
Citation: Antonov, D.V.;

Islamova, A.G.; Strizhak, P.A.

Hydrophilic and Hydrophobic

Surfaces: Features of Interaction with

Liquid Drops. Materials 2023, 16,

5932. https://doi.org/10.3390/

ma16175932

Academic Editors: Sergei A. Kulinic

and Shin-Hyun Kim

Received: 31 July 2023

Revised: 22 August 2023

Accepted: 28 August 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Review

Hydrophilic and Hydrophobic Surfaces: Features of Interaction
with Liquid Drops
Dmitrii V. Antonov 1,2 , Anastasya G. Islamova 1 and Pavel A. Strizhak 1,2,*

1 Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 30 Lenin Avenue,
Tomsk 634050, Russia; dva14@tpu.ru (D.V.A.); agi2@tpu.ru (A.G.I.)

2 A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow 119071, Russia
* Correspondence: pavelspa@tpu.ru; Tel.: +7-(3822)-701-777 (ext. 1910)

Abstract: The processes of interaction of liquid droplets with solid surfaces have become of interest
to many researchers. The achievements of world science should be used for the development of
technologies for spray cooling, metal hardening, inkjet printing, anti-icing surfaces, fire extinguishing,
fuel spraying, etc. Collisions of drops with surfaces significantly affect the conditions and charac-
teristics of heat transfer. One of the main areas of research into the interaction of drops with solid
surfaces is the modification of the latter. Changes in the hydrophilic and hydrophobic properties of
surfaces give the materials various functional properties—increased heat transfer, resistance to corro-
sion and biofouling, anti-icing, etc. This review paper describes methods for obtaining hydrophilic
and hydrophobic surfaces. The features of the interaction of liquid droplets with such surfaces are
considered. The existing and possible applications of modified surfaces are discussed, as well as
topical areas of research.

Keywords: hydrophilic surface; hydrophobic surface; surface modification; drop; interaction;
experiment; modeling

1. Introduction

The interaction processes of liquid drops with solid surfaces determine the characteris-
tics of many technological and natural processes [1–3]: inkjet printing, metal hardening,
medicine applications, pesticide spraying, coating, spray cooling, etc. The contact time
of droplets with the surface has a strong influence on the characteristics of processes in
anti-icing technologies [4]. The deposition of thin multilayer films on solid surfaces is
used in the production of optics, sensors, etc. [5]. In fluid bed reactors, the wettability of
catalyst particles affects the efficiency of the catalyst and the productivity of the process [5].
The conditions and characteristics of water drops’ interaction with pipe surfaces, heaters,
and coolers significantly depend on the integral characteristics of heat transfer [6,7]. In
recent years, the modernization of solid surfaces through the creation of special super-thin
layers has become the most important direction in the development of heat transfer tech-
nologies [8,9]. Increasing the interaction area of the liquid with the surface enhances the
removal or supply of thermal energy. Special holes, cavities, grooves, artificial elements
of porosity, and roughness are used for these purposes [10]. The chemical composition of
near-surface layers often change [11,12]. Also, surface modification can be conducted using
laser irradiation [13–15]. It is possible to achieve fundamentally new properties of surfaces
using such techniques. The characteristics of hydrophilic and hydrophobic surfaces can
be controlled over a wide range. These surfaces make it possible to solve the complex
technological problems of erosion, corrosion, adhesion, and freezing [16–18]. Of decisive
importance are the disadvantages inherent in superhydrophobic surfaces (for example,
reduced values of mechanical strength [19] and chemical resistance of water repellents [20]).
It is important to expound unmanned technologies with the development of unpiloted
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aerial vehicles and the development of the Far North territories [21]. Specialized materials
with unique properties are needed. Opportunities arise to eliminate the use of aggressive
technological fluids to minimize environmental impact.

The number of articles showing results of experimental studies of the interaction
characteristics of liquid drops (water, fuels, emulsions, solutions, suspensions, etc.) with
solid surfaces (substrates, grids, rings, particles, etc.) has increased manifold over the past
5–7 years due to the active development of measuring technologies [22,23]. In studies of
the interaction between drops and surfaces, materials are used that are characterized by
different textures: glass [24], silicon [25], aluminum [15], copper [26], steel [27], etc. The
properties of the liquid and the surface are strong influences on the mode and consequences
of interaction. Articles [28–30] have been published that describe the effect of wetting,
liquid properties (for example, viscosity), surface characteristics (roughness, chemical
composition), and impact velocity. Much attention is paid to studies of the interaction
of drops under conditions of heating [31] and supercooling [4,32]. High-speed video
recording, shadow methods, laser diagnostic systems, and microscopic photography are
often used to study ultrafast and multiscale interactions of drops with solid surfaces [33,34].
Tracking algorithms for identifying the position of liquid layers in the registration area for
processing experimental data have been developed [35]. Unique ideas about secondary
fragments (number, size, component composition, separation rates, etc.) formed during the
rebound of parent droplets from solid surfaces have been obtained [34].

