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Abstract: The accurate prediction of alloying effects on the martensitic transition temperature (Ms)
is still a big challenge. To investigate the composition-dependent lattice deformation strain and the
Ms upon the β to α′′ phase transition, we calculate the total energies and transformation strains for
two selected Ti−Nb−Al and Ti−Nb−Ta ternaries employing a first-principles method. The adopted
approach accurately estimates the alloying effect on lattice strain and the Ms by comparing it with
the available measurements. The largest elongation and the largest compression due to the lattice
strain occur along ±[011]β and ±[100]β, respectively. As compared to the overestimation of the Ms

from existing empirical relationships, an improved Ms estimation can be realized using our proposed
empirical relation by associating the measured Ms with the energy difference between the β and α′′

phases. There is a satisfactory agreement between the predicted and measured Ms, implying that
the proposed empirical relation could accurately describe the coupling alloying effect on Ms. Both
Al and Ta strongly decrease the Ms, which is in line with the available observations. A correlation
between the Ms and elastic modulus, C44, is found, implying that elastic moduli may be regarded
as a prefactor of composition-dependent Ms. This work sheds deep light on precisely and directly
predicting the Ms of Ti-containing alloys from the first-principles method.

Keywords: Ti alloys; β→ α′′ phase transition; lattice strain; first-principles calculations; elastic properties

1. Introduction

Ti-based alloys are good potential candidates in biomaterials due to their excellent
biocompatibility and low elastic modulus. TiNi-based shape memory alloys (SMAs) have
been successfully used in orthodontic archwires [1] and bone implants [2]. To avoid the
hypersensitivity and toxicity of the Ni element, it is, therefore, necessary to develop Ni-free
biomedical SMAs [3–32]. Particularly, TiNb-based SMAs have attracted great attention because
of their excellent shape memory effect and superelasticity. There has been broad investiga-
tion on TiNb-based alloys, such as Ti−Nb−Al [4–6], Ti−Nb−Ta [7–11], Ti−Nb−Zr [12–14],
Ti−Nb−Sn [15–18], Ti−Nb−Zr−Ta [19,20], and Ti−Nb−Zr−Sn [21–23].

The phase transformation temperature of pure Ti from the α phase (hexagonal close-
packed (hcp)) to β phase (body centered-cubic (bcc)) is 1154 K [3]. When the content of β-
stabilizing elements is low, the hcp martensite (α′) and orthorhombic martensite (α′′) can be
created from the β austenite phase by high-speed cooling [33]. Additionally, the hexagonal
ω phase can be generated from the β phase via severe plastic deformation [34–36] and from
the α′ phase under the drive of high-temperature torsion [33,35,37–40]. The ω phase is
detrimental to the shape memory effect and superelasticity of martensite. In this work, we
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mainly focus on the phase transition of β to α′′. To some extent, alloying elements can tune
the mechanical properties and phase transformation temperature of Ti alloys. Upon adding
β-stabilized elements, such as Nb and Mo, Nb can stabilize the β phase and lower the
transformation temperature of Ti alloys [41,42]. Both experiments [5,7,12,13,15,23,41,43,44]
and first-principles calculations [45–48] have extensively investigated TiNb-based SMAs.
From an experimental point of view, the alloying of Al [5], Zr [44], Sn [15], and Ta [7] into
Ti−Nb alloys can affect superelasticity, shape memory effect, and martensite transition
temperature (Ms). It has been reported that the Ms linearly decreases by about 40, 30, 38,
and 150 K with 1 at. % increases in Nb [43], Ta [7], Zr [44], and Sn [15] additions, respectively.
Ti−Nb22−xTa (x = 2–8, in at. %) ternary alloys display a stable shape memory effect and
superelasticity at room temperature (RT). Note that the compositions mentioned here are
given in at. %. Since the ω phase has an adverse effect on the shape memory effect, it is
found that the doping of Al can greatly hinder ω formation [26,27]. From a theoretical point
of view, Neelakantan et al. [45] proposed a thermodynamics-based model to estimate the
Ms of Ti alloys. They created a linear relation between the predicted Ms and molybdenum
equivalent ([Mo]eq), suggesting that the predicted Ms increases with decreasing [Mo]eq.
Minami et al. [47] and Sun et al. [48] correlated the Ms and the energy difference between
the β and α′′ phases in Ti−Nb binaries. Moreover, C′ and C44 are regarded as predictors of
composition-dependent Ms in Ni2MnGa-based SMAs [49] and Ti−Ni binary alloys [50].
Since the overestimation of the existing predicted Ms compared to the measurements, there
is still a big challenge to directly predict the Ms through first-principles methods.

Another challenge is to enhance the recoverable strain of the material while reducing
the Ms meantime. The recoverable strain of Ti−Nb SMAs is around 3% [41] and is smaller
than that of Ti−Ni superelastic alloys [51]. Both recoverable strain and the Ms in TiNb-based
SMAs [7,9,52] increase with decreasing Nb content. Namely, there is a conflict between high
deformation strain and low Ms in TiNb-based SMAs [48]. The contradiction between the
strain and the Ms can be alleviated by alloying [53], owing to the coupling alloying effects.
Compared to the strong Nb effect [41] on the transformation strains of Ti-Nb binaries,
Al [4–6,54] and Ta [7,9] elements have a weaker influence on transformation strains in
Ti−Nb−X ternary alloys. For instance, a maximum recoverable strain of 4.7% appears if
doping 3 at. % Al into Ti−24Nb−Al alloys [4]. Alloying Ta can reduce the transformation
strains along [011]β on average by 0.28%/1 at. % [9]. However, the alloying effect of
Nb [41], Al [4–6,54], and Ta [7] show similar magnitude orders on the Ms. The measured
Ms decreases by 40, 40, and 30 K, with an increase of 1 at. % Nb, Al, and Ta, respectively.

