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Abstract: Cellular automata models have emerged as a valuable tool in corrosion management. This
manuscript provides an overview of the application of cellular automata models in corrosion research,
highlighting their benefits and contributions to understanding the complex nature of corrosion
processes. Cellular automata models offer a computational approach to simulating corrosion behavior
at the microscale, capturing the intricate interactions between electrochemical reactions, material
properties, and environmental factors and generating a new vision of predictive maintenance. It
reviews the key features of cellular automata, such as the grid-based representation of the material
surface, the definition of state variables, and the rules governing cell-state transitions. The ability to
model local interactions and emergent global behavior makes cellular automata particularly suitable
for simulating corrosion processes. Finally, cellular automata models offer a powerful and versatile
approach to studying corrosion processes, expanding models that can continue to enhance our
understanding of corrosion and contribute to the development of effective corrosion prevention and
control strategies.

Keywords: cellular automata; corrosion management; simulation corrosion; modeling corrosion

1. Introduction

Corrosion refers to the irreversible reaction between a material and its environment,
which can result in the degradation of the material and its properties. It is a natural pro-
cess that occurs when a metal is exposed to oxygen and moisture [1]. It has a significant
economic impact, representing approximately 3.4% of the global Gross Domestic Product
(GDP) [2,3]. Moreover, corrosion can lead to disruptions in activities and decrease the
efficiency and productivity of affected industries. While catastrophic failures due to corro-
sion have not been reported in solar thermal power plants, there are potential risks. For
example, the Fukushima nuclear plant accident prompted the search for alloys that can
withstand extreme operating conditions [4]. In the case of solar thermal power plants with
thermal energy storage systems (TES), various corrosion mechanisms can occur, such as
intergranular corrosion and mechanically assisted corrosion [5].

Cellular automata are computational models used to study the behavior of complex
systems by simulating their evolution over time. Consist of a regular grid of cells, each
of which can exist in a finite number of states and interact with its neighboring cells
according to a set of rules. These rules govern the transition of cells from one state to
another and can be based on simple local interactions or more complex global behaviors.
The concept of cellular automata was first introduced by mathematician John von Neumann
in 1940 [6], but cellular automaton pioneer John Conway popularized the idea in 1970.
This manuscript recollects the main information about cellular automata models applied in
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corrosion management as an interesting tool for control and/or predictive maintenance of
different types of corrosion and factors that contribute to corrosion.

2. Cellular Automata as Tools in Corrosion Management

Corrosion management refers to the systematic approach of preventing, controlling,
and mitigating the effects of corrosion on materials and structures. It involves implement-
ing strategies and practices to minimize the impact of corrosion, extend the service life,
warrant safety, and reduce the maintenance and replacement of pieces or parts [7]. Effective
corrosion management includes preventive measures such as using corrosion-resistant
materials, applying protective coatings or inhibitors, and proper new designs and con-
siderations for regular inspection and maintenance. Corrosion management entails the
proactive implementation of preventive measures, including conducting regular inspec-
tions, performing thorough risk assessments, selecting appropriate materials, designing
and constructing structures to minimize corrosion exposure, and employing a range of
protective techniques, including coatings, corrosion inhibitors, cathodic protection systems,
and other advanced technologies [8].

To effectively manage corrosion, a comprehensive understanding of the corrosion
mechanisms associated with the Hydrogen Evolution Reaction (HER), Oxygen Reduction
Reaction (ORR), and Oxygen Evolution Reaction (OER) is crucial, along with a deep knowl-
edge of the operating environment and the factors that can either accelerate or mitigate
corrosion. Additionally, it is essential to consider the applicable regulations and safety
standards from NACE [8] or another standard that can apply regarding corrosion preven-
tion across various industrial sectors, including petrochemicals [9], aeronautics [10], ship-
building and maritime infrastructure [11–14], energy [15], mining [16], nuclear waste [17],
microbial induced corrosion (MIC) [18], and atmospheric corrosion [19], among others.
By incorporating this knowledge, industries can develop robust corrosion management
strategies that ensure the safety, longevity, and optimal performance of their assets and
infrastructure.

In the realm of corrosion management, the integration of computational techniques [20]
and mathematical models [21] has emerged as an invaluable approach for comprehending
and efficiently tackling the intricate behavior of corrosion processes. Among the array of
techniques available, three stand out as particularly beneficial: cellular automata [22], Pois-
son processes [23], and Monte Carlo methods [24–27]. By harnessing these computational
tools, researchers and engineers gain access to distinctive perspectives and capabilities,
empowering them to simulate, analyze, and predict corrosion phenomena with remarkable
precision and dependability.

The typical models, such as Cellular Automata, the Monte Carlo model, and Poisson
processes, are mathematical models that can be utilized in different aspects of corrosion
management. In the field of corrosion, cellular automata have proven valuable in providing
information on the behavior of corrosion metals and alloys in contact with aggressive
environments [28,29]. The cellular automata models generate interactions between electro-
chemical reactions, mechanical stresses, and material degradation, providing insights into
the initiation, propagation, and evolution of various types of corrosion. By incorporating
the influence of environmental factors, cellular automata models can be utilized to optimize
corrosion-resistant materials.

Cellular automata models have proven to be valuable tools in corrosion management
and mitigation strategies because it is possible to obtain predictive information on the be-
havior of the metal in contact with aggressive oxidizing agents [8,13,18,20,28,30]. They offer
a computational framework for simulating and understanding the complex behavior of
corrosion processes [31], enabling researchers and engineers to develop effective corrosion
management techniques. The key applications of Cellular Automata models in corrosion
management are (i) predicting corrosion propagation, which can simulate the propagation
of corrosion in metallic structures such as pipelines, bridges, or storage tanks [32]. These
models can predict the spatial and temporal evolution of corrosion damage and help in
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identifying critical areas with corrosion and planning targeted inspection and mainte-
nance activities [33]. (ii) Cellular Automata help to understand the factors contributing to
corrosion initiation, propagation, and the formation of localized corrosion features such
as pits and crevices [34]. (iii) Cellular Automata can also be used to optimize corrosion
management strategies by exploring different scenarios [22] and decision-making processes.
These models can evaluate the cost-effectiveness of various corrosion control measures,
optimize inspection and maintenance schedules, and assess the long-term performance and
durability of materials under different environmental conditions. (iv) Cellular Automata:
the assessment of corrosion-related risks in different scenarios, considering environmental
parameters, material properties, and corrosion rules; these models can estimate the proba-
bility and severity of corrosion-induced failures, allowing for better risk mitigation and
resource allocation [35]. (v) Cellular Automata can serve as an educational tool to enhance
the understanding of corrosion processes among students and professionals in the field;
by visualizing corrosion behavior and the effects of different factors [36], these models
facilitate learning and provide a platform for exploring corrosion management strategies.

