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Abstract: This review article explores the multiple applications and potential of metal-organic
frameworks (MOFs) in the biomedical field. With their highly versatile and tunable properties,
MOFs present many possibilities, including drug delivery, biomolecule recognition, biosensors, and
immunotherapy. Their crystal structure allows precise tuning, with the ligand typology and metal
geometry playing critical roles. MOFs’ ability to encapsulate drugs and exhibit pH-triggered release
makes them ideal candidates for precision medicine, including cancer treatment. They are also
potential gene carriers for genetic disorders and have been used in biosensors and as contrast agents
for magnetic resonance imaging. Despite the complexities encountered in modulating properties and
interactions with biological systems, further research on MOFs is imperative. The primary focus of
this review is to provide a comprehensive examination of MOFs in these applications, highlighting
the current achievements and complexities encountered. Such efforts will uncover their untapped
potential in creating innovative tools for biomedical applications, emphasizing the need to invest in
the continued exploration of this promising field.

Keywords: metal-organic framework; drug delivery; biomolecule recognition; sensing

1. Introduction

Metal-Organic Frameworks (MOFs) have garnered significant research attention for their
tunability and high surface area, rendering them highly promising for various applications.

According to Awasthi et al. [1], the crystal structure of MOFs allows for the precise
tuning of their properties by adjusting the metal ions and ligands used in their synthesis.

MOFs’ hybrid structure and pore size control make them capable of exhibiting a large
area of applicability with a high specific surface area. This versatility enables diverse
applications in gas storage, catalysis, purification, detection, separation of hazardous
compounds from the environment, energy, and biomedical applications. Several studies,
including Awasthi et al. [1] and Hu et al. [2], have demonstrated the ability to fine-tune
MOFs’ properties for specific applications. Figure 1 aims to highlight these points, showing
that MOFs exhibit a large area of applicability, which researchers have reported across
various synthesis routes, making it one of their most significant advantages.

A comprehensive overview of the diverse research landscape associated with MOFs,
outlining various areas where their study holds significant implications, can be found in
Figure 2.

Using data sheets from CD Bioparticles, Table 1 details the properties of some of
the MOFs they produce, and it is clear how these compounds exhibit physicochemical
characteristics suitable for drug delivery, including examples of the biomedical potential of
MOFs in drug delivery. Just by comparing them with other porous materials (especially
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other micro or mesoporous materials), it can be observed that the specific surface area can
reach 3000 + m2/g; the pores can be from the microporous range or the mesoporous range
(over 3 nm). The window size is also defined as the size of the molecules that can pass
through these pores, and this range is between 0.34 and <2 nm, which is well suited to the
size of the small drugs. The examples retained in Table 1 are selected to cover some of the
most important applications in the biomedical field.
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Figure 2. Areas of interest for the study of MOFs.

Table 1. The table lists MOFs by their characteristics according to CD Bioparticles, such as pore
properties, including the BET-specific surface area, the pore size, the window size, and other unique
features that make them suitable for medical applications. The information also includes stability in
different solutions, pH responsiveness, tunable pores, capabilities for drug delivery, targeted therapy,
and more.

No
Crt MOF-Type

Pore Proprieties Specific Surface
by BET
[m2/g]

Characteristics Particularities for Medical
ApplicationsWindow Size

[nm]
Pore Size

[nm]

1 ZIF-8 0.34 1.1 1500 Stable in air, aqueous, and basic
solution; not stable in acid solution

pH-Responsive Drug
Release [3]

2 UiO-66 0.8 1.1 1000 Stable in aqueous and acid solution Targeted Cellular Uptake [4],
high biocompatibility
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Table 1. Cont.

No
Crt MOF-Type

Pore Proprieties Specific Surface
by BET
[m2/g]

Characteristics Particularities for Medical
ApplicationsWindow Size

[nm]
Pore Size

[nm]

3 MIL-125 (Ti) 0.6 0.8 1300 500 nm–5 µm Irregular crystal Temperature and
pH-Responsive Release [5]

4 MIL-101 (Cr) 1.2–1.6 2.9–3.4 2800–3200 Stable in air, aqueous, acid, and
basic solution (pH 1–12) Drug delivery [6]

5 MIL-101 (Fe) 1.2 2.3–2.7 2800 High surface area, tunable pores pH-responsive drug
release [7]

6 MIL-100 (Fe) 0.55–0.88 2.5–2.9 1900 Stable in air, aqueous, and acid
solution

Targeted drug delivery,
protein encapsulation [8]

7 MOF-74 (Mg) 1.5 900 Open metal sites, tunable porosity Drug delivery [9]

8 ZIF-67 (Co) 0.34 1.1 1500 Stable in air, aqueous, and basic
solution; not stable in acid solution

Catalysis in drug
synthesis [10], targeted

release [11]

9 ZIF-90 (Zn) 0.35 1.1 1200 Stable in air, aqueous, and basic
solution; not stable in acid solution Targeted drug delivery [12]