To overcome low recoverable strain and high Ms trade-off, Sun et al. [48] calculated
the lattice deformation strains using a first-principles method. Meanwhile, they correlated
calculated energy differences between the β and α′′ phases and the measured Ms for
Ti−Nb binaries and, thus, estimated an empirical relationship [48] to predict the Ms of
multi-principal element alloys. It has been found that the trade-off is somehow improved
or even broken by alloying. Such empirical relationships [48] can roughly describe the
composition dependence of the Ms [48]; however, it overestimates the measured Ms to
some extent. Aiming to accurately predict the Ms, here, we take Ti−Nb−Al and Ti−Nb−Ta
as representative alloy systems to search for a better correlation between the Ms and the
change in energy. In the present work, theoretical equilibrium lattice constants, lattice
strains, and total energies in the β → α′′ phase transformation for Ti−22Nb−(0–10)Al
and Ti−22Nb−(0–10)Ta ternary alloys are calculated using a first-principles method. A
pseudobinary approach is ‘used to associate the measured Ms with the calculated energy
difference between the β and α′′ phases. A satisfied agreement is acquired between the
predicted and measured Ms. Based on our proposed relationships considering the coupling
effect of alloying, the estimated Ms can accurately reproduce the composition dependence
of measured Ms. Furthermore, it is found that elastic moduli, C44 and C′, may be regarded
as prefactors of the composition-dependent Ms. This work can precisely predict alloying
effects on the Ms of Ti-based alloys from first-principles calculations. The computational
methods are described in detail in Section 2. The results and discussion of the alloying
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effect on the lattice deformation strain, stereographic projections of the lattice strains, and
comparisons between the predicted and measured Ms for Ti-based alloys are shown in
Section 3. We put forward a conclusion in Section 4.

2. Methodology

The total energies were calculated using the first-principles exact muffin-tin orbitals
(EMTO) [55] method. The self-consistent calculations were performed using the Perdew–
Burke–Ernzerhof (PBE) generalized gradient approximation [56]. The Kohn–Sham equa-
tions were solved with scalar-relativistic approximation and soft-core approximation. To
integrate the valence states below the Fermi level, Green’s function was calculated for 16
complex energy points. The basis sets included the s, p, d, and f orbitals in EMTO. The
alloys considered here were nonmagnetic. The random distribution in a solid solution was
described by the coherent-potential approximation (CPA) [55], implying that the degree of
the atomic order of a solid solution is treated in a completely disordered way. To process
the electrostatic correction to the CPA, the screened impurity model [57] was used with a
screening parameter of 0.6. The k point meshes were carefully chosen to describe the tiny
changes in energy for different phases. Hence, the used k point meshes were 25 × 25 × 25
and 11 × 11 × 11 for the β and α′′ phases in the irreducible Brillouin zone. The theoretical
equilibrium lattice constant was determined by fitting the total energies of nine different
atomic volumes based on a Morse equation of states.

Based on the crystallographic relationship among the β, α′′, and α phases [9,41,48],
the α′′ phase is equivalent to the β phase if b/a = c/a =

√
2 and shuffle y = 0, while the

α′′ phase turns into the α phase if b/a =
√

3 and y/b = 1/6. Consequently, four variable
parameters, including the Winger–Seitz radius (w, in Bohr), the axis ratios of c/a and b/a,
and shuffle y, dominate the total energy upon the β→ α′′ phase transition. It is found that
a small volume difference produces a relatively tiny energy difference of less than 0.2 mRy
for a given phase [58]. Therefore, to reduce the complexity of structural optimization, we
ignore the influence induced by volume on different phases when calculating the total
energy and consider total energy as functions of b/a, c/a, and y. In the present study, the
range of the b/a is 1.40–1.75, and the interval of the c/a is 1.40–1.70. The interval of y is set
from 0 to 1/6b for every b/a and c/a. Spline interpolation is chosen to find the equilibrium
shuffle y in each group of b/a and c/a. Then, two-dimensional cubic interpolation is used
to determine the equilibrium b/a and c/a.

The cubic austenite phase has three independent elastic constants [59,60]: C11 (the
uniaxial deformation along [001]β), C12 (the shear stress at (110)β along [110]β), and C44
(the shear deformation along (100)β). The mechanical stability criteria for a cubic crystal
are C44 > 0, C11 + 2C12 > 0, and C11 − C12 > 0. The standard technique [61–64] was used to
calculate the C11, C12, and C44. Theoretical values of C′ and C44 were calculated by using
the EMTO-CPA method [65]. The C11 and C12 were computed from bulk modulus, B = 1/3
(C11 + 2C12), and tetragonal shear constant, C′ = (C11 − C12)/2. The k point meshes were
assigned as 29 × 29 × 29 for the β phase.

3. Results and Discussion

Transformation strain principally affects shape recovery strain. The martensitic trans-
formation strain depends on lattice strain and lattice correspondence [9,41,48,53,66]. The
lattice correspondence between the β austenite phase and α′′ orthorhombic martensite
phase is displayed in Figure S1 and can be described, as below:

[100]β − [100]α′′ , [010]β −
1
2
[011̄]

α′′
, [001]β −

1
2
[011]

α′′
.

