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Abstract: Massive amounts of deposited coal gangue derived from the mining industry constitute a
crucial problem that must be solved. On the other hand, common knowledge about the recycling
of glass products and the reuse of waste glass is still insufficient, which in turn causes economic
and environmental problems. Therefore, this work investigated lightweight geopolymer foams
manufactured based on coal gangue, metakaolin, and a mix of them to evaluate the influence of
such waste on the geopolymer matrix. In addition, the effect of 20% (wt.) of waste glass on the
foams was determined. Mineralogical and chemical composition, thermal behaviour, thermal con-
ductivity, compressive strength, morphology, and density of foams were investigated. Furthermore,
the structure of the geopolymers was examined in detail, including pore and structure thickness,
homogeneity, degree of anisotropy, porosity with division for closed and open pores, as well as
distribution of additives and pores using micro-computed tomography (microCT). The results show
that the incorporation of waste glass increased compressive strength by approximately 54% and
9% in the case of coal-gangue-based and metakaolin-based samples, respectively. The porosity of
samples ranged from 67.3% to 58.7%, in which closed pores constituted 0.3–1.8%. Samples had
homogeneous distributions of pores and additions. Furthermore, the thermal conductivity ranged
from 0.080 W/(m·K) to 0.117 W/(m·K), whereas the degree of anisotropy was 0.126–0.187, indicating
that the structure of foams was approximate to isotropic.

Keywords: micro-computed tomography (microCT); TG-FTIR; thermal conductivity; foam; porosity

1. Introduction

A continuous increase in the global population is associated with growing housing
needs and the demand for building materials [1]. Due to its ease of manufacture, low cost,
versatility, and easy accessibility, concrete is the most commonly used construction material
around the world [2]. However, it is noteworthy that the cement industry is responsible for
emitting an enormous amount of carbon dioxide released during cement manufacturing,
which constitutes 6–8% of total global anthropogenic emissions worldwide, even reaching
12% in China [3,4].

On the other hand, civilization progress and simultaneous technological development
cause an increased demand for energy. Glushkov et al. [5] noticed that in recent years,
energy consumption has grown by around 2–3% annually. Despite many efforts undertaken
by the European Union countries, coal is still the most commonly used fossil fuel around
the world [6]. In many countries, such as China [7], Australia [8], India [9], Poland [10],
and the Czech Republic [11], this conventional energy source is one of the most significant
constituents of domestic energy structure.

Coal gangue is a widespread inert solid waste developed from coal extraction, con-
stituting about 15–20% of coal output, which in practice means that the production of 1 t
of coal is associated with obtaining about 0.12 to 0.20 t of coal gangue [12]. Therefore, it
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is considered the most significant industrial type of waste in China, where over 6 billion
tons of it is deponed annually [13]. Overall, coal gangue is mostly deposited, and therefore
occupies a significant surface area on the one hand; on the other hand, it leads to soil
degradation and the formation of geologic danger [14]. Many reports in the literature
emphasised the capacity for combustion of coal gangue as a result of self-heating and
reactions under air conditions, which is a threat to coal mines and all society as well due to
the releasing of noxious gases into the atmosphere [15,16].

Another source is municipal waste, defined as waste of various origins, which is
collected from households, factories, or institutional buildings. Their number is constantly
growing due to economic development and the commonly accepted consumer lifestyle.
One of them is waste glass, which constitutes 5.8% of all types of generated waste [17].
Glass is a well-known material, which is commonly used all over the world, and according
to the literature data, every person consumes approximately 21 kg of glass per year [18].
Obviously, glass waste can be subjected to recycling and reusing, but statistics show that
the global recycling rate reached only 21% [19]. The cause for this outcome lies in multiple
colours of waste glass, which represent a crucial impediment in the recycling process and
generates high costs due to the various chemical composition of each colour of waste glass.
Furthermore, contamination occurring in the waste can also affect the chemical composition,
hindering the recycling process [20]. Therefore, a huge amount of waste glass is constantly
deposited, which in turn is connected with indispensability to bear the high costs.

Geopolymers constitute a group of modern and continuously developed materials,
fabricated during the geopolymerisation process and more precisely through alkaline activa-
tion of silica-aluminous starting materials [21]. The geopolymer term was invented by Davi-
dovits in 1972, who described them as aluminosilicate, characterised by a three-dimensional
structure and formed as a result of activation by means of an alkaline solution [22,23]. Be-
sides their environmental friendliness, geopolymers exhibit up-and-coming properties,
proving the possibility of widespread prospective application [24]. Nevertheless, it should
be highlighted that waste materials can be used for geopolymer production, such as con-
struction and demolition waste [25], magnetic mining waste [26], brick waste [27], waste
glass [28], and coal gangue [29].