10 NU-1000 (Zr) 0.8 × 1.0 3.1 and 1.3 2200 Stable in aqueous and acid solution
and organic solvents

Drug delivery [13], targeted
therapy [14]

11 MOF-5 - 1.5 900 Stable in the air for several weeks Drug Sustained Release
Carrier [15]

Beyond drug delivery, MOFs have been successfully utilized in biomedical appli-
cations such as sensing, biomolecule recognition, biosensors for disease diagnosis, and
immunotherapy. The versatility of MOFs in these applications is due to their ability to form
complex three-dimensional network structures that can accommodate various molecules,
including drugs, DNA probes, and RNA-based therapeutics. The studies conducted by
Gao et al. [16] and Adeel et al. [17] demonstrate the successful utilization of MOFs in
sensing various biomolecules, including glucose and cholesterol, for diabetes manage-
ment. MOFs have also been used to recognize and separate biomolecules, making them
a promising candidate for the separation and purification of biomolecules, as shown by
Hosando et al. [18].

The study by Nunzio et al. [19] explored the use of MOFs in photochemical sensing ap-
plications. It highlighted the role of the ligand typology in the complexity of the structures
formed. Studying MOFs for biomedical applications represents a significant challenge due
to the need to precisely control their properties and interactions with biological systems.
Zhao et al. [20] highlight the considerable challenge of precise control over their proprieties
and interactions with biological systems. This need for precision in MOF-based biosensors
for disease diagnosis is highlighted by the study conducted by Yin et al. [21], who devel-
oped a MOF-based biosensor for detecting Alzheimer’s disease biomarkers exhibiting high
sensitivity and selectivity. The potential of MOFs in immunotherapy applications is also
supported by the studies conducted by Zhao et al. [22], Ni et al. [23], and He et al. [14],
where they reported the development of MOF-based immunotherapeutic agents and MOFs
as a delivery system for RNA-based therapeutics, respectively.

MOFs can also be integrated with various transduction techniques, such as optical, elec-
trochemical, and piezoelectric, to detect and quantify specific analytes (Naresh et al.) [24].

The strategic combination of post-synthetic modification strategies for metal-organic
frameworks, as shown in Figure 3, provides insight into how covalent, coordinate covalent,
or even a mix of both methods can be employed to achieve the desired characteristics and
functionalities in MOFs.
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Metal-Organic Frameworks (MOFs) represent versatile platforms for biomedical in-
novation due to their tunable properties, high surface area, and ability to form complex
three-dimensional network structures that can accommodate various molecules. For this
purpose, the present review aims to highlight the correspondence of the MOFs’ crystal
structure, which is induced by the duality of the metal ion and ligand used in their syn-
thesis. As a consequence of the structural changes induced by the used building block
(metal ion and ligand), the properties can be accordingly adjusted, making them suitable
for sensing, drug delivery, biomolecule recognition, biosensors for disease diagnosis, and
immunotherapy applications. The typology of the ligands used in MOF synthesis also plays
an essential role in the complexity of the structures formed. On the other hand, studying
MOFs for biomedical applications poses significant challenges, such as precisely controlling
their properties and interactions with biological systems. Despite these challenges, MOFs
continue to show promise as a platform for innovative biomedical applications, as demon-
strated by recent studies on MOFs-based biosensors for disease diagnosis and MOFs-based
immunotherapeutic agents.

Consequently, this review is dedicated to examining the link between the structural
properties of MOFs, shaped by the employed metal ion and ligand, and their capabilities
in various biomedical applications, emphasizing the essential need for sustained research
efforts and investment in this highly innovative and promising domain.

2. MOFs in Drug Delivery Applications

MOFs have attracted considerable focus in targeted drug delivery due to their unique
design, impressive ability to interact with substances, and facility for chemical customiza-
tion, allowing them to contain drugs within specific internal spaces. These characteristics
enable MOFs to hold targeted medications, offering opportunities for controlled release.
The meticulous crafting of MOFs permits tailoring drug release patterns, rendering them
flexible for diverse medical conditions. Moreover, the skillful adjustment of MOFs’ struc-
ture enhances their proficiency in assimilating drugs, making precise delivery to designated
tissues or cells possible, as shown in various systems responsive to pH changes. Such
qualities of MOFs leverage their capability to heighten drug delivery effectiveness, laying
the groundwork for advancements in personalized medicine. The management of drug
release is crucial for achieving the best therapeutic results while reducing undesirable
side effects.
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2.1. pH-Responsive MOFs

Several studies have demonstrated the potential of MOFs in controlled drug release.
pH-triggered drug release can be realized by pH-dependent carrier disassembly.