By utilizing Cellular Automata models in corrosion management, researchers and
engineers can gain valuable insights into corrosion processes, optimize corrosion control
measures, and develop proactive strategies to mitigate the detrimental effects of corrosion.

2.1. Fundamentals of Cellular Automata for Corrosion

The Cellular Automata model was initially proposed by John Von Neumann and
corresponds to an idealization of a physical system where time and space are discrete and
physical quantities take on a finite set of values [6]. Space is represented by a grid of cells,
and each cell has a specific state. In a simplistic way, the state of a cell can be assigned as
either alive or dead (0 or 1), indicating its characteristic.

To clarify, for an entity to be classified as a Cellular Automata, it must adhere to the
following structure. A regular grid of cells that covers a part of a d-dimensional space.

A set Φ
(→

r,t
)
=
{
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r,t
)
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where
→
r +

→
δ k denotes cells belong to a specific neighborhood.

In the above definition, the rule R is applied to all sites simultaneously, leading to
synchronous dynamics [36].

In the context of corrosion, the cell state can represent the presence of an element,
a compound, or a corrosion product. The state of a cell changes over time depending
on its own state and that of its nearest neighbors. Figure 1 shows a grid of cells where
the cell undergoing a state change is represented in black, while the cells enclosed in
a black frame (neighborhood) are the ones that influence this change, considering the
state of their neighbors. This figure represents the three most commonly used types of
neighborhoods: Von Neumann, Moore, and Margolus. In the Von Neumann neighborhood
(a), four neighbors are considered, located to the east, north, west, and south of the
changing cell. On the other hand, in the Moore neighborhood (b), there are eight neighbors
surrounding the central cell. Finally, in the Margolus neighborhood, the change process
is more complex as it depends on both space and time. Firstly, the space is divided into
a 2 × 2 square. The first state change of cell lr occurs at an odd time, considering the
neighbors in the upper square (ul, ur, ll, lr). In the next iteration, during even time, the state
of cell lr is updated considering the neighbors in the square represented by dashed lines.
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The neighborhood used traverses the entire grid, and through a set of transformation
rules, the new state of each cell will be determined until the total update of the grid is
completed, which represents the first generation (iteration) of the model. The rules and
configuration of the Cellular Automata model in corrosion simulations are specific to each
phenomenon to be studied.

Table 1 presents a comprehensive summary of the results published in popular science
journals, which have been utilized to support our bibliographic review.

In addition to the cellular automata model, another computational approach used to
simulate the phenomenon of corrosion is the finite element model (FEM). FEM is primarily
based on the discretization of the domain into finite elements, allowing for a detailed
representation of the geometry and properties of the metal. This is ideal for studying
more localized behavior and investigating the microstructure of materials during corrosion.
FEM utilizes differential equations of the physicochemical phenomena involved during
corrosion, such as electrochemical equations, which are numerically solved to obtain
solutions. FEM can study the corrosion process over time, considering environmental
conditions and material responses.

On the other hand, the model presented in this review utilizes a representation based
on the use of cell grids, providing a more macroscopic view of corrosion processes. The
state of the cells is governed by predefined rules that represent the corrosion mechanism to
be simulated, allowing for the visualization of emerging patterns and collective behaviors.
These behaviors can be simulated over time by updating the states of the cells in successive
iterations, capturing the progression of corrosion step by step.

Unlike FEM, which consumes more computational resources due to solving differential
equations and domain discretization, the Cellular Automata model exhibits better efficiency
in modeling larger and more complex systems.

Due to the demonstrated potential of the cellular automata model, this review primar-
ily focuses on this model and does not consider others, such as FEM.

2.1.1. Uniform Corrosion Model

Fairén et al. [31] analyzed the evolution of surface roughness in the studied corroded
theoretical metal. They examined the agreement between a classical macroscopic descrip-
tion and a mesoscopic approach that accounts for the development of such roughness. They
studied how morphology could influence the modeling, finding that the model could simu-
late the mesoscopic heterogeneity of the electrode surface and its impact on the uniform
corrosion process. Part of their study determined that further research was still needed to
fully understand the relationship between the electrochemical mechanism involved, the
steps determining corrosion rate, and the morphology of the electrode surface.

Badiali et al. [37–39] studied the formation of films on a surface in the presence of
corrosion, diffusion, and precipitation at the growth front. Obtaining results that show
that the growth of the layer follows a parabolic law and that the model can be useful for
predicting and controlling corrosion growth in metallic structures, pipes, and equipment,
as well as for developing new corrosion-resistant materials. Chen et al. [40,41] studied
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the corrosion and oxidation mechanisms of stainless steel in lead-bismuth eutectic (LBE)
environments, a liquid metal used as a coolant in some advanced nuclear reactors and
accelerator-driven systems; in [42], the medium was supercritical water. The model con-
sidered diffusion, reaction, and precipitation processes occurring on the steel surface, and
a mesoscopic description was used to explore the general characteristics of the evolution
of the involved processes. Additionally, they aimed to predict how oxide scale removal
occurs and how it affects metal corrosion, concluding that the Cellular Automata model
is useful for understanding these mechanisms. Chen et al. [43] focused on simulating the
growth of the oxide layer in chromium-containing stainless steels. Their objective was to
verify whether the stochastic nature of the Cellular Automata model for uniform corrosion
would generate unstable or unreasonable results deviating from the deterministic model for
uniform corrosion of steel in flowing LBE. Their results showed that the Cellular Automata
model is stable and reliable for simulating the thickness of the oxide layer. Chen et al. [35]
proposed a numerical simulation method to predict the evolution of uniform corrosion
damage to the outer steel tube in concrete-filled tubular columns subjected to corrosive
environments. They discussed the influence of solution concentration and the probability of
dissolution of corrosive agents. The obtained results were compared with theoretical solu-
tions and experimental findings. They concluded that different concentrations of corrosive
agents have different impacts on the degree of corrosion damage. Ren et al. [44] simulated
the uniform corrosion of aluminum in various environmental conditions. They defined
corrosion rules based on the actual electrochemical reactions and examined the corrosion
process at a mesoscopic scale. By studying corrosion formation and modifying the rules
for different concentrations of corrosive solutions and ambient temperatures, they gained
insights into corrosion mechanisms. The simulation results contribute to a better under-
standing of corrosion and can aid in its prevention and mitigation, especially in aeronautical
structures where corrosion can lead to fatigue-induced damage, compromising structural
integrity. Li et al. [45] sought to gain a better understanding of the corrosion evolution of
marine structural steel in the tidal zone and how corrosion can be prevented or mitigated in
this environment. Their objective was to comprehend the corrosion mechanisms in the tidal
zone, identify the factors influencing the corrosion rate, and propose possible strategies to
prevent or mitigate corrosion in structures and equipment used in marine environments,
ultimately offering solutions to extend their lifespan. Wang et al. [32,46] investigated the
corrosion of an Inconel alloy 625 and Hastelloy X (Excellent oxidation resistance up to
1200 ◦C) in contact with molten chloride salt and explored methods to enhance its corrosion
resistance. A simplified model was established based on the reactive diffusion of corrosive
gas and the metallic substrate. Simulations were conducted using the Cellular Automata
method.