Nowadays, geopolymer foams are applicable in a wide range of sectors of industries
as thermal insulation of buildings, acoustic insulation, catalyst support, fire resistance,
pH regulators, filters, and even flowerpots [30–32]. In general, one of the most popular
methods for foam production relies on introducing chemical substances called foaming
agents or surfactants into the material, which most often are aluminium powder, silicon
powder, and hydrogen peroxide H2O2 [33]. However, it is worth mentioning that the
properties of foams depend on many factors, such as type of base material [34] and its
particle size [35], stabilizing agent [36], applied additive [37], curing conditions [38], and
sintering application [39].

In recent years, the production of lightweight foam ceramics is becoming more and
more popular in the scientific community. For instance, Zhang et al. [40] developed new
glass-ceramic foams based on vitrified municipal solid waste incineration ashes, which
were heated at 1150 ◦C for 2 h in the last stage of the manufacturing process. Researchers
obtained materials characterised by porosity in the range of 79.23–88.35% and compressive
strength of 0.36 to 5.55 MPa [40]. On the other hand, Li et al. [41] investigated glass-
ceramic foams consisting mainly of recycled fluorite tailings and waste glass, which were
produced at 1100 ◦C for 90 min. da Costa et al. [42] in their work applied waste glass,
bentonite, and alumina in glass-ceramic foams, which were sintered at temperatures
ranging from 750 ◦C to 800 ◦C, achieving porosity at the level of 52 to 85% and flexural
strength of 0.2–3.7 MPa simultaneously. Overall, there is a lot of novel research focused on
the application of waste glass in foams production, but the sintering process that requires
high energy consumption and generates carbon dioxide is key in the great majority of
them to obtain appropriate high porosity, low density, and at the same time relatively high
mechanical properties [43–45]. However, it should be emphasised that the application
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of such high temperatures is connected with high energy consumption, which in turn
negatively affects economic and ecological aspects. Therefore, it was shown that waste
glass can also be used as an additive to the geopolymer matrix with the omitting of the
sintering process [46]. Furthermore, it was proven that the most beneficial is to use waste
glass with particle size below 75 µm due to the high pozzolanic reactivity; however, it also
causes energy consumption related to its fragmentation [47].

Although it was proved that in general coal gangue is an appropriate raw material
for geopolymer production, its utilization of it is still insufficient [48]. The possibility of
waste application in the production of construction materials, which are characterised
by an appropriate thermal conductivity, will be beneficial with regard to environmental
protection. On the other hand, such a solution could have a positive effect on energy saving,
especially concerning components intend for energy-saving buildings [49,50].

This work presented for the first time the possibility to obtain eco-friendly lightweight
coal-gangue-based geopolymer foams reinforced with glass waste. Moreover, in order
to compare the influence of metakaolin and coal gangue on the geopolymer properties,
samples based on them both, as well as the metakaolin-based geopolymer, were thoroughly
examined. The mineralogical and chemical composition, thermal conductivity, compressive
strength, surface area, density, porosity, morphology, and thermal behaviour of foams
were determined.

2. Materials and Methods
2.1. Materials

The coal gangue was received from the PG Silesia hard coal mine located in Czechowic-
Dziedzice, Poland. The preparation of raw coal gangue included the following stages:
preliminary disintegrating in a jaw crusher; grinding in the mill (Fritsch, Idar-Oberstein,
Germany) to powder with particle size below 75 µm; and calcination at 800 ◦C for 24 h in a
laboratory oven.

Metakaolin was bought from KERAMOST, Plc. company (Most, Czech Republic),
whereas Portland cement with the commercial name CEM I 42,5R was purchased from
Górażdże Cement S.A. company (Heidelberg Cement Group, Chorula, Poland).

Waste glass obtained from brown bottles was received from the local company
Grabowski Export-Import (Sędziszowa, Poland), who crashed and initially cleaned them.
However, there was no used additional cleaning; therefore, the bottles still contained con-
tamination, such the remnants of labels. Furthermore, considering the energy-saving idea,
the received waste glass did not undergo any additional milling.

A mixture consisting of 8 M sodium hydroxide solution and sodium silicate aqueous
solution (R-145, ChemiKam, Będzin, Poland) mixed in a ratio of 1:2.5 was used as an
alkaline solution. In geopolymer manufacturing, the liquid to solid ratio was established
at 0.4.

The solution of hydrogen peroxide H2O2 (Chempur, Piekary Śląskie, Poland) with a
concentration of 35% and density of 1.133 g/mol was used as a foaming agent.

2.2. Geopolymer Manufacturing Process

The first step in geopolymer manufacturing was mixing dry components, such as
metakaolin, calcined coal gangue, cement, waste glass, and syringaldehyde, in order to
obtain a homogeneous mix. The substitution level of waste glass was fixed based on a
previous study, indicating that the optimal amount of this material in the geopolymer foams
reached 20% by weight [51]. Commercially available cement with a high CaO content in the
amount of 10% by weight was added to enhance pozzolanic reactiveness [52]. Moreover,
syringaldehyde (chemical formula: HOC6H2(OCH3)2CHO) was added in the amount of
0.15% (wt.) as a stabiliser, which was selected based on the literature review [53].