New knowledge based on experimental results has made it possible to significantly
develop physical and mathematical models to describe the processes of liquid drops’ inter-
action with solid surfaces. To date, there are known approaches for semi-empirical [36,37],
numerical, and analytical [38–40] solutions to problems stemming from liquid drops’ inter-
action with solid surfaces. Modern models differ significantly in scale factors. In particular,
they are used to study the characteristics of impact with the surface of a single drop [28,29],
a certain set of such drops [41], spray [41,42], and film formation [43]. Author’s codes and
commercial modeling packages are used. VOF, CFD, etc., methods are used [35].

It is important to perform a comparative analysis of the solutions to the most urgent
problems in the selected scientific direction and note promising tasks to solve in the coming
years. This motivated an appropriate comparative analysis. Thus, the purpose of this
review was to determine the modern achievements in the field of creating hydrophilic
and hydrophobic surfaces and to establish the key values of the characteristics of liquid
drop interactions with them (wetting, impacts, evaporation, etc.) under experimental
and theoretical study. Furthermore, in each section, there are explanations of the most
interesting solutions to the urgent problems, as well as problems that have not been
fully solved.

2. Hydrophilic and Hydrophobic Surfaces

After modifying the texture and elemental composition using various methods, for
example, laser processing [26], layer-by-layer assembly [44], sol-gel techniques [45], chem-
ical etching [46], etc., their wetting properties also can be changed. The most common
methods for texture modification, as a result of which wetting properties can be changed,
are presented in Figure 1.
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Figure 1. Methods for modifying surface texture.

2.1. Hydrophilic Surfaces

As a rule, there are two ways to make a surface hydrophilic: deposition of a more
hydrophilic material film on the surface; change in the chemical composition of the surface
layer. At the same time, coating is more common on inorganic surfaces. The chemical
modification method is most often used in the case of polymer surfaces.

Sun et al. [47–50] published interesting research results on self-repairing hydrophilic
coatings. The minimum value of the contact angle (θ) during wetting was 53◦ when
applying PVA-Nafion films on the surfaces of glass, silicon, and plastic [47]. It was
determined that the film thickness affects the anti-fog and frost-resistant properties
of the resulting coatings. Cleaned surfaces of glass and plastic with a pre-deposited
poly(diallyldimethylammonium chloride) layer were alternately immersed in HA and
bPEI to obtain (HA/bPEI)*n films [48]. After that, the obtained samples were immersed in
PFOS solution. When such surfaces were wetted with water, the contact angle was 49◦. It
has been established that the resulting films have hydrophilic and oil-repellent properties,
as well as the ability to self-repair. Howarter and Youngblood [51] obtained brush surfaces
of oligomeric amphiphiles of polyethylene glycol with short perfluorinated end caps (f-
PEGs) created via grafting methods. The dynamic inflow and outflow wetting angles on
such surfaces were 30◦ and 0◦, respectively. When thin films of silica nanoparticles and
poly(acrylic acid) were deposited on glass, it was determined that the chemical composition
of the surface is the main factor determining the wetting properties of the coatings [24]. It
was established that with an increase in the volume concentration of silicon in the solution
during coating on glass, the contact angle of wetting with water decreases. It was shown
that with an increase in silicon from 53 vol. % to 91 vol. % θ decreases from 10◦ to 2◦.
The superhydrophilicity of the coating is due to the presence of hydrophilic functional
groups and nanoscale roughness. Dudem et al. [52] obtained hierarchical silver/titanium
dioxide/silicon (Ag/TiO2/Si) structures with forest-like nano/micro-architectures. These
surfaces with water contact angles less than 5◦ are made using the low-temperature chemi-
cal bath deposition technique.

The available methods for obtaining superhydrophilic and oleophobic surfaces include
the silanization method. Alkylsiloxane SAM formation is promoted by the presence of
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silanol groups on the oxide surface, which in turn leads to hydrophilization [53]. It was
established [27] that the application of sulfobetaine silane to glass and stainless steel leads to
their hydrophilicity (θ < 5◦). It was shown that the process of silane film deposition depends
on the solvent [54], its concentration, temperature [53,55] and humidity [53,56], deposition
time [57], and age of the solution [58]. Failure to comply with the application’s technology
can lead to poor adhesion to the modified surface and the formation of an unstable and
inhomogeneous film [59]. Parikh et al. [60] set the critical temperature for the alkylsilane
deposition. Inhomogeneous and disordered films were formed when this temperature
was exceeded. At a low water content, it is more difficult for the octadecyltrichlorosilane
molecule to hydrolyze, and the growth of the adsorbed layer may be incomplete [56]. Mag-
netron sputtering of a titanium oxide film on commercially pure Ti leads to a hydrophilic
surface. It was shown [61] that by adjusting the deposition parameters and controlling the
modification process, it is possible to vary the wettability of titanium oxide films from 0◦

to 90◦.

