness curves in the lower parts of these subplots keep the tendency mentioned
above. Obviously, these faster modes are associated with the inner hard sublayers.

In the bone QUS, the search for diagnostic signs is conventionally focused on changes
in the dispersion properties of propagating surface waves. The above-mentioned variations
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of theoretical dispersion curves provide some hope for their use in diagnostics. However,
in practice, these curves are to be extracted from the measurement data, which is not easy
in view of a strong interference from other modes whose characteristics are almost indepen-
dent of the cortical bone properties. In fact, the situation is even worse because of different
types of modal excitability. While the theoretical dispersion curves are independent of the
source and, therefore, look equally clear on the plots, the amplitudes of source-generated
‘useful’ modes are much smaller on the surface than on the noise waves.

A theoretical excitability of GW modes by a normal point source can be estimated from
the magnitude images of the −iωK22 element controlling the received signals (Equation (3),
P = 1). In Figure 8, they are shown in the same frequency-slowness plane ( f , s) as in
Figure 6; s = α/ω. In these images, the dark bands follow the slowness dispersion curves
depicted in Figure 6, with their width being proportional to the GW amplitude. It can be
seen that, even theoretically, the curves in the bottom images of Figure 8 are poorly visible
in the slowness range from about 0.5 to 1 (s/km), while here, they are the primary interests.
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Figure 8. Scalogram images of the Green’s matrix element |ωK22| in the frequency-slowness plane
for the same phantoms I–III (top, (a–c)) and IV–VI (bottom, (d–f)) as in Figures 6 and 7 above.

The dominant contribution of the new modes—emerging in the coated samples to
the wave field on the surface—is also explained by their eigenforms featured by much
higher oscillation amplitudes in the upper soft coating compared to the underlying harder
substrate. Examples of such depth dependencies of the GW amplitude factors an(z) are
shown in Figure 9 (in fact, there are plots of Im an while Re an = 0; an are the second
components of vectors an in Equation (5); note that the scale of the horizontal axes in the
bottom images yields ten times larger amplitude values than in the upper images). It results
in the wave energy concentration of the corresponding source-excited GWs in the upper
soft coating.
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Figure 9. Depth dependencies of the A0 and S0 fundamental modes excited in uncoated plates I–III
(blue and red lines in top subplots (a–c)), and of the first three modes in coated phantoms IV–VI
(bottom, (d–f)), green lines are for the additional mode arising in the coated samples, horizontal black
lines show interfaces between sublayers); f = 100 kHz.

4. H-Function-Based Retrieval of Experimental Dispersion Curves

The H-function was introduced as a discrete approximation of the two-dimensional
Fourier transform operator Fxt to visualize the GW dispersion curves [37], similar to the
images of |V| = |ωK22| in Figure 8 above. In the examples below, we calculate it as the
truncated series of the discrete Fourier transform:

H(α, f ) = 2∆x∆t|
Nx

∑
i=0

Nt

∑
j=0

vije
iωtj cos αxi|

(due to symmetry, the array vij was augmented by the same values at the points −xi to the
left of the source, which yielded eiαxi + e−iαxi = 2 cos αxi).

Obviously, its accuracy is limited by the number of receiving points xi and time steps
tj, and depends on the numerical integration steps ∆x and ∆t. Therefore, the H-function
cannot provide the same sharp images as theoretical Fourier symbols K22(α, f ) in Figure 8,
but rather blurred spots. Moreover, its frequency range is limited by the range of the driving
pulse, and in this sense, most information can be obtained using sweep signals (see |P( f )|
in Figure 3). Still, the dispersion curves calculated with properly chosen input parameters
pass through such spots for any driving pulses (e.g., Figure 10). The spot centers indicate
the local maxima of the approximated function |V(α, f )|. A reasonable agreement of the
calculated dispersion curves means that the input (effective) parameters are close to the
properties of measured samples.