For example, an acidic environment in tumor tissue makes pH one of the most widely
investigated stimuli for targeted and controlled drug release, as presented in Figure 4.
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In her research, Jian et al. [25] developed a technique for delivering functional proteins
to particular cells using “clickable” zeolitic imidazolate framework-8 (ZIF-8) nanoparticles
with potential implications in cancer treatment and precision medicine. This information
has been discussed in the research papers of Rahaman et al. [26] and Cai et al. [27], which
developed drug delivery systems that respond to specific environmental stimuli, such as
pH, to improve drug efficacy and reduce side effects. IRMOF-16 was studied as a potential
pH-responsive drug delivery carrier for curcumin and exhibited pH-dependent behavior
in the delivery process. Du et al. [28] investigated the Cu-MOFs@Keratin drug delivery
system, which demonstrated responsiveness to pH and ROS, with enhanced drug release
observed under acidic and oxidative conditions.

In this study, Muhammad et al. [29] and his team developed a pH-responsive bi-MIL-
88B MOF coated with folic acid-conjugated chitosan, serving as an effective nanocarrier for
targeted drug delivery of 5-Fluorouracil, showcasing controlled drug release in cancer cells
and demonstrating potential for smart drug delivery systems.

Lin et al. [5] synthesized a pH-responsive MOF, MIL-125(Ti), modified with Pluronic
F127 and chitosan monomers and loaded with doxorubicin. The carrier was found to be
temperature- and pH-responsive, with the potential for use in cancer treatment. ZIF-8 is
also widely used in drug delivery due to its easy fabrication process and good biosafety.
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In an extensive investigation by Gongsen Chen et al., [15] the utilization of MOF-5
was studied as a sustained release carrier for the antitumor drug Oridonin. The research
revealed that MOF-5 successfully encapsulated ORI, maintaining its intrinsic structure, as
shown by FTIR and TG analysis. Importantly, when studying the in vitro release properties
of ORI@MOF-5 under various pH conditions, it was evident that the release behavior of
the compound was less affected by changes in pH, highlighting its versatility.

2.2. Multi-Stimuli Responsive MOFs

Drug delivery systems that respond to multiple stimuli can improve therapeutic effi-
cacy. Liu et al. [30] synthesized a co-delivery system by coordinating 2-methylimidazole,
zinc ion, and doxorubicin, followed by the surface decoration of indocyanine green for
targeted drug release and thermos-ablation. Trushina et al. [31] combined UiO-66 nanopar-
ticles with mesoporous SiO2 and folate-conjugated pluronic F127 to prepare a core-shell
MOF@SiO2/F127-FA drug delivery carrier for targeted cellular uptake in cancer treatment.
Silica coating enabled the grafting of target molecules to the surface and improved sta-
bility, while further modification with pluronic and folic acid improved biocompatibility
and targeting. The DOX-loaded UiO-66@SiO2/F127-FA nanoparticles were evaluated for
properties and antitumor activity, demonstrating potential for small molecule delivery and
increasing the practical value of MOFs. Safnejad et al. [32] synthesized a non-toxic La-based
MOF with 3,4-di hydroxycinnamic acid as a linker, which exhibited good biocompatibility
with human breast cancer cell lines and confirmed the ability of 3,4-DHCA to treat the cells.
With promising results, Li et al. [20] investigated a Sr-based MOF as a ketoprofen carrier
for osteoarthritis treatment.

2.3. MOFs in Enhancing Drug Solubility and Bioavailability

MOFs can also improve the solubility and bioavailability of poorly soluble drugs.
Yan et al. [33] developed a “prodrug-ZIF-8” strategy for the targeted delivery of doxorubicin
to solid tumors. Ma and Zhang [34] synthesized a redox-responsive paclitaxel drug delivery
platform using ZIF-8 as the vehicle, cystamine as the linker, and redox-sensitive material.
They found that higher glutathione concentration and lower pH favored releasing paclitaxel
from ZIF-8/cystamine/paclitaxel, resulting in a higher tumor-killing effect than the free
paclitaxel solution. Sun et al. [35] developed a hyaluronic acid-targeted and pH-responsive
drug delivery system based on ZIF-8, which encapsulated D-α-Tocopherol succinate in
ZIF-8 compounds and coated them with a hyaluronic acid shell, achieving a tumor-specific
and on-demand drug delivery system that improved the treatment efficiency.

Suresh et al. [36] highlighted a novel technique to enhance the dissolution and sol-
ubility of hydrophobic drugs, specifically curcumin, sulindac, and triamterene. They
encapsulated these drug molecules within water-reactive MOFs, prominently MOF-5. This
approach prevented the crystallization of the drug in its amorphous state and initiated its
immediate release when the MOF underwent hydrolytic decomposition. As illustrated in
Figure 5, this method offers a strategic solution for drugs with poor solubility. It addresses
the typical concerns associated with amorphous drug delivery, such as the amorphous
form’s physical instability.
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2.4. MOFs as Gene Carriers

MOFs have shown promising results as gene carriers for treating genetic disorders
and certain types of cancer due to their tunable porosity, biocompatibility, and ease of
surface functionalization. However, efficiently and safely delivering therapeutic genes to
target cells remains a significant challenge. For instance, Chang Liu et al. [37] synthesized
a biocompatible MOF carrier, ZIF-8, for the efficient delivery and remote regulation of
CRISPR-Cas9 ribonucleic acid protein (RNP)-based gene editing.