Subsequently, the alkaline solution was added, and all components were mixed until
the appropriate consistency of blends was acquired. The alkaline activator was prepared
24 h before use in pursuit to provide the entire course of the exothermic reaction and
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eliminate the possibility of fast setting because of heat hydration [54]. In the next step, the
35% solution of H2O2 in the amount of 3% (wt.) to the dry components was added. After
that, the mixtures were poured into moulds and placed in a laboratory dryer (Chemland,
Stargard, Poland) for 24 h at 75 ◦C. Geopolymers were tested after 28 days of curing at room
temperature. Five types of geopolymer samples were investigated in this explorational
work, and their compositions are given in Table 1.

Table 1. Mix design of geopolymer samples.

Samples Designation Coal Gangue
(%)

Metakaolin
(%)

Cement
(%)

Waste Glass
(%)

C 90 - 10 -
CG 70 - 10 20
M - 90 10 -

MG - 70 10 20
CMG 35 35 10 20

2.3. Methods

Thermogravimetric analysis (TG/DTG) and Fourier-transform infrared spectroscopy
(FT-IR) were performed using a TG-FTIR device NETZSCH TG 209F1 Libra equipped with
an integrated FT-IR system (Erich NETZSCH GmbH & Co. Holding KG, Selb, Germany).
Samples were heated in the temperature range from 25 ◦C to 1000 ◦C with a heating
rate of 10 ◦C/min in an argon atmosphere. FTIR spectra were registered in the region of
600–4000 cm−1.

An X-ray fluorescence (XRF) spectrometer EDX-7200 (Shimadzu Corporation, Kioto,
Japan) was applied to determine the chemical compositions of raw materials and geopolymers.
Particle Size Analyser PSA 1190 LD (Anton Paar, Graz, Austria) was utilised to determine
the particle size distribution.

Determination of mineralogical composition was carried out using a Panalytical
Aeris diffractometer (Malvern Panalytical, Almelo, The Netherlands). Measurements were
recorded in the range 10◦ to 100◦ 2θ, applying Cu Kα radiation, time per step of 340, and
step size of 0.003◦ (2θ). Subsequently, the results were analysed using the High Score
Plus software version 4.8 (Panalytical) and the ICDD database (International Center for
Diffraction Data, PDF4+). The quantitative analysis of mineral phases existing in raw
materials and geopolymers were realised using the Rietveld refinement method.

Nitrogen adsorption–desorption measurements were conducted using Autosorb-
iQ/MP Quantachrome Instruments (Anton Paar, Graz, Austria). The specific surface areas
of investigated materials were determined by the Brunauer–Emmett–Teller (BET) method.

The density of the starting materials and geopolymers was assessed using a helium
pycnometer Pycnomatic ATC Thermo Fisher Scientific (Waltham, MA, USA).

The morphological observation of geopolymers was performed by Keyence VHX-E100
digital microscope (Keyence, Osaka, Japan).

The thermal conductivity (λ) of geopolymers was explored using the heat flow meter
HFM 446 Lambda Series (NETZSCH, Selb, Germany). Measurements were carried out in
3 different temperature ranges: 0–20 ◦C, 20–40 ◦C, and 30–50 ◦C, in accordance with DIN
EN 12667 standard [55].

The compressive strength of geopolymers was evaluated after 28 days of curing in
room conditions using the MTS Criterion Model 43 device (MTS Systems, Eden Prairie,
MN, USA) in accordance with EN 12390:2019 standard [56], and each type of material was
tested using at least 3 cubic samples.

Examination of geopolymers by means of X-ray micro-computed tomography was
performed using Phoenix nanotom s (Skaneateles, NY, USA). Quantitative analysis of
obtained data was carried out using the Fij open-source software version 1.53f51 and Bone J
plugin intended for the investigation of porous structures. The central part of the specimens
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was used as a region of interest (ROI) for the analysis with dimensions of approximately
27 mm × 27 mm × 27 mm.