The physical model from the experimental work determined that the main reactions
involved are:

Cr + 2MgCl2 + O2 → CrCl4 + 2MgO (2)

Ni + 1/2O2 → NiO (3)

2CrCl4 + 2MgO + O2 → MgCr2O4 + 3Cl2 + MgCl2 (4)

2Cl2 + Cr→ CrCl4 (5)

They assumed the presence of corrosive substances in the molten salt from the begin-
ning, where O2 and H2O diffused into the molten salt from the air, leading to the formation
of HCl and Cl2 through a set of reactions. The dissolved O2 in the salt rapidly reacts with
Cr (2). When the Cr content is insufficient, O2 reacts with Ni (3). The chloride containing
Cr (mainly CrCl4) forms a protective spinel layer composed of MgCr2O4 through (4). On
the other hand, Cl2 can react with Cr, resulting in a chromium-depleted layer (5).
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To establish the Cellular Automata model, the chemical reactions involved in the
corrosion process were simplified by assigning letters to the compounds or elements
present. A = Cr; B = Ni; O = O2; C = Cl2; D = CrCl4; Mg = MgO; P = MgCr2O4; BO = NiO.

The lattice sites were classified into fixed compounds (A, B, Mg, P, and BO) and mobile
compounds (O, C, and D). The interaction of mobile compounds within the lattice occurs
through a probabilistic random walk process. As an example, Figure 2 shows four grid
schematics of the Cellular Automata model. In Figure 2a, a grid is depicted with the fixed
compounds located on it. In Figure 2b, the location of mobile compounds that diffuse
toward the metal is shown. In Figure 2c, the elements that can diffuse in the outer corrosion
layer are present, and in Figure 2d, a lattice is shown where all compounds present in the
process are located.
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Figure 2. Schematics of the Cellular Automata model. Considering A = Cr; B = Ni; O = O2; C = Cl2;
D = CrCl4; Mg = MgO; P = MgCr2O4; BO = NiO, respectively. (a) A grid of fixed sites. (b) A grid of
mobile sites that diffuse towards the metal. (c) A grid of sites that can diffuse in the outer corrosion
layer. (d) The general scheme of the grid in the Cellular Automata model [32].

In Equations (6)–(9), the modified chemical reaction and transformation rules for the
Cellular Automata model are shown. The author does not consider the consumption and
formation of MgCl2 due to the involvement of O2 dissolution in chemical reactions (2)
and (4).

O + A → D + Mg (6)

O + B → BO (7)

D + Mg + O → P + C (8)

C + A → D (9)

The Margolus neighborhood was used to induce state changes in the different cells
across generations. Figure 3 displays the results obtained by the model, where the left
side (black color) represents the molten salt and the right side (purple color) represents the
metal under study. As the iterations progress, the growth of the oxide layer is observed.
The number of iterations can be interpreted as representing an experimental time scale.
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A comparison is shown in Figure 4 between the simulation results and a scanning
electron microscopy (SEM) image. It was determined that 64,000 iterations correlate with the
experimental results from 21 days of exposure, demonstrating that the Cellular Automata
simulation yields satisfactory results in the study of high-temperature corrosion of Fe-Cr
alloys in the presence of molten salts.
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Figure 4. Comparison of simulation morphology and experiment SEM photograph: (a) cross–
sectional SEM photograph of In625 after 21 days of immersion at 600 ◦C; (b) Snapshots of simulation
results of corrosion morphology for time steps Nt = 25,000 [32].

2.1.2. Localized and Pitting Corrosion Model

Localized corrosion encompasses corrosion processes that occur in specific areas of
a material, leading to localized damage [47]. Cellular automata simulate the initiation
and propagation of localized corrosion, providing insights into factors influencing its
occurrence, growth patterns, and evolution over time.

Di Caprio et al. [22,48] presented an electrochemical model for the corrosion of metals
in contact with liquids based on the description of chemical and electrochemical reactions
occurring at the metal-liquid interface, which was simulated using Cellular Automata.
They investigated the corrosion process at each metallic site at the interface and compared
the simulation results with experimental data. The proposed model reproduced experi-
mental facts and trends without an explicit separation between anodic and cathodic sites.
Overall, the study demonstrated that cellular automata-based models are a useful tool
for simulating complex systems such as metal corrosion and can be adapted to include
different rules and conditions according to the specific needs of the system under study.
Cheng et al. [49] simulated the growth of metastable corrosion pits. The objective was to
gain a better understanding of the mechanism behind the growth of these pits and compare
the simulated results with experimental data. The researchers established a relationship
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between the current and current density of the pit over time to illustrate the mechanism of
metastable pit growth. Additionally, they developed an optimal range of parameters for the
simulation that allowed for visualization of the complete process of pit growth, including
its geometry. The study built on previous work on the mechanism and electrochemical
and mass transfer steps associated with the pitting corrosion process. Wang et al. [50]
reproduced the interactions between metastable pits in stainless steel and analyzed how
different factors affect their growth and stability. The model included corrosion, passivation,
salt film hydrolysis, and hydrogen ion diffusion. Based on the model, they concluded
that it is capable of accurately simulating the interactions between metastable corrosion
pits in stainless steel. Wang et al. [51] investigated the interaction of metastable corrosion
pits in stainless steel under mechano-electrochemical effects using an updated cellular
automaton/finite element model, elucidating the mechanisms for pit interactions. In the
study, they considered an electrochemical system where stainless steel is exposed to an
aggressive chloride solution. The stainless–steel samples had passive layers of surface
oxide, which can be damaged in the presence of chloride anions. Two breakdown locations
in the passive film were included to study only the pit propagation and not its nucleation.
They concluded that the cellular automaton/finite element model used was effective in pre-
dicting the interaction of corrosion pits on a mesoscopic scale. Torska et al. [52] discussed
the fracture dynamics in the investigated areas and performed a comparative analysis
of pitting corrosion rates under real and simulated conditions. They demonstrated that
the simulation procedure using cellular automata accurately reproduced the physics of
corrosion. The study proposed a new modeling algorithm and local transition rules for the
automaton cells used in simulating pitting corrosion images. Hu et al. [53] simulated pitting
corrosion in nickel alloys. The authors employed four fundamental elements of the model
to simulate electrochemical reactions, chemical reactions, and diffusion processes. The
obtained results were qualitatively and quantitatively compared with experimental data
and analogous findings cited in the literature. The study suggested that this type of model
could be useful in gaining a better understanding of corrosion processes and developing
corrosion-resistant materials for various industrial applications. Fatoba et al. [54] employed
a combination of cellular automata and finite element analysis to simulate the growth of
localized corrosion under the influence of applied stress. The results demonstrated that
mechanical effects, such as plastic deformation, accelerated the rate of localized corrosion
development. The study focused on low-alloy steel, but the findings may apply to other
materials as well. Rujin et al. [55] established a mathematical model based on a statistical
approach to describe the evolution of pitting corrosion. Additionally, they proposed a 3D
stochastic Cellular Automata model to replicate the simultaneous initiation and growth pro-
cesses of pits. The findings of the study can contribute to a better understanding of the laws
governing pitting corrosion evolution and provide valuable insights into its prevention and
control. To simulate localized corrosion, Pérez–Brokate et al. [34,56] aimed to gain a better
understanding of hidden corrosion processes and pitting corrosion within corrosion cells
by using a stochastic Cellular Automata model. They studied the morphology, propagation,
and influence of coupled diffusion within the corrosion cavity.