However, the effective parameters of more complex phantoms with drilled and coated
plates, not to mention real bones, are generally unknown. Conventionally, they are obtained
by minimizing an objective function F that specifies a discrepancy between the measured
and calculated dispersion characteristics of the excited GWs (phase or group velocities,
wavenumbers, wavelengths, etc. [11,15,33,53]). All of them are expressed through the
roots of the GW characteristic equation, which makes it necessary to solve at each F
minimization step. The explicit Green’s matrix-based representation (2)–(5) provides a
significant computational advantage over popular mesh-based simulations, such as FEM
or finite difference. But the search for the roots of dispersion Equation (4) still requires
hundreds and thousands of calls to the procedure of the matrix K calculation at each step.
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To reduce such computational expenses, we implemented a new form of the objective
function expressed directly through the matrix K elements at the reference points ( fp, ζp)
in the frequency–wavenumber plane [34]:

F(C, ρ, h) = ∑
p
|K−1

22 (ζm
p , f m

p )| (6)

(a similar objective function was also independently proposed in Ref. [42]).
The pairs ( f m

p , ζm
p ) are experimentally obtained points (e.g., spot centers in Figure 10)

while their calculated counterparts ( f c
p, ζc

p) are not required at all. Since ζp are the poles of
K22 at certain frequencies fp, the corresponding terms of sum (6) turn to zero as soon as
the varied input parameters reach values yielding K22 with such poles without calculating
ζc

p themselves.

1

2

0 0.1 0.2 0.3 0.4 0.5

 ζ
, 

1
/m

m

 f, MHz

Figure 10. Lamb wave dispersion curves superimposed on the blurry spots of the H-function were
calculated based on experimental data measured on the plexiglass plate of a thickness of 5 mm
subjected to two pulses at fc =100 and 300 kHz.

5. MPM-Based Retrieving of GW Parameters

The choice of reference pairs ( f m
p , ζm

p ) from the images of H-functions is a method
that lacks sufficient rigor and accuracy. A more accurate set of values can be derived by
processing experimental data using the matrix pencil method (MPM) [38–40].

Based on expansion (5), the signals’ frequency spectra vi( f ) can be written in the
following form

vi =
N

∑
n=1

bnλi
n, i = 0, 1, . . . , Nx − 1,

where λn = eiζn∆x and bn = −iωaneiζnx0 . This representation, in terms of power λn, is
possible because moving to the next point xi = xi−1 + ∆x is equivalent to multiplying its
terms by λn.

In accordance with the MPM scheme, the matrix pencil

V(λ) = V1 − λV0

is formed from the matrices

V0 =


v0 v1 . . . vL−1
v1 v2 . . . vL
. . . . . . . . . . . .

vNx−L−1 vNx−L . . . vNx−2
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and

V1 =


v1 v2 . . . vL
u2 v3 . . . vL+1
. . . . . . . . . . . .

vNx−L vNx−L+1 . . . vNx−1


of size (Nx − L)× L. Their rows are composed of vi values at successive L points xi with
a unit shift of the starting point index in each subsequent line. The number L : N ≤ L ≤
Nx − L is referred to as a pencil parameter.

Under ideal conditions without noise, rank(V0) = rank(V1) = N, while with λ = λn,
the rank of the matrix pencil V(λ) decreases by one [38]. That is, λn, n = 1, . . . , N are
among the eigenvalues. They can be found in different ways; first of all, as eigenvalues of
the matrix B0 = V+

0 V1 of size L× L; this is done after the pencil is multiplied by the pseudo-
inverse Moore–Penrose matrix V+

0 [54], or they can be derived using the singular value
decomposition method (SVD) [1,10]. Then, the complex wavenumbers ζn = log(λn)/(i∆x)
are specified in the range of |Reζn| < π/∆x.

Obviously, the experimental data are imperfect; they contain noise, reflected waves,
and wave interference. Moreover, some GWs are poorly excitable, so that fewer than
N-correct eigenvalues can actually be found, while the remaining roots are induced by
noise. To filter them, we first use a double-sided MPM scheme proposed in [40]. It is based
on the fact that the eigenvalues µn of the matrix pencil µV1 − V0 must be equal to 1/λn.
The extra roots associated with the noise are unstable, and we discard those from λn that
do not satisfy the condition |(λn − 1/µm)/λn| < δ for all m with some threshold level δ.
Among the processed results, there were values with negative Re ζn < 0. These values were
associated with waves reflected from the right edge and were, thus, excluded. Figure 11
presents examples of wavenumbers ζn obtained with the double-sided MPM processing of
data measured on several phantoms subjected to the sweep-driving pulse.
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Figure 11. Wavenumbers ζn( f ) extracted from experimental data by the double-sided MPM process-
ing with δ = 0.1; blue and red points are for Re ζn and −Im ζn, respectively.
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The points remaining in the figure trace the dispersion curves, but the extra points
induced by noise are still present in abundance. Therefore, we perform additional filtering
against the H-function: only points where the condition H( fp, ζp) < ε||H|| with a certain
threshold ε holds are retained for the goal function. Thus, we discard the points related to
small amplitude modes, whose findings are unstable (Figure 12).
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Figure 12. The points from Figure 11 retained after H-filtering with ε = 0.1; blue and red points are
for Re ζn and −Im ζn, respectively.