3. Results and Discussion
3.1. Raw Materials

The raw crushed coal gangue was examined using TG–FTIR thermogravimetric analy-
sis to determine the optimal calcination temperature and explore the gas products emitted
during the heating. The 3D surface plot for TG-FTIR spectra of released gases, the ther-
mogravimetric curve (TG) and its first derivative (DTG), and the 2D FTIR spectra for
distinctive temperatures are shown in Figure 1a–c, respectively. On the basis of the ob-
tained three-dimensional graph (Figure 1a), it is evident that the intensities of individual
absorption bands changed depending on the temperature. The majority of gas products
were released in the temperature range of about 200 ◦C to 1000 ◦C, and this was in line with
the course of TG-DTG curves (Figure 1b). In general, the weight loss of coal gangue was a
four-stage process, as marked on the diagram. These phenomena occurred in the following
temperature ranges: from room temperature to 186 ◦C, 186 to 631 ◦C, 631 to 864 ◦C, and
86 to 1049 ◦C, and that corresponded with mass losses of 0.83%, 11.10%, 2.97%, and 1.48%,
respectively. The first stage was connected with the dehydration process of water and
desorption of gases trapped on the coal gangue surface, and it can be seen that the maximal
effect of these was registered at 71.6 ◦C. After that, the oxidation process started with the
maximum achieved at 205.8 ◦C [57]. Furthermore, the most significant change in mass was
registered at the temperature between 186 and 631 ◦C, with the maximum temperature peak
at 457.7 ◦C in the DTG curve, which occurred as a result of dehydroxylation of kaolinite
and the constituting of metakaolinite [58]. However, it should be noted that after that
stage, two consecutive smaller mass loss steps were observed at the temperature ranges of
631–864 ◦C and 863–1049 ◦C. They could be attributed to the combustion process, including
the decomposition of organic matter [59]. The residual mass of coal gangue registered
at the end of the measurement at 1050 ◦C was 83.62%. As shown in Figure 1c, all of the
FTIR spectra corresponding to the characteristic temperatures consisted mainly of CO2,
H2O, and CO, and this is compliant with the previous work [60]. The difference in the
intensity of the spectra obtained for individual samples can be explained by the amount of
gas released at a specific temperature.

On the basis of the described result, 800 ◦C was fixed as an optimal calcination
temperature of coal gangue. In general, metakaolin can be obtained below this temperature;
nonetheless, this choice was made due to the necessity to remove carbon from the raw
material dedicated to geopolymer manufacturing.

The chemical composition of raw materials is presented in Table 2. Coal gangue in both
stages (before and after calcination) and metakaolin had a quite similar composition, with
two main compounds, SiO2 and Al2O3, which is consistent with previous research [61,62].
The difference between these materials was the Fe2O3 content, which was much higher in
the case of coal gangue compared to metakaolin. On the other hand, ordinary Portland
cement contained CaO in the most enormous quantity, and simultaneously it had about
content of SiO2 that was three times lower than that of coal gangue and metakaolin.
Moreover, taking into account the effect of the used treatment on the coal gangue, it can be
concluded that the calcination process resulted in an increase in Fe2O3 and reduction in SO3
content. The summary content of SiO2, A12O3, and Fe2O3 amounted to 90.168%, 96.680%,
and 97.76% for raw coal gangue, calcinated coal gangue, and metakaolin, respectively, and
consequently, they can be applied as cement material [63].
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Figure 1. Thermal analysis results of coal gangue: (a) the 3D TG-FTIR spectra of emitted gas products; 
(b) TG and DTG curves; (c) 2D TG-FTIR spectra of gas products for representative temperatures. 

  

Figure 1. Thermal analysis results of coal gangue: (a) the 3D TG-FTIR spectra of emitted gas products;
(b) TG and DTG curves; (c) 2D TG-FTIR spectra of gas products for representative temperatures.
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Table 2. Chemical composition of raw materials used for geopolymer production.

Compound
Formula

Raw Material

Coal Gangue
before Calcination

Coal Gangue
after Calcination Metakaolin Cement Waste Glass

Content (%)

SiO2 56.540 53.501 54.851 18.339 81.355
Al2O3 26.180 26.683 41.841 3.673 1.587
Fe2O3 7.448 12.496 1.068 4.524 1.030
K2O 3.898 3.092 1.163 0.745 0.703
SO3 2.437 0.878 0.076 4.202 0.003
CaO 1.677 1.325 0.426 67.745 14.929
TiO2 1.410 1.179 0.309 0.293 0.084
MnO 0.078 0.120 - 0.202 0.068
V2O5 0.075 0.055 0.016 0.017
P2O5 0.062 0.515 0.097 -
SrO 0.044 0.038 0.011 0.130 0.035

Cr2O3 0.033 0.042 - 0.036 0.070
ZrO2 0.030 0.025 0.010 0.010 0.028
ZnO 0.019 0.016 0.006 0.055 0.007
SnO2 0.014 0.012 - -
CuO 0.011 0.010 0.004 0.024 0.007
Y2O3 0.010 0.008 0.002 0.002 0.001
BaO - - - - 0.079

The particle size distribution curves for raw materials are presented in Figure 2, which
points out that metakaolin consisted of the smallest particle size of all investigated materials.
However, the course of obtained curves was fairly similar in the case of metakaolin and coal
gangue, and it consisted of the peak with top constituting particles with sizes of 25 µm and
32 µm for metakaolin and coal gangue, respectively. In contrast, the curve for waste glass
has a bimodal distribution, suggesting that it consisted of particles with a more significant
variation than the previously discussed materials.
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Figure 2. The particle size distribution of waste glass, metakaolin, and coal gangue before the
calcination process.