To summarize, MOFs have risen to prominence in drug delivery due to their ability to
be precisely engineered, extraordinary capacity to absorb substances, and unique way of
encapsulating drugs within their cavities. Controlled drug release is crucial for optimal
therapeutic outcomes, and MOFs have demonstrated outstanding potential. pH-triggered
drug release is a widely investigated stimulus for targeted and controlled drug release,
particularly in tumor tissue, because many cancers induce acidic conditions. Thus, this
stimulus can be suitable for targeted delivery within the tumor tissue. Non-toxic La-
based MOFs, such as MIL-101(Cr) and UiO-66, were primarily studied for the intracellular
delivery of doxorubicin to cancer cells.

Furthermore, MOFs can improve the solubility and bioavailability of poorly soluble
drugs. Overall, MOFs have shown great promise in drug delivery and have the potential
to revolutionize medicine due to their versatility and ability to respond to various stimuli.

3. Exploring the Potential of MOFs in Biomolecule Recognition and Sensing
3.1. MOF Structure and Properties for Biomolecule Recognition

Thanks to their adjustable porous structure, metal-organic frameworks (MOFs) have
significant potential for recognizing and separating biomolecules. This adaptability enables
the creation of MOFs with particular characteristics that are perfect for such uses, a point
emphasized by Hassanpour and colleagues [38]. Furthermore, MOFs exhibit an extensive
capacity for interaction, contributing to their marked efficiency when utilized as materials
in nanomedicine, a finding noted by Pashazadeh et al. [39]. The structural design of MOFs
is vital to their ability to recognize specific molecules since their porous nature allows them
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to house various recognition elements and ligands that can attach to the target biomolecules,
a feature underlined by Feng and associates [40].

Leveraging its tunable structure, Figure 6 exemplifies the challenge of effectively
designing a MOF. By strategically functionalizing MOFs with specific groups, they can
selectively recognize certain molecules while bypassing others, forming the cornerstone of
selective recognition and separation.
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MOFs in the Selective Recognition and Sensing of Biomolecules

The choice of ligand and ion metal has to be synergistically carried out because the
properties of these structured materials depend on and thus affect the selectivity and
sensitivity of the final biosensor.

By functionalizing MOFs with specific groups, they can selectively recognize certain
molecules while bypassing others. This customization is made possible by the essential
synergy between the ligand and the metal ion, which influences the material’s properties
and consequently affects the selectivity and sensitivity of the resulting biosensor. This
selective recognition and separation is a complex goal, but can be accomplished with
careful control over the MOF’s structure. A MOF based on Cobalt (II) was developed as a
significant example of this process. This particular MOF showed an outstanding ability
to detect the vitamin B12 biomarker, methylmalonic acid (MMA), through a fluorescence
turn-on response capability [41].

Biomolecule selective recognition was achieved using a tetratomic phosphonate ligand
(H8L)-based MnII-MOF (H8L-Mn-MOF) developed by Chakraborty et al. [42]. The MOF
demonstrated demanding “Turn-On” behavior towards L-arginine (Arg) over L-lysine
(Lys) and other amino acids, with a detection limit of 7.1 ppm in an aqueous medium.
The material also showed similar responsive behavior in different bio-fluids, such as fetal
bovine serum and human urine, suggesting its bio-applicability.

3.2. Computational and Experimental Approaches in MOF Recognition Studies

Recent studies have employed both computational and experimental techniques to
explore interactions with MOFs. Mostafavi et al. [43] utilized dispersion-corrected Density
Functional Theory (DFT-D3) to investigate the interactions between glycine amino acid
and MOF-5, identifying substantial connections between them. This intense interaction
energy, coupled with evidence that glycine forms chemical bonds with MOF-5, paves
the way for developing nano-scaled drug delivery systems. This research contributes to
the broader understanding of how biomolecules interact with nanostructures to create
functional materials.

In a parallel development, Liao et al. [44] crafted a novel immunoprotein by inte-
grating a Nanobody (Nb) with a biomimetic mineralized MOF. This integration overcame
existing challenges in immunoassay sensitivity. By encapsulating succinylated horseradish
peroxidase (sHRP) within a single MOF structure, they improved the electro-sensing of
aflatoxin B1 (AFB1). These investigations, harnessing computational approaches such as
DFT-D3 and experimental innovation in MOF-based electrochemical sensors, demonstrate
the depth and versatility of MOF research in biomolecule recognition. Collectively, they
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underscore the vital role of combined computational and experimental methodologies in
unlocking MOFs’ potential for recognizing and interacting with biomolecules.

3.3. MOFs in Diagnostic Applications for Disease Monitoring and Enzyme Immobilization

The structure of MOFs offers novel strategies for enzyme immobilization. Shortall
et al. [45] investigated the stability of MOFs when used as enzyme supports. Their findings
emphasized the importance of selecting the right buffer-MOF combinations and suggested
that coatings, notably polyacrylic acid (PAA), further enhance stability.