6. Diagnostic Indicators
6.1. Effective Material Parameters

A shift in the GW characteristics signifies the onset of osteoporosis. It reflects the
change in the bone’s density and elastic properties, which is a direct consequence of the
disease. Therefore, the detection of some changes in the effective material parameters
could serve as a direct diagnostic indicator. As discussed above, the minimization of the
goal function (6) makes it possible to determine the effective parameters of a layered
waveguide from the GW characteristics extracted from surface measurements. However,
as demonstrated by the examples in Figures 6–8, the variations in mechanical properties
of internal sublayers have little effect on the surface waves. And the first question arises:
is it possible, at least theoretically, to restore their effective parameters and detect their
insignificant changes from surface measurements?

To clarify this question, a series of numerical experiments was carried out for various
typical phantoms under study. First, the surface signals vi(t) were calculated using integral
and asymptotic representations (2)–(5). Then, the synthetic arrays vij were processed
according to the general schemes described in Sections 4 and 5, and the points ( fp, ζp)
selected from the MPM results by H-filtering were substituted into objective function (6). It
was minimized by the coordinate-wise descent method, varying the material parameters of
each sublayer separately, and assuming the rest to be known.

We attempted this approach using vij arrays calculated for each of the three driving
pulses p(t) shown in Figure 3; the initial values of the variable parameters cp, cs, and hm
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(sublayer thickness) were taken quite far from those used in the input data. The most
encouraging results were obtained with the sweep pulse: the effective parameters were
fairly well reconstructed for the upper hard layer (Figure 13, left), and the latent weakened
sublayer (Figure 13, right), with both uncovered and covered phantoms. The two-cycle
pulses, however, do not provide the same good accuracy. For some complex-structured
samples, they allow significant deviations, especially with fc = 100 kHz, which has the
narrowest frequency range.
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Figure 13. Restoring the effective material parameters of the hard (plexiglass) layer (a) and its lower
drilled part (b) from synthetic data calculated for phantoms I–VI; horizontal lines indicate that the
input body wave velocities cp and cs and markers are for their restored values; sweep driving pulse,
Figure 3, right.

With the experimental data, the first results were rather discouraging because of
the large number of local minima appearing in the objective function, once the theoret-
ical real ζp were replaced by the MPM-extracted complex-valued ones. An additional
reason was a noticeable noise-induced fluctuation of the MPM-obtained values ζp( f )
(e.g., Figures 11 and 12), instead of following the theoretically smooth dispersion curves.
Smoothing these data and accounting for the attenuation (viscosity) of real materials in the
computer model eliminated such a multiplicity of local minima.

6.2. Resonance Response

As indirect indications of the developing disease, it was noticed that the GWs generally
become slower and their cutoff frequencies shift to the left (Figure 6). The first feature
is, however, poorly distinguishable, even theoretically, while the second is well visible
due to the sufficient GW excitability near the cutoffs (Figure 8). At these frequencies, the
group velocities of the corresponding modes become zero (Figure 7), indicating the absence
of energy transfer from the source to infinity. This leads to the appearance of so-called
thickness resonances featured by the surface oscillation independent of the horizontal
coordinate x with a zero wavenumber ζn. In the frequency domain, the resonances appear
as peaks in the signal’s frequency spectrum.

Similar and more powerful resonance peaks also arise at zero-group-velocity (ZGV)
frequencies with non-zero wavenumbers [55,56]. The ZGV mode occurs at the lower limit
of the backward-wave range [57], appearing near some cutoffs due to specific dispersion
curves bending with a negative slope, resulting in a negative group velocity (loops below
the abscissa in Figure 7).