In the physical-chemical model, simplifications were made by assuming simplified
electrochemical and chemical reactions (excluding contaminants and considering only H+

and OH−). Localized corrosion, being a multi-scale phenomenon, depends not only on
atomic-scale surface phenomena but also on macroscopic environmental conditions.

The electrochemical reactions used:
Anodic reactions.

M + H2O → MOHaq + H+ + e− (10)

M + OH− → MOHsolid + e− (11)

Cathodic reactions.
H+ + e− → 1

2
H2 (12)
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H2O + e− → 1
2

H2 + OH− (13)

Authors call these Spatially Joint (SJ) reactions when the anodic and cathodic half
reactions occur at the same location:

M + H2O → MOHaq +
1
2

H2 (14)

M + H2O → MOHsolid +
1
2

H2 (15)

MOHsolid → MOHaq (16)

The anodic and cathodic sites are electrically connected through the metal and the so-
lution. When they are separated, they are referred to as Spatially Separated Electrochemical
(SSE) reactions. The diffusion of SSE reactions results in the generation of H+ and OH−

ions, mimicking a random walk. When these ions interact, neutralization takes place, as
depicted in the study through the following reaction:

H+ + OH− → H2O (17)

The 3D lattice representation is depicted in Figure 5, illustrating a passivated metal in
contact with a neutral electrolyte, and the cathodic reaction takes place at a random point
(Figure 5a). The H+ and OH− ions generated in the first reaction diffuse in the electrolyte.
Each lattice site was determined by the dominant species. In Figure 5b, the solid sites
represent the metal (M), the metal in contact with the electrolyte (R), and the oxide layer
providing passivity to the metal (P). Additionally, the electrolyte sites were differentiated
into three different states based on pH. An acidic site (A), a basic site (B), and a neutral site
(E) were considered. The Moore neighborhood was employed for the simulation.
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the pit [34].

Figure 6 shows the evolution of the pit. Perez−Brokate et al. indicated the presence
of an anodic half−reaction at the initial defect of the passive layer. The ions are dispersed
randomly in the electrolyte, resulting in the growth of the pit when an H+ ion encounters
the metal, leading to an electrochemical reaction. As the pit reaches a certain size, the
concentration of acidic ions increases, causing instability and further enlargement of the pit.
Each state of the network has a different color. Cells in green correspond to H+, in blue to
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OH−, in red to the reactive site, and in magenta to the passive site. Cells of neutral solution
were not represented to enhance visibility.
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Figure 6. Side views illustrating different pitting corrosion regimes (Ndiff = 2000): (a) initiation (for
t ≤ 44,400), (b) growth instability phase (approximately 500−time steps, around t = 44,600), (c) stable
growth (from t = 45,000) [34].

The model was considered a valuable tool for gaining a better understanding of
localized and pitting corrosion processes and developing more effective strategies for
corrosion prevention and treatment.

2.1.3. Stress Corrosion Cracking (SCC) Model

Stress corrosion cracking is a phenomenon where the combination of tensile stress and
a corrosive environment leads to crack initiation and propagation in a material [57]. Cellular
automata model the complex interactions between mechanical stress, electrochemical
processes, and material degradation, helping to understand the conditions under which
SCC occurs and its progression.

Zhu et al. [58] focused on predicting the service life of concrete bridges and preventing
chloride-induced corrosion. They utilized 3D Cellular Automata, which accurately simulate
chloride diffusion in concrete. Multiple factors were considered, such as ambient relative
humidity, temperature variations, stress, water−cement ratio (w/c), concrete degradation,
corrosion propagation, cracks, and time. The study provides a useful tool for predicting
the service life of the bridge and designing preventive measures against chloride-induced
corrosion in concrete bridges. Liu et al. [59] modeled the SCC process in steel pipes. They
employed a combination of finite element analysis and cellular automata techniques to
simulate the initiation and propagation of cracks.

The electrochemical model used considered only the species H2O, Fe, Fe2+, H+, and
FeOH+. The rules for corrosion evolution and cell diffusion were expressed in the following
equations:

Fe→ Fe2+ + 2e− (18)

Fe2+ + 2H2O → FeOH+ + 2H+ (19)

Based on the equations above, the authors formulated the rules of the Cellular Au-
tomata model, where the diagram in Figure 7 represents the spatial layout of the model.
Sites W represented a non-corrosive neutral solution (H2O), H represented a corrosive
acidic solution (H+), and site M represented the metal, which dissolves to form site R after
being in contact with the corrosive solution. The site R represents the active metal (Fe2+),
and the site P represents the corrosion product (FeOH+).



Materials 2023, 16, 6051 11 of 25Materials 2023, 16, x FOR PEER REVIEW 11 of 26 
 

 

 

Figure 7. Schematic diagram of the cellular automata spatial model [59]. 