Table 3 shows the particle size distribution parameters for all starting materials. The
influence of particle size on the properties of the coal-gangue-based geopolymer was earlier
examined by Li et al. [64], and they concluded that the optimal particle size was obtained by
means of grinding and sieving using 200 mesh (74 µm), and the achieved average particle
size (D50) was 10.79 µm. Similarly, in the presented work, D50 of coal gangue amounted to
11.17 µm, and it was measured before calcination. However, for metakaolin, a lower value
of D50 (9.60 µm) by approximately 16% was registered. On the other hand, waste glass was
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characterised by the most enormous particle size (D50 474.9 µm), but the calculated span
was small (1.6 µm).

Table 3. Particle size distribution parameters of waste glass, metakaolin, and coal gangue before the
calcination process.

Material
D10 D50 D90 Mean Size Span

(D90 − D10)/D50
[µm] [µm] [µm] [µm] [µm]

Coal
gangue 1.82 ± 0.05 11.17 ± 0.36 44.32 ± 2.09 18.85 ± 0.81 3.80 ± 0.07

Metakaolin 1.63 ± 0.02 9.60 ± 0.12 32.50 ± 0.81 14.55 ± 0.29 3.21 ± 0.04
Waste glass 111.4 ± 11.7 474.9 ± 18.6 885.2 ± 66.5 541.1 ± 15.30 1.6 ± 0.2

The XRD patterns of raw materials are demonstrated in Figure 3, whereas the results
of the quantitative analysis are summarised in Table 4. However, it is worth noticing that
the presented results of the quantitative analysis were estimated due to the occurrence of
an amorphous phase, which was visible as a diffuse halo between 15◦ and 40◦ 2θ on the
diagram [65]. As a result of the qualitative analysis of coal gangue, the following phases
were identified: quartz (ICDD card numbers: 01-075-8320); Kaolinite-1Ad (ICDD card
numbers: 01-078-2110); Illite-2M1 (ICDD card numbers: 00-026-0911); and Muscovite-2M1
(ICDD card numbers: 00-006-0263). In the comparison of the results of coal gangue before
and after treatment, it was noticed that the difference was in the contents of kaolinite and
quartz. These findings were consistent with the other studies [66,67]. The kaolinite was still
detectable in very low quantities after calcination of coal gangue, indicating that applied
treatment did not cause entire dehydroxylate kaolinite, but it was still highly efficient
as expected. Increasing the content of quartz (SiO2) was also beneficial in terms of the
geopolymerisation process [68]. Moreover, mullite was detected in the metakaolin structure,
which existed as a result of high-temperature treatment [69].

Materials 2023, 16, 6054 9 of 22 
 

 

 
Figure 3. XRD patterns of waste glass, metakaolin, and coal gangue before and after calcination. 

The obtained N2 adsorption–desorption isotherms of raw materials are shown in Fig-
ure 4. According to IUPAC (International Union for Pure and Applied Chemistry) divi-
sion, all of them can be classified as type IV, which is representative of mesoporous adsor-
bents [70]. Hysteresis loops enable the determination of the shape of pores occurring in 
the investigated material, and according to the classification, they exhibited H3 type, in-
dicating the presence of slit-shaped pores. On the other hand, coal gangue in both stages 
showed H3-type hysteresis, which is attributed to slit-shaped pores [71]. 

Figure 3. XRD patterns of waste glass, metakaolin, and coal gangue before and after calcination.



Materials 2023, 16, 6054 9 of 21

Table 4. Quantitative phase analysis of metakaolin and coal gangue before and after calcination.

Raw Material

Identified Mineralogical Compound (%)

Quartz Kaolinite-1Ad Illite-2M1 Muscovite-2M1 Mullite

SiO2 Al2Si2O5(OH)4 (KH3O)Al2Si3AlO10(OH)2 KAl2(Si3Al)O10(OH,F)2 Al6O5(SiO4)2

Coal gangue
before calcination 27.4 49.5 11.5 11.5 -

Coal gangue after
calcination 57.1 0.1 21.4 21.4 -

Metakaolin 6.3 48.0 20.6 20.6 4.6

Furthermore, the true density of raw materials was examined, and it achieved
2.566± 0.001 g/cm3 for metakaolin, 2.507± 0.001 g/cm3 for waste glass, 2.273± 0.001 g/cm3

for coal gangue before treatment, and 2.821± 0.001 g/cm3 for calcinated coal gangue.
The obtained N2 adsorption–desorption isotherms of raw materials are shown in

Figure 4. According to IUPAC (International Union for Pure and Applied Chemistry)
division, all of them can be classified as type IV, which is representative of mesoporous
adsorbents [70]. Hysteresis loops enable the determination of the shape of pores occurring
in the investigated material, and according to the classification, they exhibited H3 type,
indicating the presence of slit-shaped pores. On the other hand, coal gangue in both stages
showed H3-type hysteresis, which is attributed to slit-shaped pores [71].
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The specific surface area of metakaolin determined by means of the multi-BET method
equalled 13.37 m2 g−1 (Table 5), which is consistent with other studies [72,73]. The calcina-
tion process of coal gangue decreased hysteresis loops and specific surface area (by around
50%) and slightly reduced pore volume.
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Table 5. Specific surface area, pore size, and volume of metakaolin and coal gangue before and after
calcination.