A central aspect of MOFs’ enzyme incorporation lies in their capacity to co-encapsulate
multiple enzymes within their framework. Enzymes can be trapped within pores, anchored
to surfaces, benefit from an enhanced microenvironment, or be incorporated through in
situ encapsulation during synthesis [46].

These methods can be seen in Figure 7, illustrating the different ways enzymes are
attached to the MOFs.
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MOFs have proven very challenging in detecting and separating molecules in the
diagnostic realm, especially in diagnosing conditions such as neurological disorders and
epilepsy. The work of Zhang et al. [47] illustrates this versatility, where they co-encapsulated
multienzyme systems in MOFs for the specific detection of lactate.
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Significant improvements in current response have been observed when using 2D
metal-organic layers (MOLs) to support redox enzymes, as shown by Xiong et al. [47].
MOFs functionalized with specific antigens have also been used to detect antibodies, such
as anti-HIV antibodies.

Further advances include aptasensors for antibiotics such as kanamycin [48] and plat-
forms specifically for detecting uric acid, highlighted in recent research by Yang et al. [49].
These examples underline the breadth of applications MOFs can offer in diagnostics.

Recent advancements extend to creating a lanthanide metal-organic framework capa-
ble of the selective optical detection of Favipiravir, a medication used to treat COVID-19.
This specific MOF exhibits high detection sensitivity and recyclability, according to the
study by Wang et al. [50].

The use of MOFs in diagnostics has been demonstrated through their successful
identification of substances such as ST and 5-HI-3-AA in human serum and urine, as
reported by Zhong et al. [51]. This accomplishment in a separate line of investigation
underscores the broader potential of MOFs in detecting and tracking biomolecules.

3.4. MOFs in Biosensing and Biotechnological Innovations

The possibilities for MOFs in the fields of biosensing and biotechnology are extensive.
Their unique structure and ample interactive capacity facilitate the efficient recognition
of proteins and peptides, as observed by Cedru et al. [52]. Furthermore, MOFs serve as
foundations for securing enzymes, as noted by Souza et al., and offer a basis for supporting
nano-zymes and dual-mode sensing techniques, according to Yu et al. [53], opening up
new paths for biosensing applications.

Pillararene-incorporated MOFs have been recognized for their potential in supramolec-
ular recognition and selective separation, adding another layer to the biosensing capabilities
of these materials (Wu et al.) [54].

In addition to the abovementioned applications, MOFs have shown potential in
biomolecule sensing for fields such as radiology, radiotherapy, and immunology. MOFs
have been explored as contrast agents for magnetic resonance imaging (MRI). Bunzen
et al. [55] explored their potential and grouped three types of materials that can be used:
MRI-active MOFs, composite materials based on MOFs, and MRI-active compounds loaded
into MOFs.

3.5. MOFs for Cardiac and Cancer Biomarker Detection

MOFs have been instrumental in detecting cardiac biomarkers, including specific
proteins such as troponin T. Saeidi et al. [56] utilized MOFs to develop a multilayer nanos-
tructure, enabling the accurate and reliable detection of troponin T, a key indicator of
heart injury. The sensitivity and specificity of MOFs could revolutionize the diagnostics of
cardiac conditions.

Cancer detection and monitoring have also benefited from MOFs. Du et al. [57]
developed a highly efficient impedance biosensor for cancer cell detection using folic acid-
functionalized zirconium MOFs. This innovation represents a significant step forward
in cancer diagnostics, offering a powerful tool to detect cancerous cells in various stages.
MOFs have been further applied to stimuli-responsive drug delivery systems, including
pH, temperature, or light irradiation-triggered drug release, enhancing targeted therapy.

3.6. MOFs in Electrochemistry, Small Molecule Sensing, and Mycotoxin Detection

MOFs are potential electrode modifiers for the electrochemical detection of small
molecules such as epinine and venlafaxine. As electrode modifiers, MOFs (Dourandish
et al.) [58] provide platforms for the co-detection of biomolecules, significantly advancing
the field of electrochemical biosensing. These frameworks’ well-defined structures and
selective sensing mechanisms enable detailed computational investigations, shedding light
on the selective sensing of potential therapeutic compounds. Furthermore, MOFs have
been harnessed for the selective detection of mycotoxins, potent toxic compounds produced
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by fungi. The utilization of luminescent MOF (LMOF-241) by Hu et al. [59] exemplifies the
sensitivity and selectivity of MOFs in recognizing mycotoxins, offering a critical approach
to monitoring and controlling their presence in food products.