[100]α′′ − [100]β, [010]α′′ − [011]β, [001]α′′ − [01̄1]β. (1)
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The lattice deformation strains η1, η2, and η3 [9,41,48,53,66] along the three principal
axes of [100]β, [011]β, and [011]β are written as follows:

η1 =
a′ − aβ

aβ
, η2 =

b′ −
√

2aβ√
2aβ

, η3 =
c′ −
√

2aβ√
2aβ

. (2)

where a′, b′, and c′ represent the lattice constants of the α′′ phase and aβ is the lattice
parameter of β phase.

Figure 1 shows the present theoretical equilibrium lattice constants of Ti−22Nb−xX
(x = 0–10, X = Al, Ta) in the β and α′′ phases, compared with the available experimental
data [4,9,11] in the β phase. Theoretical lattice constants from our static calculations are
generally smaller than the experimental values. The partial reason may come from ignoring
the thermal expansion caused by temperature effects. Alternatively, the deviation between
calculation and measurement partially contributes to the different alloy compositions in our
selected Ti−22Nb−Al and the measured Ti−24Nb−Al. However, the same composition
dependence of the lattice constant appears for both theoretical calculations and available
measurements. For example, the lattice constant aβ of Ti−Nb−Al ternaries decreases
about 1.07 × 10−3 Å/1 at. % with an increase in Al, which is consistent with the available
experimental decrement of 1.71 × 10−3 Å/1 at. % [4] and 1.9 × 10−3 Å/1 at. % [6]. For
Ti−Nb−Ta ternaries, aβ keeps almost constant at around 3.26 Å, which is in line with the
previous first-principles calculations [67].
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Figure 1. Theoretical equilibrium lattice constants of (a) aβ in β phase and (b) a′, (c) b′, (d) c′ in α′′

phase for Ti−22Nb−xX (x = 0–10, in at. %; X = Al, Ta) as a function of alloying elements, compared
with the available experimental values [4,9,11].

Like the decreasing aβ of Ti−Nb−Al, the lattice constants a′, b′, and c′ of Ti−Nb−Al
in the α′′ phase also linearly decrease with increasing Al content. The a′, b′, and c′ of
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Ti−Nb−Al reduce by 1.37 × 10−3 Å, 6.76 × 10−4 Å, and 1.85 × 10−3 Å with a 1 at. %
increase in Al, respectively. The situation becomes complex for α′′ Ti−Nb−Ta ternaries.
The a′ of Ti−Nb−Ta is insensitive to Ta content, but the b’ first decreases and then increases
with increasing Ta content, while the c′ shows a linear increasing trend. Such complicated
composition dependence agrees with the available measurement [9] and first-principles
calculations [67], although the changes in a′, b′, and c′ for a given Ti−Nb−Ta system are
somehow scattered [9,67]. For example, the a′, b′, and c′ for Ti−37.5Nb−(12.5, 18.75)Ta
alloys [67] increase as Ta content increases, while the a′ (b′ and c′) increases (decrease) with
alloying Ta into Ti−(14–18)Nb−(0–10)Ta alloys [9], differing from the theoretical trends in
Figure 1b–d. This deviation may come from different Nb and Ta contents and different
experimental processes.

In Figure 2a–c, we display the lattice deformation strains η1, η2, and η3 of Ti−22Nb−xX
(x = 0–10, in at. %; X = Al, Ta) using Equation (2). It is generally accepted that there is a
positive correlation between lattice strain and recoverable strain in SMAs [32,48]. From
Figure 2, it can be observed that η1 is negative, while η2 is positive, indicating that the
martensitic contracts (expands) the lattice along the [100]β ([011]β) direction. This finding is
consistent with the available measurements in Ti−Nb−Ta [9]. Note that η1 (η3) is the largest
(smallest) among all three deformation strains in Ti−Nb−Al and Ti−Nb−Ta ternaries. For
Ti−Nb−Al alloys, the absolute magnitudes of η1 and η2 (η3) increase (decreases) with
increasing Al content, relative to the increase (decrease) in lattice strain. Additionally,
the doping of Al produces different variations in lattice strains, which is different from
previous theoretical [48] and measured [41,43] observations in Ti−Nb binary alloys. Unlike
Ti−Nb−Al, the composition dependence of η1, η2, and η3 of Ti−Nb−Ta ternary alloys is
opposite to that of Ti−Nb−Al. The absolute magnitudes of both η1 and η2 (η3) reduce
(increases) with increasing Ta content, implying a decrease (increase) in lattice strain. It is
found that the present predicted η2 increases (decreases) with alloying Al (Ta), which is in
line with former first-principles calculations [47]. Note that theoretical aβ in the β phase is
smaller than the available experimental one by an overall error of 1.2%, as shown in Figure 1.
The calculated a′ in the α′′ phase is also underestimated, but theoretical b′ and c′ are rather
close to the measurements. Therefore, the absolute magnitudes of η1, η2, and η3 calculated
by Equation (2) are all larger than the available measurements [6,9,11]. The measured η1, η2,
and η3 in Ti−24Nb−3Al [6] are −2.96%, 2.98%, and −0.04%, respectively. The measured
η1, η2, and η3 in Ti−17Nb−10Ta [9] are −2.28%, 2.56%, and −0.38%, respectively, and the
measured η1, η2, and η3 in Ti−22Nb−6Ta [11] are−2.07%, 2.47%, and−0.44%, respectively.