2.2. Hydrophobic Surfaces

Two approaches are traditionally used to obtain superhydrophobic surfaces. The first
approach is to fabricate a surface with micro- and nano-textures on materials with low
surface energy. In the second approach, a layer of low surface energy material is deposited
on a hard, rough surface (like fluorochemicals and silicones) [62].

Magnetron sputtering of thin films of zinc, titanium oxide, nickel, chromium, silver,
etc., is used both to improve and degrade the surface wettability. The contact angle value
on the composite surface obtained by magnetron sputtering of nickel on silicon followed
by its baking with aluminum powder was 157◦, which is almost two times higher than its
value on the untreated Si surface [25]. Superhydrophobic nickel films were obtained on
SS316L substrates using a combined electrodeposition and fluorination approach [63].

It is known that the surface roughness influences its wetting properties (hydrophobic-
ity and hydrophilicity) [10]. Aligned carbon nanotubes deposited by chemical vapor on the
patterned Si template (pillar array) can result in both hydrophilicity and hydrophobicity.
Sun et al. [64], by varying the distance between texture elements (pillar), obtained both
superhydrophobic (θ = 154.9 ± 1.5◦) and hydrophilic (20.8 ± 2.3◦) surfaces. Lau et al. [11]
deposited conformal hydrophobic poly(tetrafluoroethylene) coating on a silicon surface
using aligned carbon nanotubes. The advancing and receding contact angles on such a
surface were 170◦ and 160◦, respectively. Emelyanenko et al. [65] deposited methoxy-
{3-[(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl)-oxy]-propyl}-silane to the textured
surfaces of aluminum–magnesium alloy D16 using the chemical deposition method. As
a result, the samples were characterized by a static contact angle of 171.9 ± 0.7◦ and
sliding angle 1.9 ± 0.5◦. When exposed to fluorosilane vapors on the magnesium alloy
surface, the value of θ reached 171.5 ± 1.0◦ [66]. The electrodeposition method is used to
produce hydrophobic nanostructured layers. This method of fabricating nanostructured
layers of zinc oxide has proven to be advantageous for creating one-dimensional and
hierarchical ZnO nanostructures [67,68]. Gu et al. obtained stable superhydrophobic films
on Ni/Cu [69] and copper alloy [70] substrates using the electrochemical method and
obtained superhydrophobic TiO2 nanotube coating using anodic oxidation and lauric acid
modification [71].

In recent years, texturing methods have become widely used in order to obtain the
required functional properties of the surface. Super-hydrophobicity can be achieved by
creating a periodic micro/nanostructured texture using laser irradiation and subsequent
surface treatment. Laser texturing is classified based on the delivered pulse duration of the
laser beam when exposed to the surface of the material [72,73]: femtosecond, picosecond,
nanosecond, and millisecond laser texturing. It has been established that after laser textur-
ing, the surfaces exhibit hydrophilic properties. The surface acquires (super)hydrophobic
properties during long-term storage in the environment [74,75], low-temperature anneal-



Materials 2023, 16, 5932 5 of 20

ing [76,77], deposition of a hydrophobizator layer [15,78], etc. Table 1 shows examples of
superhydrophobic surfaces obtained using laser texturing.

Table 1. Surface treatment using laser texturing.

Ref. Material Treatment Method Angle

[14] Silicon

Femtosecond laser texturing (pulse width
of 30 fs; wavelength 800 nm; frequency
1 kHz; scanning speed 3 mm/s), layer

of fluoroalkylsilane

θ = 160◦

[15] Aluminum alloy

Nanosecond laser texturing (pulse width
of 50 ns; peak power of 0.95 mJ;

frequency 20 kHz; scanning speed
50 mm/s) and chemisorption

θ ≈ 170◦

roll off angles 2.1◦

[79] Aluminum alloy

Nanosecond laser texturing (pulse
duration 120 ns; pulse frequency, 40 kHz;

laser output power 100 W; laser beam
velocity 1000 mm/s; scanning density

150 lines/mm; peak fluence 140 J/cm2)
and fluorosilane deposition

θ = 171.5 ± 0.8◦

roll off angles 2.0 ± 0.6◦

[26] Copper and polydimethylsiloxane

Femtosecond laser texturing (laser
fluence 4–100 J/cm2; wavelength 800 nm;

frequency 1 kHz; scanning speed
15 mm/s)

θ = 165◦

roll off angles < 5◦

[78] Tungsten

Nanosecond laser texturing (scanning
speed 500 mm/s; scanning line density

25 mm−1; number of laser passes 5;
effective fluence 715 J/cm2)

θ = 172.2 ± 0.5◦

roll off angles 3.5 ± 1.2◦

[80] Stainless steel

Nanosecond laser texturing (pulse
duration 50 ns; pulse frequency 20 kHz;

peak pulse power 0.95 mJ; linear rate
50 mm/s; scanning density 150 lines per
mm) and chemisorption of a hydrophobic
agent CF3(CF2)6(CH2)O(CH2)2C(OCH3)3