4. MOFs in Biosensing: Challenges and Opportunities for Disease Diagnosis
and Monitoring

MOFs have gained interest as potential biosensors for disease diagnosis and monitor-
ing due to their ability to integrate with various transduction techniques, such as optical,
electrochemical, and piezoelectric methods. In Figure 8, sensors are named after their
physical properties, showcasing the categorization based on characteristics.
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4.1. Applications of MOFs in Disease Detection

Recent studies have explored using MOFs in biosensors for diagnosing and moni-
toring diseases such as epileptic seizures, myocardial infarction, and Parkinson’s disease.
For instance, a dual-range lactate oxidase-based screen-printed amperometric biosensor
using Cu-MOF cross-linking has been developed to analyze lactate in diversified samples,
including sweat, saliva, and wine, demonstrating the potential of MOFs as biosensors, as
shown by Silva et al. [60]. Gupta et al. [61] developed an impedimetric sensor for the cardiac
marker troponin I (cTnI) using a composite of copper-MOF with polyaniline, highlighting
the potential of MOFs in developing biosensors for the diagnosis and monitoring of various
diseases. Yan et al. [62] created a “Signal-on” ECL immuno-sensor for detecting cTnI using
functional nanoflakes called RuMOFNSs.

Another biosensor developed by Zhong et al. [51] was utilized to create a stable, water-
soluble fluorescent biosensor for detecting serotonin (ST) and its metabolite 5-hydroxy
indole-3-acetic acid (5-HI-3-AA). Moreover, a novel layered fluorescent metal-organic nano-
material with a honeycomb topology based on europium, [Eu(pzdc)(Hpzdc)(H2O)]n (ECP),
has been synthesized by Moghzia et al. [63], and exhibits fast response and high selectivity
for dopamine detection in clinical samples. A different approach was taken by Xie et al. [64],
who reported the development of a highly selective and sensitive label-free MOFs-based
fluorescent sensor for detecting dopamine in urine samples from Parkinson’s patients.
These biosensors demonstrate the potential of MOFs in various detection techniques, which
could be used to diagnose and monitor multiple diseases.
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4.2. Development of Electro-Chemiluminescent (ECL) Biosensors

In addition to the biosensors discussed earlier, electro-chemiluminescent (ECL) biosen-
sors have also gained attention due to their high sensitivity. Lv et al. [65] created ECL
biosensors using aggregation-induced emission (AIE) probes for bioanalytical detection,
which offers more choices for improving ECL sensors.

Wang et al. [66] reported the creation of ECL biosensors using multifunctional MOFs
(Au@Co-MOF@ABEI) and 3D magnetic walking nanomachines for the ultrasensitive detec-
tion of Burkholderia pseudo-mallei, a pathogen that causes melioidosis. The nanocubes im-
mobilized ABEI and exhibited peroxidase-like activity to produce reactive oxygen species,
enhancing ECL signals. The biosensor could detect the pathogenic gene down to 60.3 aM
and B. pseudo-mallei down to 9.0 CFU mL−1 in serum samples. This work provided a
promising tool for early diagnosis and disease surveillance.

4.3. Advanced Sensor Techniques and Their Applications

Recently, a ratiometric fluorescent sensor based on NH2-MIL-101(Fe) with molecular
imprinting has been developed by Wang et al. [67], which exhibits outstanding sensitiv-
ity, selectivity, and super anti-interference ability, and can be used for precise and rapid
detection of domoic acid. This neurotoxin affects the central nervous system.

A type of electrochemical sensor for the detection of dopamine, an essential neurotrans-
mitter of the nervous system, was developed by Ji et al. [68], utilizing the electrochemical
sensing potential of Cu-TCPP frameworks and the conductivity of graphene nanosheets,
resulting in an ultrasensitive and straightforward detection method with a detection limit
of 3.6 nM in the first linear range. The sensor shows potential for use in diagnosing and
monitoring neurological diseases.

4.4. Wearable and Self-Powered Sensors

According to Rayegani et al. [69], recent developments in wearable sensor technology
have created battery-free and self-powered devices for continuous and accurate monitor-
ing of various medical signals in the human body. These smart wearable sensors utilize
triboelectric nanogenerators (TENG), piezoelectric nanogenerators (PENG), and hybrid
nanogenerators that combine the abovementioned, highlighting the potential of MOFs in
creating self-powered sensors for health monitoring. These sensors have a variety of pur-
poses, structural designs, and electric performances and are crucial for health monitoring,
including older adults, patients with unique conditions, and those recovering from illness.
This new technology offers potential for the analysis of long-term bodily movement status.

Developing efficient and sensitive sensors for detecting hydrogen peroxide (H2O2) in
biological systems is significant for the early diagnosis and treatment of tumors. Recent
studies by Xuelian et al. [70] have demonstrated the potential of metal-organic frameworks
(MOFs) as a platform for sensitive H2O2 detection and tumor cell inhibition. MIL-47(V)-OH
was shown to convert H2O2 into ·O2

− (anionic radical) and inhibit tumor cells, making
it a promising material for H2O2 detection and application in biological diagnoses and
oncology therapy. Similarly, the study by Yang Li et al. [71] showed that BODIPY@Eu-MOF
demonstrated excellent fluorescent detecting performances for H2O2 detection and F- and
glucose detection in living cells, indicating the potential of MOFs as a multifunctional
platform for biological sensing applications.