Material
Specific Surface Area (m2 g−1) Pore Volume (cm3 g−1) Pore Size (nm)

Single-Point BET Multi-Point BET BJH Pore Volume Total Pore Volume
at P/P0 = 0.99

BJH Average
Pore Diameter

Coal gangue
before calcination 6.476 8.043 0.027 0.027 2.453

Coal gangue after
calcination 3.819 4.150 0.023 0.023 3.056

Metakaolin 12.590 13.370 0.106 0.106 4.317

3.2. Geopolymers

On the basis of the results of the diffraction pattern shown in Figure 5, the mineral
composition of geopolymers consisted of quartz, kaolinite, muscovite, mullite, albite, and
C-S-H existing in the form of rosenhanite. Different from the raw material, all of the
geopolymers contained mullite, albite, and a C-S-H phase. Moreover, the characteristic
diffraction peak derived from quartz at 26.6◦ 2θ had the highest intensity in the case of
the coal-gangue-based sample (C). Cheng et al. [74] suggested that the reduction in its
intensity can be associated with a beneficial impact on compressive strength and therefore
it can be assumed that the addition of waste glass, as well as metakaolin, was profitable.
Furthermore, it can be seen that the intensity of quartz decreased with increasing content
of metakaolin raw material. The quantitative analysis of coal-gangue-based geopolymer
foams did not detect the kaolinite phase, which confirmed that during treatment the inner
hydroxyl structure of kaolinite was reduced, and as a result, an amorphous substance
material was formed [75]. Qualitative analysis of geopolymer (Table 6) showed new phases,
which were albite and C-S-H, proving the reaction between raw materials and alkaline
activator during geopolymerisation [76]. Similarly, results also revealed the mullite phase
in all foams, whereas it was identified only in metakaolin from among raw materials.
In addition, obtaining C-S-H gel, which is characterised by a dense structure, was ben-
eficial due to the possibility to increase the strength of geopolymers [77]. Furthermore,
Table S1 in the Supplementary Materials shows the influence of waste glass, coal gangue,
and metakaolin on the chemical composition of samples. X-ray fluorescence confirmed
that geopolymers mainly consisted of SiO2, Al2O3, Fe2O3, and CaO regarding chemical
composition. According to the results, the incorporation of waste glass slightly changed
the content of SiO2 in foams, as expected. On the other hand, the Al2O3 content, which is
crucial in terms of geopolymerisation process, was higher in metakaolin-based samples.

Representative structures of the produced foams observed under an optical microscope
are shown in Figure 6. The porous structure of geopolymers was formed as a result of the
application of hydrogen peroxide, which exhibits thermal instability in basic media and
then decomposes according to equations the following: H2O2 + OH− −→ HO2

− + H2O
and subsequently HO2

− + H2O2 −→ H2O + O2 + OH− [78,79]. Based on observation, it
was noted that metakaolin-based samples contained smaller pores than their coal-gangue-
based counterparts. Unreacted particles of waste glass are visible in the pore structure,
which can lead to a decrease in mechanical properties. The pore distribution was relatively
homogenised in foams; however, coal-gangue-based samples included voids heading along
the height, and their shape is more irregular than that of samples containing metakaolin.
In general, the macropores were visible in examined samples, and the pore distribution
was quite homogeneous for each type of foam. It should be noted that slightly different
pore shapes were around the edges of the sample, and this can be explained by boundary
conditions and the influence of the applied mould [80].
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Figure 5. XRD patterns of geopolymer foams.

Table 6. Phase composition of investigated geopolymers.