Kim et al. [41] proposed an approach to calculate the maximum transformation strain
(εi

M) along a certain orientation and the average maximum transformation strain (ε̄M) for a
polycrystal with randomly distributed grains. Following Kim’s approach [41], the lattice
distortion matrix (T) during the β→ α′′ phase transformation relative to the coordinates of
the β phase can be illustrated, as in Equation (3):

T =


a’
aβ

0 0

0 b′+c′

2
√

2aβ

b′−c′

2
√

2aβ

0 b′−c′

2
√

2aβ

b′+c′

2
√

2aβ

 (3)

Supposing a stochastic vector, ~x, in the β phase is transformed to ~x′ in the α′′ phase due
to martensitic transition, the maximum transformation strain, εi

M, along every orientation,
can be evaluated, as in Equation (4):

εi
M =

∣∣∣~x′∣∣∣− |~x|
|~x| , ~x′ = T~x. (4)
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Figure 2. Theoretically predicted lattice deformation strains (a) η1, (b) η2, (c) η3, and (d) the predicted
average maximum transformation strains, ε̄M, of Ti−22Nb−xX (x = 0–10, in at. %; X = Al, Ta). For
comparison, the available experimental maximum recovery strains [4,7] are also displayed.

Kim’s approach has been successfully applied to predict the εi
M and ε̄M of Ti-Nb bina-

ries [41,68] and TiNb-based ternaries [9,66]. To distinguish different strains, Figure S2 in
the Supplementary Materials displays the relationship of the lattice deformation strains
(η1, η2, and η3), the maximum transformation strain (εi

M), and the average maximum trans-
formation strain (ε̄M). According to Equations (3) and (4), 57 representative orientations
(i.e., the vertex and the midpoint of the edge at each standard stereographic triangle, as
shown in Figure S3a) located in the standard stereographic circle are chosen to exhibit the
stereographic projections of lattice strains along (100)β and (001)β, respectively.

Based on Kim’s [41] approach, as shown in Equations (3) and (4), we first choose 13
representative orientations located in the [001]−[011]−[111] standard stereographic triangle
(shown in the Figure S3b) and calculate the εi

M along these orientations. Consequently,
the predicted ε̄M can be obtained by spline interpolation of the εi

M. Thus, we compare
the calculated ε̄M for both Ti−Nb−Al and Ti−Nb−Ta alloys in Figure 2d, along with the
available measured maximum recovery strains [4,7] for comparison. According to Figure 2d,
the ε̄M predicted by Equations (3) and (4) for Ti−Nb−Al and Ti−Nb−Ta ternaries are higher
than the experimental values. This is partially from the underestimation of theoretical aβ

and a′ in the β and α′′ phase. Furthermore, the measured recovered strains also depend on
the tensile strains, which are limited due to the increasing remaining plastic strain. Despite
the fact that the predicted ε̄M for both alloys are somehow overestimated compared to those
of the experimental counterparts, the composition dependence of theoretical ε̄M reproduces
the measurements [4,7]. From Figure 2d, it can be observed that the theoretical ε̄M first
weakly increases and then decreases with an increase in Al and Ta contents, and reaches
a maximum ε̄M of 5.34% (5.25%) in Ti−22Nb−4Ta (Ti−22Nb−2Al). It can be observed
that the maximum recovery strain is about 3.89% in Ti−24Nb−3Al [4] and 3.20% in both
Ti−22Nb−4Ta and Ti−22Nb−5Ta [7] at RT, respectively. For lower Al and Ta contents, the
effect of solid solution strengthening plays a leading role in the increase in the recovered
strain [4,44,69]. With increasing Al and Ta contents, the critical stress may become the
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dominant factor in the previous measurements for TiNb-based alloys [4,7,54,66,70,71]. From
Figure 2d, it can be observed that both the predicted and measured ε̄M of Ti−Nb−Al (except
for Ti−22Nb−4Al) are higher than those of Ti−Nb−Ta, despite the different magnitudes
of ε̄M that appear in our 0 K calculations and RT measurements [4,7]. The deviation for
Ti−Nb−Al may originate from the different compositions used in our calculations and
available measurements [4] and intermetallic compounds or second-phase particles in the
experiments [4,7].

In Figure 3, we demonstrate the contour plots of the lattice strain (Equation (4)) using
stereographic projections on the (100)β and (001)β of the β unit cell in Ti−Nb−Al and
Ti−Nb−Ta ternary alloys. For the sake of simplicity, only 17 orientations are marked
in Figure 3. Deviations from uniform coloring easily illustrate the direction and degree
of deviatoric behavior. The red (blue) color of the contour plots denotes the maximum
negative (positive) strain. The contour plots indicate the maximum transformation strains
of the martensitic transformations in Ti−Nb−Al and Ti−Nb−Ta ternary alloys. From
Figure 3, it can be distinctly observed that the largest elongations are along ±[011]β and
that the largest compressions occur along ±[100]β for Ti−Nb−Al and Ti−Nb−Ta alloys,
agreeing with the observations on Ti−Nb binary alloys [68]. As shown in Figure 3a,b, an
increase in elongated lattice strain ranges from 6.59% to 6.80% as Al content increases, while
an increase in contracted lattice strain ranges from 8.81% to 8.93% for Ti−Nb−Al alloys.
Namely, the largest contraction and the largest elongation in Ti−Nb−Al alloys linearly
increases by 0.02 and 0.07%/at. %, respectively. The situation becomes different for the
Ti−Nb−Ta system. From Figure 3c,d, it can be observed that the largest contraction in the
Ti−Nb−Ta alloys remains almost constant at around 8.80%, while the largest elongation
decreases by 0.03%/at. % with increasing Ta content.