In the GW expansion (5), all of these resonance frequencies fr are singularity points
of the amplitude factors an( f ) = |az,n(0, f )|, which manifest themselves as peaks on their
plots (Figure 14).
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Figure 14. Amplitudes of frequency spectra an( f ) of the guided waves generated in phantoms I–VI
(solid lines) and their total sum (dashed lines); delta pulse, P = 1.

Both resonances can be reliably detected even from single-point measurements, es-
pecially using modern laser Doppler vibrometry [55,58]. This paves the way for the
development of laser-based technologies for rapidly evaluating the thickness and material
constants of elastic plates [56,59]. Currently, these technologies are well developed for
homogeneous plates, while the frequency responses of layered waveguides are featured by
multiple ZGV resonances (e.g., see Ref. [60] and the review therein).

As the disease progresses, the resonance peaks also shift to the left following the cutoff
and ZGV frequencies fr, providing the possibility of using them as diagnostic indicators.
The advantage of the resonance response method is its enhanced ability to detect these
peaks compared to the dispersion curve points ( fp, ζp). It does not require measurements at
a set of points xi or with extensive processing of the arrays vij; a single signal v(t) received
at a surface point can be enough for detecting resonance peaks.

In the time domain, the resonance frequencies yield long-duration oscillations, which
appear as long ‘tails’ after powerful first arrivals (e.g., Figure 4). In the time–frequency
wavelet images, these tails are also visible as pale horizontal stripes (plumes) at the cor-
responding frequencies (Figure 15). In line with the peak shift in Figure 14, these stripes
shift downward as the weaker sublayer increases. This trend is observed for the uncoated
samples, especially for the resonance plume at f ≈ 0.4 MHz, and keeps for the coated ones
as well.

To avoid the interference of first arrivals, Fourier and wavelet transforms (1) should
be applied only to such tails. In the numerical examples, the tails were taken, starting from
the time shown in Figure 15 by vertical dashed lines, providing much clearer peak patterns
(Figure 16). To assess the effects of porosity and soft coating on the resonance frequencies
fr, the charts in Figure 17 visualize the changes in their values for different thickness
samples, h = 3 mm (top) and h = 6 mm (bottom). In samples IV – VI (right subplots), the
soft coating yields additional resonances at lower frequencies, weakly dependent on the
properties of the bottom sublayer, while the downtrend of the other resonance frequencies
is clearly visible.
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Figure 15. Time--frequency wavelet images |w0(t, f )| of the synthetic signals v0(t) calculated for
phantoms I–VI (sweep pulse); the vertical dashed lines indicate the beginning of tails in the calcula-
tions for Figures 16 and 17 below.
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Figure 16. Frequency spectra of the signals’ tails for phantoms I–VI; h = 3 mm.
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Figure 17. Diagrams of resonance frequencies fr depending on the sample structure for the peak
patterns in Figure 16, uncovered (a) and covered (b) samples; the same for the h = 6 mm thick plate
samples (c,d). Light blue and pink lines are for the resonance frequencies inherent in uncoated
phantoms of thickness h = 3 mm (a), which also appear and keep decreasing in coated samples (b);
twice-thicker phantoms yield additional resonance (green line, (c)) that also keeps decreasing in
covered samples (d).

7. Concluding Remarks

1. Computer simulations of forced guided wave propagation, using the semi-analytical
Green’s matrix-based model, show that despite a noticeable variation in the theoretical
dispersion curves, their use as diagnostic indicators is not very promising because of the
weak excitability of the most interesting modes, reflecting changes in the internal diseased
sublayers.

2. Changes in elastic moduli directly indicate the development of osteoporosis. Their
monitoring is possible by solving the inverse problem of restoring effective moduli using
GW characteristics extracted from the data arrays of surface measurements based on their
two-sided MPM processing, H-filtering, smoothing, and accounting for complex-valued
wavenumbers.

3. The sensitivity and consistent correlation of resonance response frequencies with
the degradation of elastic properties make them a promising diagnostic indicator. Their de-
termination is more reliable and requires much less measurement and computational costs.
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