Sample

Identified Mineralogical Compound

Quartz Kaolinite Muscovite Mullite Albite CSH

SiO2 Al2Si2O5(OH)4 KAl2(Si3Al)O10(OH,F)2 Al6O5(SiO4)2 NaAlSi3O8 Ca3Si3O9·H2O

C 27.9 0.0 35.4 10.1 0.2 26.4
CG 22.5 0.0 29.5 11.8 11.3 24.9
M 3.0 0.3 41.2 4.2 21.0 30.3

MG 2.6 0.6 58.9 3.0 16.8 18.0
CMG 9.7 1.0 21.7 9.7 25.0 32.9

Thermal conductivity measurements were conducted in three various temperature
ranges, namely 0–20 ◦C, 20–40 ◦C, and 30–50 ◦C, which are demonstrated in Figure 7. In
general, the thermal coefficient (λ) of geopolymers was in the range of 0.079–0.117 W/(m·K).
The thermal conductivity increased with the rising temperature, which is a well-known
dependence for insulators [81]. The difference in results in thermal conductivity depending
on complied temperature ranged up to 9%, which is visible in the diagram. Moreover,
it was found that the thermal coefficient increased with the addition of waste glass. Fur-
thermore, metakaolin-based samples showed lower values of the thermal coefficient than
foams manufactured using coal gangue. It is well known that the thermal conductivity
of geopolymer foams is dependent on the porosity of samples. The increase in sample
porosity results in obtaining lower thermal conductivity. Based on the morphology analysis,
it can be stated that pores can be open or closed. There was a tendency of closed-cell foams
to demonstrate a lower value of the thermal coefficient than open-cell foams at a similar
density [82]. For example, Smiljanić et al. investigated the thermal conductivity of waste
glass, and they obtained λ coefficients of 1.30 W/(m·K) and 1.28 W/(m·K) for powder in
the delivery condition (D50 17 µm) and after 35 min of milling (D50 8 µm) [83]. The particle
size of the waste glass was too high to dissolve completely in the geopolymer matrix, and
this was also confirmed by microscopy analysis. Therefore, it can be assumed that for the
part quantity of added waste glass, thermal conductivity was close to the state of delivery
and thus higher than for the geopolymer matrix without an additive.
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Moreover, the conducted observations revealed that small inconsistencies, seemingly
cracks, were observed in the coal gangue samples. This phenomenon can explain that the
geopolymerisation process, in the case of using coal gangue, was not as effective as with
using metakaolin.
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Figure 8 displays the density and results of the compressive strength test of geopolymer
foams. It is evident that the incorporation of waste glass had a positive and significant
effect on the mechanical properties. Geopolymers reinforced by waste glass exhibited
approximately 54% and 9% higher compressive strength in the case of coal-gangue-based
and metakaolin-based samples, respectively, compared to samples without the addition.
This visible reduction in the density of foams suggests that the structure pores have changed,
which in turn had an impact on the physical and mechanical properties, such as compressive
strength. Moreover, a dependence between the compressive strength and the density of
foams was found. The waste glass addition resulted in a higher density of geopolymers
as a result of the reduction in pore volume and simultaneously positively affected the
compressive strength. It should be noted, however, that the metakaolin used as the base
material had a positive effect on both reducing the density and increasing the compressive
strength. This phenomenon may be the result of the better homogeneity of the structure of
the metakaolin-based foams.

In order to evaluate the structural properties of the geopolymer, representative samples
were selected and investigated using computer microtomography. The selection criterion
was the content of coal gangue in the sample to evaluate the influence of metakaolin first,
followed by waste glass. The individual characteristic features of the representative samples
of the coal gangue, metakaolin, and the mix of them are presented in graphical form in
Figure 9. Moreover, Table S2 in the Supplementary Materials presents a 3D view of the
sample, a 2D view of the sample (first slice) with a yellow line, and the slice perpendicular
to the marked yellow line.

Furthermore, quantitative analysis of geopolymer foams was performed using Fiji
software. The following features were measured: porosity (including open and closed
pores); inclusions (waste glass designated as WG and stabiliser (syringaldehyde) designed
as S); structure thickness; pores thickness; degree of anisotropy; and homogeneity (consid-
ering three directions: XY, XZ, and YZ and an average value of them). Obtained results are
summarised in Table 7.
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Figure 8. Compressive strength of geopolymer foams.

The porosity of the samples ranged from 69.0% to 58.7%. Comparing the influence of
coal gangue and metakaolin, it can be concluded that a more porous structure was obtained
using metakaolin as a raw material. Similarly, replacing 20% (wt.) of coal gangue with
waste glass generated lower porosity of the geopolymers. In all analysed samples, open
pores dominated the material structure, achieving 68.7%, 56.8%, and 66.9% for C, CG, and
CMG, respectively. In general, two types of inclusions were detected in geopolymers, except
for the C sample, which was consistent with the geopolymer manufacturing procedure,
because only this sample did not include waste glass. The greatest results of structure
thickness, as well as pores thickness were measured for the CG sample, which suggests
that this material had the largest pores and, at the same time, the thickest wall structure.
The smallest size of pores was attributed to the ample manufactured based on a mix, to wit
coal gangue, metakaolin, and waste glass.

It is well known that the degree of anisotropy reaches 0 value for a fully isotropic
structure, whereas a calculated value of 1 means that the structure is anisotropic. Therefore,
it can be concluded that foams had structures approximate to isotropic. Moreover, the
addition of waste glass to the geopolymer resulted in a lower degree of anisotropy, and this
effect was also strengthened by introducing metakaolin. The homogeneity of foams was in-
vestigated in three directions, and it is certain that all fabricated samples had homogeneous
structures, as can be seen from almost identical values of the obtained results.
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Table 7. Characteristic parameters of geopolymer foams, calculated based on the X-ray micro-
computed tomography results.

