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Abstract: In the field of long-life fatigue, predicting fatigue lives and limits for mechanical com-
ponents is crucial for ensuring reliability and safety. Fracture mechanics tools have enabled the
estimation of fatigue lives for components with small cracks or defects. However, when dealing
with defects larger than the microstructural characteristic size, estimating the fatigue resistance of a
material requires determining the cyclic resistance curve for the defect-free matrix, which depends on
knowledge of the material’s intrinsic fatigue limit. This study focuses on the experimental evidence
regarding the intrinsic fatigue limit and its correlation with naturally nucleated non-propagating
cracks. Fracture mechanics models for small crack propagation are introduced, and their disparities
and limitations are analyzed. The concept of intrinsic fatigue limit is then introduced and applied to
reanalyze a recent publication. Methods for estimating the intrinsic fatigue limit are explored and
applied to experimental results reported in the literature. The need to clarify and accurately predict
the intrinsic fatigue limit is highlighted in alloys where the processing generates defects larger than
the microstructural size of the matrix, as often observed in materials and components produced using
additive manufacturing.

Keywords: intrinsic fatigue limit; microstructural fatigue threshold; material defects; fracture mechanics

1. Introduction

In the field of long-life fatigue, prediction approaches are gaining significant attention
from researchers [1–4]. This is primarily due to the increased demand for reliability and
safety in the design of mechanical components used in industrial applications. With the
evolution of fracture mechanics tools, it has become possible to estimate the behavior of
short cracks that are less than a millimeter long. This has made it possible to estimate the
fatigue lives and limits (or endurance) associated with mechanical components that have
small cracks or crack-like defects generated during manufacturing.

In some manufacturing processes, such as additive manufacturing, inherent defects
can occur, which eliminate or minimize the initiation stage of fatigue cracks. As a result,
it is plausible to assume that the damage process primarily involves the propagation
of a crack from the critical defect until it causes the component to fracture. Therefore,
fracture mechanics is crucial in developing predictive models [5,6]. This, combined with
the advancements in understanding the behavior of small cracks and the development of
models that can predict it, has made the damage tolerance methodology the best tool for
designing safe mechanical components [1–4]. It also reduces the need for excessive safety
factors, enabling more reliable design and life estimation.

However, fracture mechanics analysis necessitates estimating the resistance curve of
the material in the absence of defects [1–4], whether in terms of the stress range or the
range of the stress intensity factor as a function of the crack length: ∆σth vs. a or ∆Kth vs.
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a. The initial size associated with the damage process is subsequently determined using
the maximum expected defect size in the manufactured component. However, if these
defects are inherent to the manufacturing process, estimating the resistance curve requires
knowledge of the intrinsic fatigue limit of the material, which represents the material’s
resistance without defects.

In this study, we begin by recalling fundamental concepts associated with high cycle
fatigue damage, which serve as a foundation for analyzing fracture mechanics models,
including their assumptions and limitations. Specifically, we focus on the Murakami
and Endo [7] and the Chapetti [8] models and those based on the crack closure phenom-
ena [9,10]. Subsequently, we present experimental evidence concerning the fatigue limit
and its correlation with the presence of naturally nucleated, non-propagating cracks. This
enables us to perceive the limit as a threshold for microcrack propagation. Additionally,
fracture mechanics models that estimate the propagation threshold for small cracks are
introduced, and comparative analyses to highlight their disparities and limitations are
conducted. Furthermore, a recent publication is reanalyzed using the proposed concept of
intrinsic fatigue resistance. Finally, we explore the potential methods for estimating the
intrinsic material properties necessary for the application of these models. By doing so, we
aim to enhance our understanding of fatigue damage mechanisms and pave the way for
better assessments of material fatigue behavior.

2. High Cycle Fatigue Resistance

Figure 1 presents a schematic representation of the evolution of a fatigue crack initiated
from a polished surface of a defect-free metallic alloy. Additionally, the figure showcases
various crack lengths and illustrates the generation of surface damage on carbon steels.
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Figure 1. Five stages of mechanical high cycle fatigue damage in metallic materials without defects.