We calculate the total energies, E, at the corresponding equilibrium volume (Figure 1a)
of the β phase in each composition. After fixing the shuffle y, the total energy contours of
the β to α′′ phase transformation for Ti−22Nb−xX (x = 0–10, in at. %; X = Al, Ta) are plotted
in Figure 4 as a function of the ratios of b/a and c/a. From Figure 4, it can be seen that
the most stable phase in the Ti−22Nb binary alloy appears to be the α′′ phase (c/a = 1.60,
b/a = 1.65), which is in line with the available experimental results [72–74] on Ti−Nb
binaries. The c/a and b/a of the α′′ phase (as shown in Table S1) for the Al-containing and
Ta-containing ternaries remain almost unchanged, agreeing with the available measurement
on Ti−Nb−Ta alloys [9]. Additionally, the predicted shuffle y (as shown in Table S1) for
Ti−Nb−Ta ternary alloys is almost constant and is around 1.50, while the calculated y
for Ti−Nb−Al alloys declines from 1.50 to 1.43 with increasing Al content. This finding
indicates that Al has a greater ability to lower shuffle y than Ta, suggesting greater capacity
on the lattice distortion induced by Al.

The energy difference, ∆Eβ→α ′′ (∆Eβ→α ′′ = Eα ′′ − Eβ, in mRy), between the β and
α′′ phases indicates the relative stability of the β and α′′ phases. The ∆Eβ→α ′′ < 0 shows
that the α′′ phase is more stable than the β phase. If the absolute value of the ∆Eβ→α ′′

becomes smaller with increasing alloying elements, the relative stability of the α′′ phase is
regularly weakened and the ability to generate the β phase is gradually promoted. From
Figure 4, it can be seen that the change in ∆Eβ→α ′′ in the Ti−Nb−Al system is from −1.12
to −0.94 mRy with increasing Al content, revealing that the relative stability of the α′′

phase weakly decreases. The ∆Eβ→α ′′ of Ti−Nb−Ta alloys varies from −1.12 to −0.39 mRy
with increasing Ta content, implying that the relative stability of the α′′ phase strongly
decreases. This finding demonstrates that Ta [7,75] is a much stronger β stabilizer in Ti
alloys than Al [26], implying that Ta distinctly promotes the formation of the β phase when
compared to doping Al. The available measurements have shown that both Nb and Al can
act as β stabilizers in TiNb-based alloys [26,54,70,71]. From Figure 4, it can be observed
that both Al and Ta can reduce energy differences in different magnitudes, but Ta shows a
much stronger ability to stabilize the β phase than Al. Moreover, Al can reduce the energy
difference between the β and α′′ phases in Ti−Ta−Al ternary alloys [27].
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Figure 3. Stereographic projections of the lattice strains associated with the β→ α′′ phase transfor-
mation (a,c) along (100)β and (b,d) along (001)β for Ti−22Nb−xX (x = 0–10, in at. %; X = Al, Ta) from
Equations (3) and (4). The largest elongation and the largest compression appear along ±[011]β and
±[100]β, respectively.

For the sake of convenience, the martensitic transformation temperature is investigated
based on a proposed hypothesis. In this work, we approximate the two Ti−Nb−Al and
Ti−Nb−Ta ternaries into individual Ti−(Nb + Al) and Ti−(Nb + Ta) pseudobinaries,
respectively. Since the measured Ms decreases by 40, 40, and 30 K with an increase of
1 at. % Nb, Al, and Ta, respectively, it is indicated that the doping of Nb [41], Al [4–6,54],
and Ta [7] shows a similar magnitude order on the Ms. Alternatively, it is found that the
calculated ∆Eβ→α ′′ for different Ti−Nb−Al alloys having the same (Nb + Al) content is
almost the same (as shown in Figure S4). Namely, our calculated ∆Eβ→α ′′ is insensitive
to specific alloy components. Therefore, it is assumed that different Ti−Nb−Al alloys
approximately possess the same ∆Eβ→α ′′ if Ti−Nb−Al alloys contain the same (Nb + Al)
content. Like Ti−Nb−Al, the Ti−Nb−Ta system having the same (Nb + Ta) content exhibits
the same ∆Eβ→α ′′ . Consequently, Table 1 shows that Ti−Nb−X alloys containing the same
(Nb + X) (X = Al, Ta) content have the same predicted Ms due to the same ∆Eβ→α ′′ based
on our pseudobinary hypothesis. For example, the ∆Eβ→α ′′ of both Ti−23Nb−3Al and
Ti−24Nb−2Al is the same as that of Ti−22Nb−4Al since these three alloys contain the
same (Nb + Al) content. Namely, they have the same ∆Eβ→α ′′ of −1.141 mRy and then
possess the same predicted MAl

s of 335.2 K.
Figure 5a,b plot the available measured Ms [4,6,7] and the present theoretical ∆Eβ→α ′′

for Ti−22Nb−xX (x = 0–10, X = Al, Ta) ternary alloys as functions of the (Nb + X) (X = Al, Ta)
content. Note that the values of the ∆Eβ→α ′′ are all negative, indicating that the α′′ phase is
more stable than the β phase. The absolute value of ∆Eβ→α ′′ decreases with increasing Al
and Ta contents, signifying that the relative stability of the α′′ phase is gradually weakened
and the tendency to generate the β phase is enhanced. This finding agrees with the available
observations on Ti−Nb−Al [4] and Ti−Nb−Ta [7].