Liquid—polydimethylsiloxane
θ = 165 ± 2◦

roll off angles 3 ± 1◦

[81] Stainless steel AISI 316L

Nanosecond laser texturing (pulse width
of 100 ns; peak power of 1 MJ; frequency
200 kHz; scanning speed 200 mm/min)

and silanization

θ ≈ 153.2◦

[82] Polydimethylsiloxane

Femtosecond laser texturing (pulse width
of 50 fs; wavelength 800 nm; frequency
1 kHz; scanning speed 5 mm/s, power

40 MW) followed by oxygen
plasma treatment

After laser treatment
θ = 155.5◦ ± 1.5◦

After treatment with
oxygen plasma
θ = 4.5◦ ± 0.5◦

The lithography method is used to create different textures on substrates of various
natures. The surfaces obtained in this way have a given thickness and roughness structure.
An ordered array of nanopores and nanocapillaries was obtained on the SiO2 surface,
consisting of columns with sharp vertices using electron beam lithography and plasma
etching [83]. The surface exhibited super-hydrophobicity with a contact angle of 164◦ and
a hysteresis of 1◦ after hydrophobization with octadecyltrichlorosilane. Choi et al. [84]
achieved super-hydrophobicity (θ = 164◦) using nanoimprint lithography. They produced
overhang nanostructures on glass. The disadvantage of this method is that it is only suitable
for small surfaces.

Despite the many methods developed to obtain hydrophobic and hydrophilic surfaces,
an unsolved problem is their scalability. There is also a task to increase the durability
of the resulting coatings (their functional properties). Many surfaces quickly lose their
functionality with repeated use.
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3. Experimental Data on the Interaction of Liquid Droplets with Hydrophilic and
Hydrophobic Surfaces

Surface roughness affects its wetting properties and determines the performance and
lifespan of the product [85]. The roughness of hard surfaces can be described mathemat-
ically using 2D or 3D roughness parameters [86]. The most commonly used parameter
to describe roughness is the arithmetical mean deviation of the roughness profile Ra [87].
Boscher et al. [12] used four two-dimensional roughness parameters to describe super-
hydrophobic surfaces: the arithmetical mean deviation of the roughness profile Ra; the
mean height of the roughness Rc; the mean width of the roughness profile elements RSm;
and profile elements symmetric height distribution, Rsk. Skilbeck et al. [88] also used
two-dimensional parameters: Ra, Rv (valley depth), and Rp (peak height). In mechanical
engineering, surface roughness is an important measure of surface quality and is usually
described in terms of Ra, Rp, Rv, Rc, Rsk, Rt (total height of the roughness profile), Rq
(root mean square roughness), and Rku (kurtosis) [85]. Often, the geometric parameters
of pillars (height, width, distance between pillars, etc.) are used when creating ordered
pillar structures instead of roughness parameters [89–91]. Rahmawan et al. [92] explained
the effect of surface roughness on super-hydrophobicity by combining the Wenzel and
Cassie–Baxter models for a surface with double micro-nanoscale roughness (Figure 2). It
has been found that super-hydrophobicity decreases significantly (from 160◦ to 130◦) when
the distance between micropillars exceeds a certain threshold. This effect is due to the fact
that with an increase in the distance between micropillars, a transition occurs from the
Cassie–Cassie to the Wenzel–Cassie state. It was determined [91] that on the surface of a
film containing hexagonal ZnO nanorods, the wettability depends on the length, density,
and diameter of ZnO nanorods.
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Figure 2. Wetting states. The liquid completely fills the cavities between the surface irregularities in
the Wenzel state. Liquid does not penetrate into pockets between surface irregularities (gas remains
in them) when the Cassie–Baxter state is realized.

The impact of a drop on a solid surface is a complex process. The influence of the
collision velocity, droplet size, contact angle, and roughness on the liquid droplets’ collision
with a solid surface has been established [28,29]. The following five most frequently occur-
ring regimes can be distinguished when a drop collides with a super-hydrophobic surface
(Figure 3): deposition, splash, receding break-up, partial rebound, and complete rebound.
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Figure 3. Typical regimes of droplet interaction with super-hydrophobic surfaces: deposition (a),
splash (b), receding break-up (c), partial rebound (d), and complete rebound (e).

As a rule, dimensionless parameters are used to study the dynamics of the drop
interaction with a solid surface: Reynolds number (Re), Weber number (We), capillary
number (Ca), and Ohnesorge number (Oh). In addition to dimensionless parameters,
quantities such as the maximum spreading coefficient, rebound height, spreading time,
icing time are used. Contact time, which can be defined as the time that a falling drop
is in contact with a surface before rebounding from it, is also a critical parameter and is
closely related to anti-icing, drip condensation, self-cleaning, etc. [4,93]. Super-hydrophobic
coatings are used to reduce the interaction time of a drop with a surface [94,95]. The
following three characteristic times are used to estimate the drop spreading time: capillary-
viscous time τv [96], advective time τa [97], and capillary-inertial time τci [98]. In this case,
the time τv is applicable for low-viscosity liquids, while τa and τci are used when inertial
forces predominate. It was established [98] that the contact time does not depend on We,
but is scaled along the inertial-capillary timescale τci =

√
(ρR3/σ), where ρ and σ are the

density and surface tension of the liquid, and R is the radius. At the moment, the universal
scaling law describing the spreading time has not been defined.