The evolution rules for corrosion in the Cellular Automata model were formulated 

based on the previous Equations (18) and (19). Figure 8 shows the rules for the oxidation 

of Fe and the hydrolysis of Fe2+ to FeOH+. When a site M is in contact with at least one site 

H, reaction (18) will occur with a corrosion probability P_Corr, transitioning from site M 

to site R. Additionally, when a site R is in contact with at least two sites W, Fe2+ hydrolyzes 

to FeOH+ with a probability P_Hyd, and both site R and the two W sites are replaced by 

the corrosion sites P and two H sites, respectively. 

 

Figure 8. Cellular Automata corrosion evolution rules: (a) Oxidation of Fe to Fe2+ ions. (b) hydrolyzes 

Fe2+ ions to FeOH+ [59]. 

The results showed in Figure 9 demonstrated that before crack initiation, pitting 

corrosion was controlled by anodic reactions and mechanical factors, with electrochemical 

corrosion playing a significant role. During the crack propagation process, the 

mechano−chemical effects induced by plastic deformation promoted anodic dissolution 

at the crack tip, driving its propagation. This study may have significant implications for 

the pipe industry and help develop more effective strategies for corrosion prevention. 

Figure 7. Schematic diagram of the cellular automata spatial model [59].

The evolution rules for corrosion in the Cellular Automata model were formulated
based on the previous Equations (18) and (19). Figure 8 shows the rules for the oxidation of
Fe and the hydrolysis of Fe2+ to FeOH+. When a site M is in contact with at least one site H,
reaction (18) will occur with a corrosion probability P_Corr, transitioning from site M to
site R. Additionally, when a site R is in contact with at least two sites W, Fe2+ hydrolyzes to
FeOH+ with a probability P_Hyd, and both site R and the two W sites are replaced by the
corrosion sites P and two H sites, respectively.
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Figure 8. Cellular Automata corrosion evolution rules: (a) Oxidation of Fe to Fe2+ ions. (b) hydrolyzes
Fe2+ ions to FeOH+ [59].

The results showed in Figure 9 demonstrated that before crack initiation, pitting corro-
sion was controlled by anodic reactions and mechanical factors, with electrochemical corro-
sion playing a significant role. During the crack propagation process, the mechano−chemical
effects induced by plastic deformation promoted anodic dissolution at the crack tip, driving
its propagation. This study may have significant implications for the pipe industry and
help develop more effective strategies for corrosion prevention.
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2.1.4. Intergranular Corrosion Model

Intergranular corrosion occurs along the grain boundaries of a material, typically
due to variations in composition or microstructure. Cellular automata can simulate the
interactions between different grain boundaries, their susceptibility to corrosion, and the
role of environmental factors in intergranular corrosion [60].

Chen et al. [61] developed a cellular automaton model to predict the susceptibility to
intergranular corrosion in austenitic stainless steel and provide useful information on how
to prevent or mitigate this problem. The results demonstrated how material properties
change under different heat treatment and sensitization conditions. Additionally, they in-
vestigated factors affecting intergranular corrosion, such as the evolution of chromium-rich
carbide precipitation and chromium concentration distribution [62]. They concluded that
the Cellular Automata model can be valuable for improving the design and performance
of materials used in industrial applications.

Lishchuk et al. [63] utilized cellular automata to describe the propagation of inter-
granular corrosion and made simplifying assumptions that enabled them to predict the
corrosion rate. The results of the model demonstrated good qualitative and quantitative
agreement with experimental data regarding the advancement of the corrosion front.

Jahns et al. [64,65] developed a simulation to predict internal corrosion during high-
temperature applications in metal alloys. They utilized the model to describe diffusion-
controlled precipitation processes and enhance our understanding of high-temperature
corrosion in metal alloys. The researchers’ goal was to develop more effective strategies to
prevent or mitigate corrosion.

Di Caprio et al. [66–69] conducted various studies on intergranular corrosion using 2D
and 3D Cellular Automata models. They aimed to predict the rate and pattern of corrosion
in stainless steel exposed to corrosive solutions. They quantitatively analyzed the surface
morphology of the steel and grain boundary structures. They presented Cellular Automata
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methodologies to understand and prevent corrosion, and experimental validation yielded
positive results.

Wang et al. [70] focused on investigating the corrosion behavior of a nickel-based
alloy in a molten chloride salt mixture. The Cellular Automata model enabled them to
reproduce the distribution of corrosion products and components as well as changes in the
morphology and thickness of the corrosion layer over time. The results of the study can
help predict the corrosion behavior of different metals in similar molten salt environments.

The mechanism of high-temperature corrosion is relatively complex. In the study
conducted by Wang et al. [46], due to the alloy being primarily composed of Cr, Fe, and
Ni elements, which play a significant role in corrosion resistance and alloy microstructure,
only Cr, Fe, and Ni were considered in the model, excluding other elements present in
lower concentrations.

The mechanism considered by the authors primarily involved the migration of metal-
lic elements, substance consumption, and generation of corrosion products through the
following equations:

4Cr + 3O2 → 2Cr2O3 (20)

4Fe + 3O2 → 2Fe2O3 (21)

2Ni + O2 → 2NiO (22)

Cr + 2Cl2 → CrCl4 (23)

2Fe + 3Cl2 → 2FeCl3 (24)

2CrCl4 + 3O2 → 2Cr2O3 + 4Cl2 (25)

4FeCl3 + 3O2 → 2Fe2O3 + 6Cl2 (26)

Like the studies presented in the uniform corrosion section, the physical model was
simplified to facilitate the programming language.

EE + O→ YY (27)

DD + O→ Y (28)

AA + O→ AO (29)

EE + c→ D (30)

DD + c→ FF (31)

D + O→ YY + c (32)

FF + O→ Y + c (33)
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where: AA = Ni, DD = Fe, EE = Cr, O = O2, c = Cl2, Y = Fe2O3, YY = Cr2O3, AO = NiO,
D = CrCl4, and FF = FeCl3. All elements except for O, c, and D were considered fixed
in the lattice. The positions of O and c were randomly predetermined with an assigned
probability, and the sites AA, DD, and EE represent the alloy elements.

To consider the simulation of intergranular corrosion, the authors evaluated the effect
of grain size. To obtain the initial structure, they simulated the grain growth process at
different time steps, as shown in Figure 10.
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Therefore, their simulation of intergranular corrosion consisted of obtaining the initial
microstructure model, which was combined with the Cellular Automata model. The result
of the model is shown in Figure 11, which displays different structures of the model at
various iterations. The growth of intergranular corrosion in the studied steel is observed.
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obtained at different simulation time steps are: (a) T = 500; (b) T = 1000; (c) T = 2000; (d) T = 5000 [46].
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3. Modeling Approach and Methodology for Simulating Corrosion Phenomena

Methodologies play a crucial role in establishing best practices, enhancing efficiency,
generating evaluation criteria, and promoting result reproducibility by providing an or-
ganized structure. This review focuses on the predominant methodology observed in the
studies, which effectively facilitates the structured organization of the modeling process
using the Cellular Automata model.