It is still a challenge to directly predict the Ms using a first-principles method. Based
on former first-principles calculations [47,48], the lower the absolute ∆Eβ→α ′′ , the lower the
Ms. Furthermore, Minami et al. [47] and Sun et al. [48] correlated the Ms and the ∆Eβ→α ′′

between the β and α′′ phase for Ti−Nb binaries. Their correlations can qualitatively predict
the composition dependence of the Ms. However, the evaluated Ms derived from their
empirical relationships [47,48] greatly overestimated the measurements overall. Despite
the fact that the alloying effect on TiNb-based ternaries [47,48] and high-entropy alloys [48]
has been qualitatively investigated, there is no quantitative research on TiNb-based ternary
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systems. Furthermore, extensive experimental observations have used different functions,
such as linear [41,43,47], 1.5 degrees [45], and cubic polynomial [46], to fit the Ms for
different Ti−Nb binary alloys. Therefore, these functions [41,43,45–47] used in binary
systems may lower the accuracy of Ti-based ternary and multicomponent alloys due to the
ignorance of the coupling effect of alloying elements. In this work, the coupling effect of
alloying elements is considered by adopting a pseudobinary hypothesis on Ti−(Nb + Al)
and Ti−(Nb + Ta) systems.
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Figure 4. Total energy contours (in mRy) of the β and α′′ phase transformation for (a) Ti−22Nb−xAl
(x = 0–10, in at. %) and (b) Ti−22Nb−xTa (x = 0–10, in at. %) ternary alloys as a function of the ratios of
b/a and c/a from first-principles calculations. All energies are plotted relative to the corresponding β

phase minima. The pink solid circles and pink open circles represent the β and α′′ phases, respectively.
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Table 1. Theoretically calculated energy difference (∆Eβ→α ′′ , in mRy) between the β and α′′ phases
and estimated martensitic transformation temperature (Ms, in K) for Ti−Nb−Al and Ti−Nb−Ta
(in at. %) alloys. Note that the predicted MAl

s and MTa
s are derived from Equations (5) and (6),

respectively. For comparison, we show the available experimental MExpt,Al
s [4,6] and MExpt,Ta

s [7] and
the evaluated M1

s from former empirical relationships [48].

(a) Ti−Nb−Al ∆Eβ→α ′′ MAl
s M1

s [48] MExpt,Al
s

Ti−22Nb−2Al −1.153 354.8 625.4 -
Ti−22Nb−4Al −1.141 335.2 623.2 -
Ti−22Nb−6Al −1.098 260.3 615.2 -
Ti−22Nb−8Al −1.025 116.9 601.1 -

Ti−22Nb−10Al −0.938 −85.5 583.5 -
Ti−23Nb−3Al −1.141 335.2 623.2 241 [6]
Ti−24Nb−3Al −1.126 309.1 620.4 201 [6]
Ti−24Nb-1Al −1.147 344.5 624.3 274 [4]

Ti−24Nb−2Al −1.141 335.2 623.2 263 [4]
Ti−24Nb−3Al −1.126 309.1 620.4 248 [4]
Ti−24Nb−4Al −1.098 260.3 615.1 232 [4]

(b) Ti−Nb−Ta ∆Eβ→α ′′ MTa
s M1

s [48] MExpt,Ta
s

Ti−22Nb−2Ta −0.907 351.4 577.1 -
Ti−22Nb−4Ta −0.777 302.0 548.9 312 [7]
Ti−22Nb−5Ta −0.714 276.9 534.5 272 [7]
Ti−22Nb−6Ta −0.632 242.9 514.6 243 [7]
Ti−22Nb−7Ta −0.586 223.2 503.2 211 [7]
Ti−22Nb−8Ta −0.523 195.5 486.7 192 [7]

Ti−22Nb−10Ta −0.388 132.6 448.1 -
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tively. For comparison, we show the available experimental 𝑀s
Expt,Al
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Expt,Ta
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1 from former empirical relationships [48]. 
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Ti−22Nb−4Al −1.141 335.2 623.2 - 

Ti−22Nb−6Al −1.098 260.3 615.2 - 

Ti−22Nb−8Al −1.025 116.9 601.1 - 

Ti−22Nb−10Al −0.938 −85.5 583.5 - 

Ti−23Nb−3Al −1.141 335.2 623.2 241 [6] 

Ti−24Nb−3Al −1.126 309.1 620.4 201 [6] 

Ti−24Nb-1Al −1.147 344.5 624.3 274 [4] 
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Ti−22Nb−8Ta −0.523 195.5 486.7 192 [7] 

Ti−22Nb−10Ta −0.388 132.6 448.1 - 
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Figure 5. Theoretically calculated energy difference (∆Eβ→α ′′ , in mRy) for (a) Ti−22Nb−xAl (x = 0–10,
in at. %) and (b) Ti−22Nb−xTa (x = 0–10, in at. %) as a function of alloying elements, as well as the
available measured martensitic transformation temperature (Ms, in K) [4,6,7]. The measured alloys
are Ti−(16, 18, 23, 24)Nb−3Al [6], Ti−24Nb−(0–4)Al [4], and Ti−22Nb−(4–8)Ta [7] ternary alloys.
For completeness, Ti−22Nb [7] and Ti−24Nb [6] binary alloys are also displayed.

Here, we construct the relationships between the calculated composition-dependent
∆Eβ→α ′′ for Ti−(Nb + Al) and Ti−(Nb + Ta) pseudobinaries with the measured Ms. In this
way, one may accurately determine the Ms employing first-principles calculations.

Since the alloying elements Al and Ta have different influences on the energy difference
between the β and α′′ phase, we separately fit two empirical relationships by connecting
our theoretical ∆Eβ→α ′′ with the measured Ms for Ti−Nb−Al [4,6] and Ti−Nb−Ta [7]
alloys. For the Ti−Nb−Al system, an empirical relationship derived from Figure 5a can be
expressed, as in Equation (5):

MAl
s =

(
−8383× 10∆Eβ→α′′/1.13

)
+ 1154.3 (5)
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For the Ti−Nb−Ta system, another empirical relationship draw from Figure 5b can be
fitted, as in Equation (6):

MTa
s =

(
−1119× 10∆Eβ→α′′/4.36

)
+ 1044.4 (6)

where the unit of MAl
s and MTa

s is K, and the unit of ∆Eβ→α ′′ is mRy. Although Al and Ta
have similar alloying effects on the Ms, their influences on the energy difference, ∆Eβ→α ′′ ,
are different. As shown in Equations (5) and (6), the different coefficients of ∆Eβ→α ′′ for
Al-containing and Ta-containing systems are 1.13 and 4.36, respectively. Based on the
∆Eβ→α ′′ calculated from first-principles calculations, the theoretical Ms for Ti−Nb−Al and
Ti−Nb−Ta alloys can be quickly predicted from Equations (5) and (6), respectively.