Sample Porosity Inclusions Structure
Thickness

Pores
Thickness

Degree of
Anisotropy Homogeneity

Total
[%]

Open
[%]

Closed
[%]

WG
[%]

S
[%] [mm] [mm] - XY

[CTN]
XZ

[CTN]
YZ

[CTN] Mean [CTN]

C 69.0 68.7 0.3 - 0.31 0.30 ± 0.08 1.62 ± 0.732 0.187 78.5 ± 15.4 78.5 ± 17.1 78.5 ± 16.3 78.5 ± 16.3
CG 58.7 56.8 1.8 1.08 0.26 0.62 ± 0.20 1.83 ± 0.658 0.156 104.9 ± 21.5 104.9 ± 21.3 104.9 ± 22.7 104.9 ± 21.8

CMG 67.3 66.9 0.4 3.74 0.21 0.33 ± 0.18 1.39 ± 0.569 0.126 82.9 ± 16.2 82.9 ± 17.1 82.9 ± 16.6 82.9 ± 16.6

In order to compare the porosity of all samples, porosity was calculated based on their
apparent densities and true density in accordance with the formula:
Porosity = 1 – (apparent density − true density) [84]. In Figure 10, the obtained results of
porosity, as well as true density, are demonstrated. It can be noticed that the results obtained
by micro-computed tomography and those determined on the basis of density measure-
ments were highly consistent. Similar observations were made by other authors [85]. The
highest porosity had metakaolin-based samples (M), as expected. Subsequently, the addi-
tion of 20% (wt.) of waste glass into metakaolin-based samples (MG) resulted in a decrease
in porosity by around 5% compared to the designed M samples. It is clearly visible that
using coal gangue resulted in lower porosity of geopolymer foams compared to metakaolin.
However, the porosity tended to decrease with the addition of waste glass, regardless of
the applied geopolymer raw material.
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Due to the lack of standards intended for geopolymers, the application of standards
for concrete is a common practice [86]. In general, foam concrete is defined as a lightweight
material that incorporates air voids. On the other hand, it is characterised by appropriate
properties, such as density, thermal insulation, strength, and composition [87]. Based on the
obtained results, it was found that the presented materials, with only one exception for CG
due to the higher density, can be classified as lightweight concretes class III according to the
division of the International Union of Laboratories and Experts in Construction Materials,
Systems and Structures (RILEM). This means that foams comply with the following re-
quirements: Lambda coefficient in the range of 0.065–0.22 W/(m·K); compressive strength
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between 0.7 MPa and 3.4 MPa; and a density of 240–800 kg/m3. Moreover, such materials
were determined as insulating lightweight concrete [88,89].

4. Conclusions

In this work, the results of research focusing on eco-friendly, low-cost geopolymer
foams characterised by low thermal conductivity are presented. Calcinated coal gangue
and metakaolin were used as the starting materials; furthermore, waste glass was applied
as an additive. Based on the obtained results, it was found that manufactured materials
exhibited excellent potential for applications as insulating materials, for instance, of walls,
roofs, and ceilings. Furthermore, the main gaseous products that evolved during the
heating of the raw materials were CO2, H2O, and CO. Coal gangue in both stages (before
and after calcination) and metakaolin had a quite similar composition, with two main
compounds, namely SiO2 and Al2O3, indicating that they can be used as geopolymer
precursors. Metakaolin-based samples contained smaller pores than their coal-gangue-
based counterparts. Pore distribution is relatively homogenised in foams, but notably,
coal-gangue-based samples included voids heading along the height, and their shape is
more irregular than in samples containing metakaolin. In addition, small inconsistencies,
seemingly cracks, were observed in coal-gangue-based samples, which had a negative
impact on their compressive strength. The thermal conductivity of geopolymers was
dependent on the porosity of samples, indicating that the increase in porosity resulted in
lower thermal conductivity. However, the addition of coal gangue, as well as waste glass,
resulted in an increased thermal conductivity coefficient. Geopolymers reinforced by waste
glass exhibited approximately 54% and 9% higher compressive strength in the case of coal-
gangue-based and metakaolin-based samples, respectively, compared to samples without
the addition. The porosity of the samples ranged from 58.7% to 67.3%, and closed pores
constituted only 0.3–1.8% of it. Comparing the influence of coal gangue and metakaolin, it
can be concluded that a more porous structure was obtained using metakaolin as a raw
material. Moreover, the foams, which can be classified as lightweight concretes class III,
had structures approximate to isotropic and they showed simultaneous homogeneous
distribution of pores and additives. The presented research revealed the possibility of
waste management from the mining industry in the building sector. Application of this
type of materials complies with the circular economy concept and therefore should be
developed in the future, especially on an industrial scale.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16176054/s1, Table S1: Chemical composition of geopolymer
foams; Table S2: 3D view of the sample, 2D view of the sample (first slice), slice perpendicular to the
marked yellow line.
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