The maximum spreading coefficient (βmax = Dmax/D0, Dmax—the maximum spread-
ing diameter, D0—the initial droplet diameter before collision) is an important technical
characteristic in applications such as thermal power engineering, anti-icing technologies,
agriculture, etc. The larger the droplet-spreading diameter, the longer the contact time
is. The characteristic βmax is related to the dimensionless numbers We and Re. Two ap-
proaches are most often used to determine Dmax/Dd: theoretical [99–101], based on the
drop energy balance, and empirical [102–104]. Significant experimental work has been
carried out to study the interaction of single drops with heated surfaces at low Weber
numbers (We) [105–107]. It has been found that the maximum spreading diameter increases
with We [108]. It was found [105] that the droplet spatters with increasing We numbers
or at surface temperatures above the Leidenfrost point. It was determined [31] that the
collision process does not significantly affect the evaporation time. The authors explain this
by the fact that the impact time is much shorter than the evaporation time of the droplet on
hot surfaces. Regime cards based on the We number are obtained for the interaction of a
single drop with heated surfaces [109,110].

Extensive studies have been conducted to study the characteristics of heat transfer
during the evaporation of a sessile drop on hydrophobic and hydrophilic surfaces. The
following three evaporation modes are distinguished most often during the evaporation
of a single sessile drop (Figure 4): pinning mode (contact diameter is constant); constant
contact angle mode; and mixed mode (or stick–slide mode). In the pinning mode, the
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contact line is fixed, and the contact diameter remains constant until the contact angle
reaches either 0◦ or a critical value and the droplet “shrinks”. In constant contact angle
mode, the contact line is not fixed. During evaporation, the contact diameter gradually
decreases, while the contact angle remains constant. Stick–slide mode alternates between
pinning and constant contact angle modes. It was shown [7] that on surfaces with good
wettability, the evaporation rate increases due to spreading and convection. The deposition
of SiO2 and carbon nanotubes on silicon surfaces resulted in an increase in the critical heat
flux up to 75.3% compared to the uncoated surface [6]. Microspray cooling on three nano
textured surfaces investigated [8]. The conclusion is formulated that surface wettability
and liquid spreading are the causes of the heat transfer enhancement [8]. Zaitsev et al. [111]
showed that laser treatment of metals is a promising way to obtain surfaces with controlled
wetting and boiling characteristics.
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A large number of papers are aimed at studying the self-assembly of organic and
inorganic particles during the evaporation of droplets on hydrophobic [112,113] and hy-
drophilic [114,115] surfaces. As a result of self-assembly, both single-layer and multi-layer
structures can be formed. The following self-assembly structures are known: crystalline
pattern, thin disc, a three-dimensional cap, a circular ring, and multiple rings with different
diameters. Changing the wettability properties (roughness and chemical composition) of
the surface is one of the ways to control the dried structure morphology.

Basically, there are two modes when droplets collide with solid hydrophilic sur-
faces [116,117] as follows: deposition-spreading and splashing. Researchers are focused
on describing the physical mechanism of droplet splashing and its threshold state when
studying the interaction of droplets with surfaces. The traditional empirical model is
considered to be the K-parameter model, which takes into account viscous, inertial, and
capillary forces [118,119]: K = Oh·Ren. The empirical factor n depends on the viscous forces.
For example, at n > 1, the fluid viscosity can suppress splashing (K = Oh·Re5/4 [118,119]),
and at n < 1, on the contrary, can promote splashing (K = Oh·Re0.6089 [120]). The effect of
liquid viscosity on the droplet splashing characteristics after impact of the droplet on a
smooth hydrophilic surface has been studied [30]. Regime maps are compiled at the coordi-
nates Re = f (Oh) and the interaction rate versus fluid viscosity. It was established [30] that
droplet shear viscosity leads to splashing of the droplet under conditions of low viscosity
of the liquid, and vice versa; at high viscosity, it prevents splashing. Starinskiy et al. [121]
compared the droplet collision with super-hydrophobic (θ = 161◦) and super-hydrophilic
(θ = 5◦) droplets. It was shown that the contact line motion on the surface depends on
the type of structure used if its characteristic size is less than 10 µm. Laxman et al. [122]
experimentally studied the dynamics of a microliter water drop impact on a hydrophobic
microgrooved surface made using photolithography. A regime map = f (p/D0) is proposed,
where p—the distance between microgrooves.