4.5. Challenges and Future Perspectives

Despite the potential of MOFs for biomedical applications, achieving precise control
over the reaction conditions during synthesis and minimizing the presence of impurities
or defects in the final product is a significant hurdle. Researchers have investigated novel
synthetic approaches to control MOF growth, such as microwave-assisted synthesis and
utilizing templates or scaffolds. Another obstacle pertains to the stability of MOFs in biolog-
ical environments, particularly when exposed to enzymes or other biomolecules. Scientists
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have been exploring post-synthesis modifications, such as surface functionalization with
polymers or peptides, to bolster the stability and biocompatibility of MOFs.

The development of self-powered wearable sensors utilizing MOFs holds great po-
tential for advancing healthcare technology and facilitating the continuous and long-term
monitoring of individuals’ health status. Further research and development efforts in this
domain could address the challenges associated with MOF synthesis, stability in biological
environments, and seamless integration into wearable devices. This progress could lead to
practical and effective healthcare monitoring and diagnostics solutions.

5. Exploring the Potential of MOFs in Biomedical Applications beyond Sensing
and Biosensors
5.1. Catalysis and Biomedical Chemistry

Copper-based MOFs have been shown by Singh et al. [72] to benefit biomedical
applications beyond sensing and biosensors by serving as efficient and regioselective
catalysts in click reactions. These MOFs offer high porosity, recyclability, and unusual
catalytic activity. Simms et al. [73] also proposed a comprehensive analytic and analytical
perspective of MOFs as efficient catalysts in biomedical applications, advancing research in
the field. Their study provides molecular insights into MOFs’ potential as nano-zymes for
hydrolysis reactions.

Zhu et al. [74] demonstrated that MOFs play an essential role in biochemistry by
providing a platform for efficient catalysis and molecular-level insights, and this was
evident through their study of the active site behavior of Ru@MIL-101(Cr) catalysts in
alcohol conversion, which revealed that MOFs serve as efficient supports for the catalytic
process. Saleh et al. [75] demonstrated the efficient synthesis of a novel Yttrium-Metal-
Organic Framework catalyst using microwave synthesis techniques. The Y-MOF was then
evaluated for its potential as a nanocatalyst in synthesizing pyrazolopyranopyrimidine
derivatives, showing promising anticancer properties against breast cancer cells. This study
contributes to the advancement of biomedical chemistry. It highlights the potential of MOFs
as efficient and recyclable catalysts for synthesizing bioactive compounds with potential
applications in cancer therapy. It is worth mentioning Melchiorre et al.’s study [76] on
the ketalization of glycerol with ethyl levulinate catalyzed by MIL-88A to highlight the
importance of research into the development of efficient and sustainable heterogeneous
catalysts for the advancement of new technologies in biomedicine, such as drug synthesis
or biomaterials production.

5.2. Tissue Engineering and Medical Imaging

MOFs have the potential for 3D tissue scaffolds. Kang et al. [77] created an exosome-
functionalized PLGA/Mg-GA MOF scaffold to accelerate bone regeneration with enhanced
osteogenic, angiogenic, and anti-inflammatory properties. The platform showed out-
standing biocompatibility and excellent osteogenic differentiation of hBMSCs. Slowly
released exosomes stabilized the bone graft environment, ensured blood supply, and ac-
celerated bone regeneration. This approach offers promise for bone tissue regeneration.
Zhuang et al. [78] explored the use of MOFs for developing contrast agents that can provide
more precise morphological and pathophysiological details for diagnosing and treating
glioblastoma. The potential of iron oxide-, manganese (Mn)-, gadolinium (Gd)-, 19F-,
and copper (Cu)-incorporated nanoplatforms for GBM imaging, as well as dual-modal or
triple-modal nanoprobes, were discussed as means to overcome the limitations of each
imaging modality.

Han et al. [79] developed a two-dimensional MOF, D-ZIF-67, with high oxidase-like
activity for glutathione detection. This work provides a simple platform for visual GSH
detection and highlights the potential of MOFs as nano-zymes in biomedicine.
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5.3. Wound Healing and Bacterial Infections

Due to the need for effective skin wound healing treatments, Wang et al. [80] developed
a donut-like copper/nicotinic acid MOF and composite hydrogels with superior bio-activity.
Their discovery showed that the rough surface of the MOF facilitated the efficient loading
and release of primary fibroblast growth factors, promoting angiogenesis and collagen
deposition. Bacterial infections, another challenging area of biomedicine, where studying
metal-organic compounds begins to take a broader profile, were also partly addressed by
Sheta et al. [81]. Their research highlighted the ability of Fe(III)-MOF to inhibit the growth
of bacteria, fungi, and yeasts, with excellent antimicrobial efficacy, at a concentration of 50
and 25 µg/mL Fe(III)-MOF. These results pave the way for using these materials as effective
and safe antimicrobial agents. Chen et al. [82] reviewed the antibacterial applications of
2D molybdenum sulfide (MoS2) and its derivatives, highlighting their potential to address
bacterial infections. They discussed the material’s structural characteristics, antibacterial
performance, mechanisms of action, and the challenges and perspectives in the field.
However, the review did not specifically focus on MOFs in biomedical applications.