The methodology for simulating corrosion phenomena involves several key steps and
considerations. These are presented and detailed in the flowchart in Figure 12.
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Table 1. Summary of the results published.

Cellular
Automata Type Neighborhood Model Type Boundary Lattice Size Rules Cycles Corrosion Type Electrolyte Material Temperature

(◦C)
Exposure
Time (h) Validation Type Ref.

LGA n−vector Probabilistic Periodic - - - - - - - - Boltzmann
hypothesis [71]

2D n−vector Probabilistic Periodic 200 × 160 3 48,000
Kinetic of internal

oxide
precipitation

Oxygen Theoretical Metal - - Theory of phase
equilibrium [72]

Theoretical Moore Probabilistic Periodic >1000 × 1000 8 - Uniform Theoretical
Electrolyte Theoretical Metal - - Previous work

data [31]

2D Von Neumann Probabilistic Periodic 2000 × 1000 2 10,000 to
90,000 Uniform Theoretical

Electrolyte Theoretical Metal - - - [37]

2D Von Neumann Probabilistic Periodic 1000 × 1000 3 200,000 Uniform Theoretical
Ionic Solution Theoretical Metal - - Parabolic law [38]

2D Von Neumann Deterministic Periodic 600 × 20,000 2 150 Uniform Theoretical
Electrolyte Theoretical Metal - -

Mott and
Cabrera

Parabolic’s law
[39]

2D Von Neumann Probabilistic Periodic 1000 × 1000 2 25,000 Uniform Lead−bismuth
Eutectic Stainless Steel 550 3000 Wagner theory [40]

3D - - - 100 × 100 - - Intergranular Sulfuric Acid AISI 304 and AISI
316 SS 1100 0−400

Electrochemical
potentiodynamic

reactivation
[61]

2D Moore Probabilistic - 500 × 500 2 200,000 Uniform Lead−bismuth
Eutectic

Stainless Steel (Fe,
Cr) 535 3000 Wagner theory [41]

LGA-2D Von Neumann Probabilistic - 2000 × Ly 3 - Passivation Theoretical
Electrolyte Theoretical Metal - - Passivation

theory [73]

2D Moore Deterministic - 200 × 200 2 3 Intergranular Sensitization
Treatments SS 316 1100 2 - [62]

2D Von Neumann Probabilistic Periodic - 2 7,200,000 Localized Theoretical
Electrolyte Theoretical Metal 360 - Experimental [48]

2D Von Neumann Probabilistic - 1000 × 1000 399,577 Localized Theoretical
Electrolyte Theoretical Metal - -

Pistorius
experimental

results
[49]

2D-3D Moore Probabilistic Periodic 640 × 320–240 ×
280 × 240 3 - Intergranular Chloride

Solutions AA2024 Alloy - 144 Eperimental [63]

LGA-2D Von Neumann Probabilistic - 2000 × Ly 2 - Passivation Theoretical
Electrolyte Theoretical Metal - - Passivation

theory [74]

2D Moore Probabilistic - 500 × 500 2 5000 Uniform Supercritical
Water Inconel 625 600 1000 Experimental [42]

2D Von Neumann Probabilistic Periodic 900 × 300 2 70,000 Uniform,
localized

Theoretical
Electrolyte Theoretical Metal 300–360 - Experimental [22]

2D Von Neumann
and Moore Probabilistic Periodic 1000 × 1000 14 7679 Localized,

passivation
Theoretical
Electrolyte Theoretical Metal - -

Theoretical
corrosion and

passivity
phenomena

[75]

2D Von Neumann
and Moore Probabilistic Periodic 1000 × 1000 11 4000 Crevice,

passivation
Theoretical
Electrolyte Theoretical Metal - - Experimental [76]

2D Moore Probabilistic - 500 × 500 2 200,000 Uniform Lead−bismuth
Eutectic Stainless Steel - - Chi-square of

goodness−of−fit [43]
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Table 1. Cont.

Cellular
Automata Type Neighborhood Model Type Boundary Lattice Size Rules Cycles Corrosion Type Electrolyte Material Temperature

(◦C)
Exposure
Time (h) Validation Type Ref.

2D Von Neumann
and Moore Probabilistic - 512 × 512 3 2000 Oxidation and nit Nitrogen Ni−20Cr−2Ti

Alloy 1100 100 Experimental
data [77]

3D Moore Probabilistic Periodic 151 × 200 × 200 3 200 Pitting
Hydrogen
Carbonate
Solution

AISI 1040 - 0.5 Experimental
data [78]

2D Von Neumann
and Moore Probabilistic - 512 × 512 3 20,000 Oxidation and

nitridation Nitrogen Ni−20Cr−2Ti
Alloy 1100 100 Experimental

data [79]

3D Moore Probabilistic Periodic - 4 124 Pitting Concrete Pore
Solution Q235 Carbon Steel - 480 Experimantal

data [80]

2D
Moore and Von
Neumann 2nd

order
Probabilistic - 1000 × 1000 4 1000 Pitting Theoretical

Solution Theoretical Metal - - Experimental
data [81]

2D Von Neumann Probabilistic - 1024 × 1024 2 - Pitting Neutral
Solution Stainless Steel - - Experimental

data [50]

2D Moore Deterministic Reflect - 2 - Pitting Theoretical
Solution Theoretical Metal - - Experimental

data [82]

2D Von Neumann Probabilistic Periodic 1024 × 1024 5 - Pitting Chloride
Solution Stainless Steel - - Experimental

data [51]

2D Von Neumann
2nd order Probabilistic - - 3 - Pitting Ferrous

Chloride D16T Alloy Room - Experimental
data [52]

2D Von Neumann Probabilistic Periodic 2000 × 2000 3 6000 Pitting Water Alloy 690 - 1600 Experimental
data [53]

2D Von Neumann
and Moore Probabilistic - 500 × 500 3 3000 Intergranular Air

Ni−Cr20−2Ti−Mn
Steel and Inconel

625Si
1100 100 Experimental

data [64]

3D Moore Probabilistic - 512 × 512 × 512 4 >5000 Occluded,
localized

Theoretical
Acid−base

Solution
Theoretical Metal - - Experimental

data [56]