According to classical nucleation theory, the surface curvature, the contact angle
between the surface and ice embryos, and the contact angle between droplets and substrate
affect ice formation [123]. Davis et al. [124] investigated how surface roughness, skewness,
and kurtosis affected surface structure. It was determined that the decrease in ice adhesion
is associated with greater hydrophobicity, roughness, skewness, and kurtosis, as well as
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shorter autocorrelation length [124]. A relationship has been established between the
adhesion force and the contact angle hysteresis [125]. It was shown that surfaces with high
hysteresis exhibit anti-icing properties due to their structural characteristics [126]. Air in
the roughness elements reduces the interaction area of droplets with a super-hydrophobic
surface (Figure 2). This increases the time that it takes for the drop to freeze. In addition, the
energy barrier for removing water droplets from the super-hydrophobic surface is reduced.

Electrochemical anodization and chemical modification were applied to aluminum
surface modification (θ = 155.2 ± 0.5◦, roll off angles 3.5 ± 1.3◦) [127]. The hydrophobic
coating was found to exhibit excellent self-cleaning, anti-icing, and anti-corrosion properties.
Thin films of TiN and PTFE were deposited on the surfaces of Q235 steel and silicon using
the plasmon-mediated photothermal method [128]. The surfaces were characterized by
hydrophobicity (θ ≈ 156◦, roll off angles ≈ 2◦). It was shown [128] that the freezing time of
water on a substrate coated with TiN-PTFE slows down by about 400% times compared to
an untreated steel surface (from 305 to 78 s). The coating also showed good thermal stability
(up to 200 ◦C), chemical stability over a wide pH range, corrosion resistance in NaCl
solution, and mechanical scratch resistance. Jiang et al. [129] found that the hydrophobic
coating of SiC/CNTs made it possible to slow down the freezing time of liquid droplet from
15 to 66 s. Super-hydrophobic surfaces were obtained (θ ≈ 175◦ and roll off angles ≈ 1.5◦)
by chemically etching aluminum and coating it with 1H,1H,2H,2H-heptadecafluorodecyl
(FD)-trimethoxysilane and poly(dimethylsiloxane) (PDMS)-triethoxysilane characterized by
excellent anti-icing properties [130]. It was shown that after 100 icing/melting cycles, the ice
adhesion strength was 47.2 kPa. Super-hydrophobic stainless steel surfaces were obtained
using nanosecond laser texturing followed by chemisorption of fluorooxysilanes [131]. It
was found that the surfaces characterized by weak adhesion to supercooled saltwater drops
at −10 ◦C, and the liquid did not freeze for tens of hours. Wang et al. obtained super-
hydrophobic surfaces using laser texturing and low-temperature annealing (θ~159.2◦). An
excellent anti-icing property is achieved on the fabricated surfaces with water droplets on
it retaining the liquid state for over 500 min at −8.5 ± 0.5 ◦C [132]. Laser-treated aluminum
surfaces were characterized by high contact angles (154.3◦) and low slide angles (2.1◦),
while the icing delay time exceeded 700 s [133].

There are still unsolved problems despite the huge number of publications devoted
to the study of the interaction of drops with super-hydrophobic/hydrophilic surfaces. In
particular, either sessile drops or drops that fall at right angles are mainly considered. There
are not enough papers that consider interaction processes when varying the trajectory of
falling drops (angle of incidence) on a flat or inclined surface; therefore, additional studies
are required. There is no universal scaling law for spreading times and diameters, despite
the fact that by now a number of factors and parameters have been identified that affect the
collision modes of liquid drops with solid surfaces. The question of the synergistic influence
of various factors on the processes of interaction is relevant, for example: the presence of
surfactants, polymers, and nanoparticles. In the field of medicine, it is relevant to study the
processes of impact of colloidal solutions drops on solid surfaces with different wettability.