To assess the reliability of the predicted MAl
s by Equation (5) and MTa

s by Equation (6), Ta-
ble 1 displays the present predicted MAl

s and MTa
s , the available MExpt,Al

s and MExpt,Ta
s [4,6,7],

and the estimated M1
s from former empirical relationships [48] for Ti−Nb−Al and Ti−Nb−Ta

alloys. The composition dependence of the present predicted Ms for Ti−Nb−Al and
Ti−Nb−Ta alloys reproduces their experimental counterparts. For Ti−Nb−Ta, the average
error between the predicted MTa

s by Equation (6) and available MExpt,Ta
s [7] is about 4%.

Compared to the current MAl
s and MTa

s , the predicted M1
s by former empirical relation-

ships [48] shows the unreasonable composition dependence of Ti−Nb−Al and Ti−Nb−Ta
alloys and is greatly overestimated relative to the experimental counterparts [4,6,7]. When
compared to the measurements [4,6], an opposite alloying effect of Al on the Ms can be
estimated by fitting an empirical equation [45]. Therefore, the present empirical relation-
ships of Equations (5) and (6) accurately predict the Ms, corresponding to former empirical
relationships [45,48]. As shown in Table 1, the error between MTa

s and MExpt,Ta
s is relatively

smaller than that of MAl
s and MExpt,Al

s . The deviation in Equation (5) for Ti−Nb−Al may
result from the different alloy compositions used in our calculated ∆Eβ→α ′′ and the mea-

sured MExpt,Al
s [4,6]. The prediction of Equation (5) may further deteriorate for higher (Nb

+ Al) contents, such as the predicted MAl
s of −85.5 K for Ti−22Nb−10Al.

As shown in Table 1 and Figure 6, both the present predictions and available mea-
surements [4,6,7] qualitatively predict the similar composition dependence of Ms, despite
the fact that the predicted MAl

s and MTa
s are somehow higher than the relative MExpt,Al

s

and MExpt,Ta
s . The predicted Ms decreases by 28 and 30 K with an increase of 1 at. % Al

and Ta, corresponding to a decrease in the measured Ms by 13 [4] and 30 K [7], respec-
tively. Both MTa

s and MExpt,Ta
s begin to fall below RT when x > 4 at. % Ta. The case is

quite complex for Ti−Nb−Al. The predicted MAl
s for Ti−22Nb−xAl starts to fall below

RT if x > 6 at. % Al. However, the MAl
s for Ti−23Nb−xAl and Ti−24Nb−xAl (except for

Ti−24Nb−4Al) are above RT, while the MExpt,Al
s [4,6] are below RT. However, the predicted

MAl
s decreases by 46 K/1 at. % Nb for Ti−(23–24)Nb−3Al alloys, which is consistent with

the measured decline of 40 K and 40 K for Ti−Nb binary alloys [41] and Ti−Nb−Al ternary
alloys [6], respectively. This finding suggests that the coupling effect of alloying elements
are appropriately described based on our pseudobinary hypothesis.

To further directly compare the discrepancy between our predicted and measured Ms,
in Figure 6, we plot the predicted Ms for Ti−Nb−Al by Equation (5) and for Ti−Nb−Ta and
Ti−Nb−Zr by Equation (6), along with the measured Ms for Ti−Nb−Al [4,6], Ti−Nb−Ta [7,13],
and Ti−Nb−Zr [12,13,44] ternary alloys. Since Zr and Ta have similar alloying effects
on the Ms, we assume that the energy difference, ∆Eβ→α ′′ , in the Ti−Nb−Zr alloy is
approximate to the ∆Eβ→α ′′ in the Ti−Nb−Ta alloy when the (Nb + Zr) content is equal to
the (Nb + Ta) content. As shown in Figure 6, there are average errors of about 28%, 4%, and
13% between our predicted and measured Ms for Ti−Nb−Al [4,6], Ti−Nb−Ta [7,13], and
Ti−Nb−Zr [12,13,44], respectively. It can be concluded that there is a general agreement
between the prediction and measurements.
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Figure 6. Comparison between present predicted and available experimental [4,6,7,12,13] martensitic
transformation temperature (Ms, in K) for Ti−Nb−Al (green circles), Ti−Nb−Ta (red squares), and
Ti−Nb−Zr (blue pentagons) ternary alloys. The estimated Ms in Ti−Nb−Al is from Equation (5),
while the predicted Ms in Ti−Nb−Ta and Ti−Nb−Zr is from Equation (6).