3D - Probabilistic Periodic 512 × 512 × 4096 - 4000 Intragranular Acid Solution Stainless Steel - 7000 Experimental
data [66]

2D Von Neumann Probabilistic - - 3 25,000 Electrochemical
oxidation

HClO4
Aqueous
Solution

Ketjenblack ES DJ
600 600 30 Experimental

data [83]

2D Von Neumann
and Moore Probabilistic - 512 × 512 3 - Intergranular

oxidation
Atmospheric

Air
Alloy 80a and X60

Steel 1100 100 Experimental
data [65]

2D
Moore and Von

Neumann
extend

Probabilistic Periodic 1000 × 1000 - 2000 Uniform Acid Rain
Concrete Filled

Square Steel
Tubular Columns

- - Theoretical and
experimental [35]

3D Moore Probabilistic - 256 × 256 × 256 7 45,000 Pitting
Theoretical
Acid−base

Solution
Theoretical Metal - - Experimental

data [34]

3D Moore Probabilistic Periodic 512 × 512 × 512 7 7000 Generalized
Theoretical
acid−base
Solution

Theoretical Metal - - Experimental
data [84]

CA-FE-2D Moore Probabilistic - 2000 × 1000 4 - Localized NaCl X65 Steel - - Experimental
data [54]
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Table 1. Cont.

Cellular
Automata Type Neighborhood Model Type Boundary Lattice Size Rules Cycles Corrosion Type Electrolyte Material Temperature

(◦C)
Exposure
Time (h) Validation Type Ref.

3D Von Neumann Probabilistic
Constant

and
periodic

100 × 100 × 100 4 400 Atmospheric
corrosion Atmospheric Air Wheatering Steel - -

Theoretical and
experimental

data
[85]

3D Von Neumann Deterministic Periodic 100 × 100 × 100 5 1000 Uniform Corrosion
Solution Aluminum Alloy 20 - - [44]

3D Von Neumann Probabilistic - 7500 × 7500 ×
1500 - - Pitting Salt−Spray Q345 Steel 35 1440 Experimental

data [55]

2D Margolus Probabilistic Rigid 400 × 400 4 25,000 Uniform Chloride Molten
Salt Inconel625 Alloy 600 504 Experimental

data [32]

LGA-3D Von Neumann Probabilistic Periodic - - - Passivation Electrolyte
Solution Metal Electrode - - Passivation

theory [86]

3D 12−neighbors Probabilistic Periodic 1280 × 1280 ×
1280 - - Intergranular Solution Stainless Steel - 2000 Experimental

data [67]

2D-bi plane Von Neumann Probabilistic - 500 × 500 5 100 Pitting Solution Steel Wires - - Experimental
data [87]

3D - - - 2048 × 2048 × 256 3 350 Intergranular - Stainless Steel - - Experimental
data [68]

2D Margolus Probabilistic Periodic 400 × 400 7 70,000 Uniform,
intergranular

NaCl−CaCl2
Molten Salt Hastelloy X 600 504 Experimental

data [46]

3D Margolus Probabilistic Periodic 1280 × 1280 ×
1280 - 21,555 Intergranular Nitric Acid

Solution
AISI 3010L

Stainless Steel 111 17,783 Experimental
data [69]

2D-3D Margolus Probabilistic Periodic 40 × 400–100 ×
100 × 100 10 50,000 Intergranular,

pitting
NaCl−KCl−ZnCl2

Molten Salt Inconel 625 Allow 700 168 Experimental
data [70]

3D Von Neumann Probabilistic Periodic 1000 × 1000 ×
1000 5 - Uniform, pitting Sea Water

Solution Q235 Steel 168 Experimental
data [45]

2D Moore Probabilistic - 1024 × 1024 × 128 4 2,000,000 Aqueous
Theoretical
Acid−base

Solution
Theoretical Metal 50 853 Experimental

data [88]

2D Von Neumann Probabilistic - 250 × 250 2 2000 Cracking Electrolyte
Solution Carbon Steel 27 - Experimental

data [59]

3D Von Neumann Probabilistic - 2000 × 2000 ×
1000 2 - Cracking Chloride Solution Steel bar 23 672 Experimental

data [58]

3D Moore Probabilistic Periodic 104 × 104 × 104 5 - Atmospheric
corrosion Atmospheric Air Structural Steel - - Experimental

data [33]
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4. Future Perspectives and Emerging Trends

The development of Cellular Automata models applied to the phenomenon of cor-
rosion has been observed throughout history. Initially, studies focused primarily on sim-
ulating the different mechanisms involved in corrosion. For example, as early as 1997,
the random walk of oxide precipitation was explored. In 2004, a simple corrosion mech-
anism was theoretically simulated by incorporating the anionic and cationic equations
associated with the corrosion process. Concurrently, in 2004, efforts were made to expand
the application of cellular automaton models by simulating the corrosion and passivation
phenomena of a metal without specifying a particular metal but rather seeking to mimic
the formation of a particle film representing the passivating products based on theoretical
grounds. Since 2008, studies on localized pitting corrosion growth and the corrosion of
steels in specific environments, such as the oxidation of Inconel 625 in supercritical water,
have emerged. This advancement has expanded the knowledge and application of the
cellular automaton model, leading to recent simulations of corrosion processes at high
temperatures. For instance, in 2022, the corrosion process of a Ni-based alloy in molten
chloride salt was successfully simulated.

It can be observed that the Cellular Automata model has a similar structure in many
of the reviewed studies. The starting point is a known theoretical or experimental phe-
nomenon that is to be simulated using Cellular Automata. Next, the physicochemical or
electrochemical model governing the process is defined and translated into a simplified
language that facilitates programming. Each study establishes its own reaction and transfor-
mation rules, which depend on the initially proposed physicochemical or electrochemical
model to simulate the desired process.

The summary of the table shows that, due to the nature of the simulated phenomenon,
almost all studies utilize a probabilistic cellular automaton model, except in specific cases.
This is because corrosion occurs spontaneously and randomly on the metal surface. In
addition, the choice of neighborhood type is predominantly divided between the two most
popular ones: the Moore and Von Neumann neighborhoods. Margolus neighborhood is
employed in cases where authors indicate its suitability based on the required computa-
tional resources. It is not possible to determine a trend regarding the size of the grid used,
as each study requires specific dimensions. Similarly, it is not possible to do so with the
number of reaction and transformation rules utilized, for the same reason. However, a
trend can be observed in the choice of boundary conditions made by the authors. The use
of periodic boundary conditions seems ideal for simulating corrosion processes, as it allows
for the simulation of large-scale systems using a reduced section of space.