4. Mathematical Models for Describing the Interaction of Liquid Droplets with
Hydrophilic and Hydrophobic Surfaces

Mathematical models for describing the interaction of liquid droplets with solid
surfaces can be divided into two large sections (Figure 5). They include models of
sessile droplets on various surfaces [38,39,134–136] and dynamic models of droplets
falling on solid surfaces [40,137–139]. Numerical studies are conducted both on hy-
drophobic [39,134,136,137,140–142] and hydrophilic [143,144] surfaces. For particular
cases of super-hydrophilic and super-hydrophobic surfaces, analytical solutions were
obtained [145], which play an important role in terms of describing the physics of the
process and in the transition to large-scale multiparameter models inherent in a wide class
of practical applications (antibacterial/anti-biofouling [146,147], oil recovery [148,149],
drag reduction [150,151], anti-corrosion [152,153], self-cleaning [154,155], anti-icing and
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anti-fogging [156,157], and a combination of both for pool boiling [158,159], oil-water sep-
arators [38], lubrication [38], heat pipe wicks [38], dental implants [38], water splitting
for environmentally friendly H2O2 [38] and microfluidics [160]), and natural phenomena
(lotus leaves [161], rose petals [162], water ferns [163,164], Sphagnum moss [163,164], water
striders [165], butterfly wings [166], etc.).
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The importance of the problem of heating and evaporation of sessile drops is well
known and widely described [39]. These problems attract the attention of researchers
due to a wide range of applications for commercial and industrial use, as well as for the
interests of fundamental research [38,39]. The most promising droplet evaporation effects
for specific applications can be observed on super-hydrophobic and super-hydrophilic
surfaces, which have received considerable attention over the past few decades [38,39].
Modeling of the heating and evaporation processes of sessile droplets has been discussed
in numerous works [39,134,140,143]. The authors of papers [39,140] presented reviews of
previous models of sessile drop heating and evaporation phenomena, and also proposed
their original models. The conjugate problem of heat and mass transfer of droplets on a
solid substrate in air was solved numerically [39]. The influence of the boundary layer
thickness, surface temperature, wettability, air temperature, and humidity on the processes
of heat and mass transfer in evaporating droplets was studied using the volume of fluid
method in papers [135,140,167], the lattice Boltzmann method in papers [134,168,169],
and molecular dynamic simulation in [141]. In particular, the characteristics of the sessile
droplet evaporation under conditions of forced convection [140] were studied. The lifetimes
of sessile droplets on heated surfaces [140] were calculated. It was shown that the lifetime
of a droplet evaporating under conditions of forced convection is quite accurately predicted
by a mathematical model with an error of no more than 8%. The main limitation of the
model [140] was the assumption of quasi-stationarity of heat and mass transfer processes in
the implementation of direct numerical simulation methods to reduce huge computational
costs. The papers [135,136] describe the Marangoni effects in droplets on super-hydrophobic
surfaces, including an analytical solution for thermocapillary flow in terms of stream and
vorticity functions. A quantitative comparison of the results of modeling and experiments
with an estimate of the effective heat transfer coefficients is presented [136]. In paper [141],
a model based on molecular dynamic methods was presented and developed to explain
the wettability features of a three-dimensional droplet placed on a microtextured surface.

To date, dynamic models of droplet interaction with solid surfaces are quite well
developed and allow solving a wide range of problems, including subtle effects of air
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and gas captured by droplets in contact with solid surfaces [138,170,171], describe the
processes of raindrops falling on solid dry and wetted surfaces [172], agricultural problems
of leaf treatment with pesticides [173], classical problems of contact line motion [174],
etc. In the interests of the development of agricultural technologies, the movement of
droplets on leaf surfaces is modeled in order to understand how water and pesticides
are absorbed through leaf surfaces. In medicine, the surface of biomaterials plays an
important role in determining the results of the interaction between materials and the
biological environment [175]. Surface fitting methods (e.g., Clough–Tocher method [176],
radial basis functions [177], hybrid method [178]) are used to simulate the process of
interaction between water droplets and the leaf surface when constructing a “virtual”
surface. Oqielat [179] compared several methods and determined that hybrid multiquadric
RBF-CT was the best method for creating a surface in simulation. Research on modeling
the processes of the interaction of droplets with surfaces led to the creation of re-entrant
topology designs, which are characterized by super-hydrophobicity [180,181].

The result of the interaction of droplets with solid surfaces depends mainly on the
impact velocity, the initial droplet size, the properties of the liquid (its density and dynamic
viscosity), interfacial tension, the roughness of the solid surface, and its wettability. In
general, in the process of droplet interaction with a solid surface, the following modes
are numerically implemented: adherence, bouncing, and splashing [182]. In this case, the
adherence mode is usually observed with liquid droplets interacting with hydrophilic and
super-hydrophilic surfaces, while the bouncing and splashing modes are observed when
interacting with hydrophobic and super-hydrophobic surfaces. The main approaches to
modeling these processes are based on the methods of volume of fluid [183,184], lattice
Boltzmann [170,171], level set [185–187], phase field [172,174,188], front tracking [189],
diffuse interface model [190], and molecular dynamic simulation [191].

From the point of view of modern numerical modeling, it is most difficult to de-
scribe the interaction processes of heterogeneous liquid droplets with micro- and nano-
structured surfaces having corresponding functional properties, such as surfaces with
complex macroscopic geometry (elongated, concave surfaces, special ribs, etc.). In addition,
when comparing the results of numerical simulation obtained using classical methods with
experimental data, significant differences are often recorded, which create requirements for
the development of new sub-models to describe the processes of heat and mass transfer
between a droplet and a solid wall, especially for critical conditions of surface wetting
(super-hydrophilic (contact angle less than 10◦) and super-hydrophobic (contact angles
greater than 150◦ and hysteresis less than 2◦)). In this regard, the most promising model-
ing problems are the heating and evaporation processes of liquid droplets on structured
super-hydrophobic and super-hydrophilic surfaces, considering the complex interrelated
processes of heat and mass transfer.

At the moment, in the context of the development of scientific and technological solu-
tions, the unresolved and promising modeling problems are the following: development of
a universal model for a droplet and a solid surface interaction; accounting for the irregular
droplet shape in contact with textured surfaces; physics of interaction of heterogeneous liq-
uids with surfaces; accounting for the dynamic characteristics of the contact angle/contact
line, micro- and nano-roughness of the surface; reduced models of interaction between a
droplet and a solid wall for critical wettability conditions.