5.4. Advanced Technologies in Biomedicine

The study on Fe-BTC by Mannias et al. [83] highlights the potential of MOFs in biomed-
ical applications, specifically in the one-pot immobilization of biomolecules. According to
Falahati et al. [84], metal-organic frameworks with nanozyme activity have shown promis-
ing results in biomedical applications, particularly in biocompatible nano-/micro-motors,
which can improve the motor behaviors in the propulsion function, conductivity, targeting,
and possible elimination in cancer therapy. The development of MOF-NZs-based nanomo-
tors could address ongoing problems in the field and pave the way for more effective cancer
treatment. However, reducing the toxicity of the required propellants remains a challenge.

5.5. Immuno-Therapy Interventions

A specific example of MOF application in immuno-therapy is RiMO-301, a hafnium-
based MOF. A phase 1 dose-escalation study of RiMO-301 in conjunction with palliative
radiation has been conducted in advanced tumors, as highlighted by Koshy et al. [85].
RiMO-301 has been shown to enhance the antitumor effects of ionizing radiation via a novel
radiotherapy-radio dynamic therapy mode. This unique action enhances radiotherapy and
amplifies the immunotherapeutic effects of immune checkpoint inhibitors. The clinical trial
revealed promising signs of efficacy, demonstrating the potential of RiMO-301 as a radio-
enhancer. Furthermore, hafnium-based MOF nanoparticles, such as UiO-66-NH2(Hf), are
being explored as radiosensitizers to improve radiotherapy efficacy in esophageal cancer
by enhancing X-ray absorption, as illustrated by Zhou et al. [86]. By inducing apoptosis in
tumor tissues and increasing radiation absorption, MOFs such as UiO-66-NH2(Hf) optimize
the overall efficacy of immunotherapy treatments. The strategic application of MOFs in
these contexts supports the development of more effective and personalized treatment
strategies, marking a significant advancement in immuno-therapy interventions.

6. Conclusions and Future Perspectives

Metal-organic frameworks represent versatile platforms for biomedical applications
due to their tunable properties, high surface area, and ability to form complex three-
dimensional network structures that can accommodate various molecules. MOFs have
shown great promise in drug delivery, biomolecule recognition, sensing, biosensors, wound
healing, catalysis, tissue engineering, bacterial infections, and medical imaging. In drug
delivery applications, MOFs can improve the solubility and bioavailability of poorly soluble
drugs, and they have been explored for their utility in cancer therapy. Moreover, MOFs can
represent some “ideal drug delivery systems” where the organic component can represent
the drug itself in a broad sense of the term (including vitamins, neurotransmitters, classical
drugs, etc.). At the same time, the metal can be oligo-elements (Cu, Zn, etc.), and these
components can be released by disassembling.
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Additionally, MOFs can deliver genes, making them a promising tool for various gene
delivery therapies. MOFs’ high tunability and specificity recommend them for recognizing a
wide range of biomolecules, making them valuable tools for diagnosing and treating various
diseases and studying cancer. MOFs have also shown promise in multiple applications,
including disease diagnosis and treatment, plastic waste upcycling, and blood analysis
and purification. MOFs have unique properties that make them suitable for biomolecule
sensing, including high surface area, tunable pore sizes, and functional groups. MOFs
can be used as supports for enzymes, encased in MOFs, and protected against harsh
environments, providing a stable and robust platform for enzyme-based biosensing. MOFs
also possess intrinsic enzyme-like activity, known as nano-zymes, which can mimic the
actions of natural enzymes. MOFs have great potential in detecting biomolecules associated
with various diseases, including cardiac and circulatory diseases and cancer.

In biomedical applications beyond sensing and biosensors, MOFs have shown promise
as efficient and regioselective catalysts in click reactions, efficient supports for catalytic
processes, and effective antimicrobial agents. MOFs are also potentially used in 3D tissue
scaffolds and as contrast agents for medical imaging. Additionally, MOFs can be used for
visual glutathione detection and developing biocompatible nanomotors for cancer therapy.

Future research on MOFs in biomedical applications should address their challenges,
such as precisely controlling their properties and interactions with biological systems.
Researchers need to develop post-synthesis modifications to enhance the stability and
biocompatibility of MOFs in biological environments. Furthermore, addressing toxicity
and remaining challenges in the field is critical for fully exploring the MOF’s potential in
biomedical applications.

In conclusion, MOFs represent versatile platforms for biomedical innovation with
enormous potential in various applications. Future research on MOFs should focus on fully
addressing the challenges and exploiting their potential in biomedical applications. With
continued research and development, MOFs have the potential to revolutionize the field of
medicine and improve the quality of life for many people worldwide.
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