Ren and Otsuka [76] explained the compositional dependence of Ms using the Landau-
type model. In the process of martensitic transformation, elastic modulus decreases grad-
ually with cooling and reaches a critical value before martensitic transformation [76].
Therefore, if the elastic constants C′ and C44 of the β phase increase, the cooling should
continue to lower temperatures before a critical elastic constant and Ms decreases. The
critical elastic constraint of martensite alloys is temperature-independent. Therefore, when
the elastic modulus changes, the Ms must also change due to critical elastic constraints. The
relationship [76] between the Ms and elastic modulus (C) can be approximately expressed
as follows:

dMs

dC
= − 1

γC
(7)

where the Ms is the martensitic transformation temperature, C is the elastic modulus (the C
can be either C44, C′, or some other elastic modulus), and γ is the temperature coefficient of
elastic modulus. Therefore, the increase in the martensite temperature is consistent with the
decrease in elastic modulus. The relationship proposed by Ren and Otsuka [76] has been
widely accepted for investigating the Ms for TiNi-based [50,77,78], Cu−Al−Mn [79], and
Ni-based [49,80–82] systems. These studies [49,50,77–82] have treated elastic modulus as
one of the indicators to predict martensite temperature. For example, Cao et al. [81] used C′

to evaluate the Ms, indicating that a large C′ would inhibit martensite transformation. That
is, besides the energy difference, ∆Eβ→α ′′ , the elastic moduli, C′ and C44, can be considered
as predictors of the Ms [49,50], implying a correlation between the elastic moduli (C′ and
C44) and the Ms.

In Figure 7, we display the calculated C′ and C44 and the predicted MAl
s and MTa

s , as
well as the available experimental MExpt,Al

s [4,6] and MExpt,Ta
s [7] as a function of alloying

elements. As for Ti−Nb−Al ternary alloys, C44 (C′) increases (decreases) with increasing
Al content, corresponding to a decrease in MAl

s and MExpt,Al
s . For Ti−Nb−Ta ternary alloys,

both C44 and C′ increase, whereas MTa
s and MExpt,Ta

s decrease with increasing Ta content.
From Figure 7a,b, it can be observed that for both Ti−Nb−Al and Ti−Nb−Ta alloys, the
larger the calculated C44, the lower the Ms. There is a similar relationship between the
calculated C′ and MTa

s and MExpt,Ta
s for the Ti−Nb−Ta system in Figure 7d. However,
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such a relationship connecting C′ with Ms is invalid for Ti−Nb−Al, as shown in Figure 7c.
This finding implies that the elastic modulus, C44, may be regarded as a prefactor of the
composition dependence of the Ms.
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Figure 7. Theoretically estimated martensitic transformation temperature (Ms, in K) and elastic
moduli, C44 and C′, (in GPa) for (a,c) Ti−22Nb−xAl (x = 0–10, in at. %) and (b,d) Ti−22Nb−xTa
(x = 0–10, in at. %) ternary alloys. The available measured Ms for Ti-Nb-Al [4,6] and Ti-Nb-Ta [7]
ternary alloys are shown for comparison. Note that the available measured alloy compositions are
Ti−(16, 18, 23, 24)Nb−3Al [6] and Ti−24Nb−(1–4)Al [4] for Ti-Nb-Al alloys and Ti−22Nb−(4–8)Ta [7]
for Ti−Nb−Ta alloys. For completeness, the Ms of Ti−22Nb [7] and Ti−24Nb [4] are also displayed.
Note that different colored arrows in the figure mark the Ms, C44, or C′, respectively.

4. Conclusions

Using first-principles EMTO-CPA calculations, we systematically calculated the total
energy contours, lattice deformation strains (η1, η2, and η3), maximum transformation
strains (εi

M), and the martensitic transition temperature (Ms) during the β → α′′ phase
transformation for two selected Ti−Nb−Al and Ti−Nb−Ta ternary alloys. The present
theoretical calculations and the available experiments gave the same composition depen-
dence on the lattice strains and Ms. As for the calculated stereographic projections of lattice
strains alongside phase transformation along (100)β and (001)β, the largest elongation
and the largest contraction due to the lattice strain occurred along ±[011]β and ±[100]β,
respectively. The addition of Al and Ta increased and decreased the transformation strain
by 0.07 and 0.03%/at. %, respectively.

The effect of either Al or Ta additions on the energy difference (∆Eβ→α ′′ ) between
the β and α′′ phases was also studied, suggesting that both Al and Ta can lower ∆Eβ→α ′′ .
The relative phase stability of α′′ gradually weakened but the tendency to generate the β
phase became stronger as Al and Ta contents increased. Aiming to directly assess the Ms
from first-principles calculations, two empirical relationships were fitted by associating
the measured Ms with the calculated ∆Eβ→α ′′ . When compared to the overestimation
by the existing relationships, there was a satisfactory agreement between the predicted
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and measured Ms, implying that the proposed relationships could accurately describe the
coupling effect of alloying elements on the Ms. In this work, the theoretically predicted
Ms were reduced by around 46, 28, and 30 K with an increase of 1 at. % Nb, Al, and Ta,
respectively, corresponding to measured declines in Ms by 40, 40, and 30 K, respectively.
Moreover, there was a correlation between Ms and C44, implying that an elastic modulus
can be used as a prefactor to evaluate composition-dependent Ms. This work can contribute
to accurately estimating the Ms of Ti-based alloys.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16176069/s1. Figure S1. The crystal structures and the lattice
correspondence of the β, α′′ and α phase; Figure S2. The relationship of the lattice deformation strains
(η1, η2, and η3), the maximum transformation strain (εi

M), and the average maximum transformation
strain (ε̄M); Figure S3. Schematic diagram for selected representative orientations of stereographic
projections of the lattice strains associated with the β→ α′′ phase transformation; Figure S4. The
calculated energy difference ∆Eβ→α ′′ for Ti−(0−40)Nb−(0−20)Al alloys; Table S1. Predicted b/a, c/a
and shuffle y of Ti−22Nb−xX (x = 0, 2, 4, 6, 8, 10, in at. %; X = Al, Ta) alloys. References [83,84] can
be found in Supplementary Materials.
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