5. Possible Applications of Modified Surfaces

To date, surface phenomena are one of the topical objects of research in medicine,
tribology, and liquid chromatography. It was established that the interaction of droplets
with surfaces underlies modern technologies for oil and gas displacement from reservoirs,
flotation methods for mineral processing, methods for applying paints and coatings, clean-
ing liquids and gases of impurities, as well as imbuing construction and textile materials
with special compositions [94,95,154,155,192]. These characteristics largely determine the
rate of formation of nuclei of a new phase and significantly affect the efficiency of heat
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exchange processes. An urgent problem is the creation of compact drip cooling systems for
microelectronic equipment and high-performance processors, the speed and reliability of
which depend on the efficiency of dissipated power removal [6,9].

The change in surface tension under the action of surface-active substances (surfac-
tants) is used in washing and laundering, as well as in rock drilling, mechanical processing
of high-strength materials, and grinding, causing a significant reduction in energy con-
sumption for these operations. Surface effects are widely used in metallurgy and can
change the biocompatibility of various fluids and polymers used in modern medicine for
prosthetics [193]. Surface tension is of great importance in biological processes [194]. Many
types of composite materials are formed from a liquid dispersion medium (a matrix with
a certain viscosity) and a solid dispersion phase (a filler introduced into the system in
one way or another). An important condition for the formation of such heterogeneous
systems is the optimal ratio between the solid and liquid phases. Many tasks in medicine
(for example, the creation of thromboresistant polymers, joint implants, etc.) required a
deep study of the wetting of these materials. The peculiarity of the problem lies in the fact
that, upon contact with a wetting liquid, the macromolecules of proteins and polymers of
the surface layer can gradually change their spatial structure. Upon contact with water, this
process leads to a gradual release of polar groups and segments to the interfacial surface.
As a result, the interfacial energy decreases with a corresponding change in the contact
angle, which in turn can lead to rejection of the material by the body. Extensive work
is currently underway to create self-cleaning surfaces [154,155], bioactive surfaces [195],
as well as to develop various methods for cleaning bioactive surfaces [196]. Creating an
implant surface with desired wetting and bioactive properties is in demand.

Prevention of the icing of aircraft, power lines, and wind turbines by modifying such
surfaces is an urgent task [128,197]. Traditional de-icing methods (such as mechanical
de-icing, surface heating, de-icing fluids) are inefficient and labor- and energy-intensive.
Anti-icing includes slowing down nucleation, increasing freeze time, and reducing ice
adhesion. Super-hydrophobic surfaces have large contact angles and a higher potential
free energy barrier to nucleation, which contributes to retardation of icing [131,133]. On
super-hydrophobic surfaces, the contact area, and hence heat transfer, is much smaller
compared to hydrophilic surfaces. Thus, the freezing time of droplets on such surfaces is
much longer than on hydrophilic ones [198]. In addition, the small contact area makes it
easier to remove frozen droplets. The disadvantages of using super-hydrophobic surfaces
in anti-icing technologies include the fact that such surfaces are prone to degradation
of wetting (and hence anti-icing) properties during repeated freeze/thaw cycles. At the
moment, the creation of super-hydrophobic coatings with good performance properties is
topical in this area [130,133].

6. Conclusions

(i) To date, several techniques for creating hydrophilic, hydrophobic, and super-hydrophobic
surfaces have become widely known. The main ones are described in this review article.
Each of the techniques is unique and has both advantages and certain limitations,
which are discussed in this article. Using these techniques, it is possible to modify the
surfaces of metals, alloys, plastics, and other materials. A generalization of the achieve-
ments made it possible to formulate the conclusion that the integral characteristics of
surfaces can currently be varied over a wide range.

(ii) This review summarizes the most valuable results of experimental and theoretical
studies of the interaction characteristics of liquid droplets with solid surfaces. It has
been established that, over the past 10–15 years, a breakthrough has been made in
the direction of obtaining new knowledge about the integral characteristics of these
processes and the critical conditions for transitions between interaction modes. New
experimental data made it possible to significantly develop physical and mathematical
models using author’s codes and commercial software packages. The developed
experimental and theoretical approaches are tested on hydrophilic, hydrophobic, and
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super-hydrophobic surfaces when interacting with water, fuels, solutions, suspensions,
and emulsions. To date, the integral characteristics have been studied quite fully: the
contact spot diameter, the spreading velocity, and the interaction times.

(iii) Energy, transport, petrochemistry, and medicine are the fields for which the research
results’ application for studying the collisions with hydrophilic, hydrophobic, and
superhydrophobic surfaces are most in demand. By modifying the heat exchanger
surfaces, reactors, mixers, transport channels, and other elements, it is possible to
change the characteristics of technological processes in an extremely wide range.
The most challenging and still unresolved tasks are obtaining stable and durable
coatings for wide application in industry, scalability of methods for obtaining surfaces
with the desired functional properties, and the synergistic effect of various factors on
interaction processes.
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