Cellular automata models have emerged as powerful tools for analyzing various
types of corrosion, offering valuable insights into their complex behavior [67,69,70]. These
models capture spatial and temporal variations, enabling a thorough examination of
corrosion phenomena. Notably, cellular automata models have successfully analyzed
specific corrosion types such as stress corrosion cracking [59], pitting corrosion [34], marine
corrosion [45], and more. Through these simulations, critical areas prone to corrosion can
be identified, corrosion control measures can be evaluated, and corrosion-induced failures
can be predicted, providing valuable perspectives for effective corrosion management [20].
In this review, we focus on the Cellular Automata model as opposed to similar models
such as Finite Element or Monte Carlo models. This is done to delve deeper into specific
aspects, the key characteristics, and the applications of the Cellular Automata model in
the context of corrosion. Additionally, unlike the Finite Element model, for example, the
Cellular Automata model, with its simple rules, can be more efficient in simulating large
and complex systems. It provides a more macroscopic representation of the corrosion
process, allowing for the visualization of patterns and behaviors over time. This offers a
broader and more generalized perspective on the phenomenon of corrosion, which may be
of interest to a wider audience.

When developing cellular automata models to simulate corrosion phenomena, it is
crucial to consider a range of environmental parameters that have a substantial impact
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on corrosion performance. These parameters reflect the realistic conditions under which
corrosion takes place [85]. Firstly, the composition of the electrolyte solution surrounding
the material holds the utmost importance in determining the corrosive environment. Fac-
tors such as pH, chloride concentration, dissolved oxygen levels, temperature, and other
relevant chemical species all contribute to this environment [32]. Secondly, the movement
of the electrolyte solution, also known as flow or mass transport, plays a significant role
in corrosion processes. It is imperative to account for these parameters to create accurate
and comprehensive cellular automata models for studying corrosion behavior [65]. Con-
sideration of flow patterns, velocity, and diffusion rates within cellular automata models
is essential to simulating the effects of convection, mass transfer, and concentration gra-
dients on corrosion behavior [64]. Thirdly, these models should account for the specific
environmental exposure conditions relevant to the corrosion scenario, such as marine
environments, industrial atmospheres, underground conditions, or exposure to specific
chemicals [35]. The inclusion of temperature as a critical environmental parameter is crucial,
as thermal effects can impact corrosion rates by influencing electrochemical reaction kinet-
ics, diffusion rates, and material properties. By incorporating temperature variations into
the cellular automata model, a more comprehensive understanding of corrosion behavior
under different thermal conditions can be achieved [41,64].

In some corrosion scenarios, such as atmospheric corrosion, humidity and moisture
levels play significant roles [85]. A well-designed cellular automata model enables the
simulation of localized corrosion phenomena related to moisture accumulation or the
presence of electrolyte films [48]. Additionally, it is important to consider the influence of
ultraviolet (UV) radiation from sunlight, especially in outdoor environments. UV radiation
can induce photochemical reactions, affect surface properties, and alter the electrochemical
behavior of materials [89]. Therefore, incorporating the effects of UV radiation into the
cellular automata model provides a more accurate representation of corrosion behavior.
By considering these various environmental parameters and incorporating them into the
cellular automata models, a comprehensive and realistic simulation of corrosion behavior
can be achieved, facilitating a deeper understanding of the corrosion processes and aiding
in the development of effective corrosion mitigation strategies. Through the evaluation
of corrosion mechanisms, the development of corrosion prevention strategies, and the
assessment of material performance in specific environments by cellular automata models,
researchers can obtain a more comprehensive understanding of corrosion processes and
accurately simulate the behavior of materials under realistic conditions [63]. The integration
of data-driven approaches, such as machine learning and artificial intelligence, enhances
corrosion monitoring, prediction, and decision-making, which are fundamental for a good
future in the early detection of failures [84]. These approaches leverage large datasets to
identify patterns, anomalies, and correlations that can improve corrosion management
strategies. Advances in remote sensing technologies and real-time monitoring systems
enable continuous and remote monitoring of corrosion parameters and provide valuable
data for proactive corrosion management, allowing for early detection of corrosion, timely
interventions, and improved asset integrity management.

The future of cellular automata in corrosion research will be about the integration of
advanced computational techniques, such as machine-learning algorithms, and data-driven
approaches. This integration allows for more accurate and predictive corrosion models by
leveraging large datasets and optimizing model parameters based on experimental or real-
time monitoring data [21]. In addition, the incorporation of electrochemical considerations
in cellular automata models can better capture the fundamental mechanisms and behavior
of corrosion, leading to more realistic simulations and predictions. Multi-scale modeling is
a growing trend toward coupling cellular automata models with other modeling techniques,
such as finite element analysis or computational fluid dynamics [59].

The integration of cellular automata in corrosion management generates models with
corrosion monitoring and control systems that will enable real-time feedback and adaptive
control strategies. This integration can enhance the effectiveness of corrosion prevention
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and mitigation measures by dynamically adjusting parameters based on evolving corrosion
behavior. Real-time monitoring techniques in cellular automata models allow for dynamic
modeling of corrosion processes. By integrating data from sensors and monitoring systems,
researchers can obtain more accurate and up-to-date information on corrosion behavior,
enabling proactive corrosion management strategies [90]. At the same time, the focus is on
refining model parameters, algorithms, and simulation techniques to improve the accuracy
and reliability of predictions, ultimately enabling more effective corrosion management
strategies. Cellular Automata models have the potential to be used in the design and
optimization of corrosion-resistant materials used for the storage of energy by molten
salts [46,70]. Future perspectives in cellular automata models of molten salt corrosion
involve the development of more sophisticated models that can accurately capture the
complex corrosion mechanisms specific to molten salt environments. This includes consid-
ering factors such as electrochemical reactions, mass transport, and the interaction between
molten salts and the material surface.

5. Conclusions

Cellular Automata offers a promising avenue for advancing corrosion management
through the provision of a robust framework for modeling and simulation. Their effective
capture of the intricate dynamics of corrosion processes presents an opportunity to develop
predictive models, corrosion-resistant materials, and real-time monitoring systems. Al-
though challenges remain to be addressed, the prospects of utilizing Cellular Automata in
corrosion management appear encouraging. Continued research and development in this
field have the potential to make significant advances in corrosion control and prevention.
Most of the studies conclude that the Cellular Automata model has tremendous potential
for simulating the corrosion process of different alloys under various conditions. It can
generate complex models by employing simple rules, and the obtained results closely
resemble experimental behavior. Furthermore, the model’s ability to represent multiple
types of physical phenomena makes it a powerful tool that can help researchers view the
studied phenomena from a different perspective.
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