Due to low applied nominal stresses (high cycle fatigue) and surface concentration
effects, plastic deformation is confined to specific grains with favorable orientations, mini-
mizing restrictions from neighboring grains. With increasing cycles, damage grows, causing
persistent slip bands (PSB) induced by shear stresses, resulting in intrusions and extrusions
(stage 1). Localized damage areas lead to microcracks similar in size to the microstructure
(e.g., Figure 1, mode II crack arrested at a grain boundary, stage 2). Early microcrack
propagation culminates in macrocrack formation (stage 3), and subsequent engineering
crack propagation leads to final failure or fracture (stages 4 and 5).

Accurately predicting total fatigue life, encompassing both long fatigue crack prop-
agation and short crack regimes, hinges on properly quantifying fatigue crack initiation
life (stages 1 and 2). However, in scenarios involving components with small cracks or
crack-like defects, such as additive manufactured metals, slip damage localization and
microcrack generation stages may be negligible. Consequently, fatigue behavior becomes
dominated by the propagation of undetectable microcracks until component failure. To
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address this, reliable prediction models for non-detectable cracks (short cracks) are essen-
tial [3,7–12]. In the subsequent sections, we analyze various aspects of fracture mechanics
models utilized for these tasks.

2.1. Crack Initiation and Intrinsic Fatigue Limit

The crack initiation mechanism has been a significant focus of research for decades [13–15],
with numerous models proposed, primarily based on dislocation movement [14–16]. His-
torically, the interpretation of the fatigue limit as the “limit of crack initiation under cyclic
stress” was prevalent [17–19] (as it is pointed out by Murakami [4]). For cases where a
fatigue limit cannot be determined, an “endurance limit” for a specific fatigue life (e.g.,
107 cycles) may be considered instead.

In the present understanding, the high-cycle intrinsic fatigue limit is no longer viewed
as a critical stress for crack initiation. Instead, it represents the stress level below which
an already initiated micro-crack cannot propagate. In essence, the intrinsic fatigue limit
acts as a threshold stress for micro-crack growth. This concept was clearly reported by
Miller in reference [6], employing a Kitagawa–Takahashi diagram [20], which illustrates
the threshold stress range for crack propagation as a function of crack length (see Figure 2).
This limit is material-based and depends on the microstructural characteristic dimension
(d) [6]. Early evidence supporting this concept can also be found in the thorough analyses
of Tanaka et al. [21] and Tokaji et al. [22]. Previous research by Kitano, Chapetti, and
their colleagues [23–29] delved into the position and effective resistance of microstructural
barriers, establishing their relation to the fatigue limit. These studies provide additional
evidence that the intrinsic fatigue limit for plain and blunt-notched samples is defined by
the strongest microstructural barrier. This shift in perspective has brought greater clarity
to the fatigue phenomenon, emphasizing the significance of limiting crack growth rather
than merely preventing crack initiation. The Kitagawa–Takahashi diagram has become an
invaluable tool in fatigue research, aiding in the prediction of crack propagation behavior
and enabling more precise and efficient fatigue life assessments in various materials and
engineering applications.
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In reference [23,24], three different steel microstructures were analyzed under tension-
compression (R = −1): ferrite (JIS SS-400, σU = 438 MPa, HV = 127 Kgf/mm2, d = 38 µm and
∆σeR = 420 MPa), ferrite-bainite (JIS SW12-3, σU = 552 MPa, HV = 181 Kgf/mm2, d = 50 µm
and ∆σeR = 510 MPa) and bainite-martensite (JIS SW12-5, σU = 740 MPa, HV = 288 Kgf/mm2,
d = 50 µm and ∆σeR = 580 MPa). The sample surfaces were totally polished and revealed
before testing. Figure 3 illustrates non-propagating cracks found in samples tested at stress
levels at or just below the fatigue limit (run-out results for 107 cycles). Some of these cracks
are newly published, while others were previously reported in publications [23,24,27,28].
All non-propagating cracks were effectively arrested by the first and strongest barrier
directly associated with the material’s intrinsic fatigue limit. These cracks occur naturally
without the introduction of artificial defects to localize their nucleation, as is commonly
done. It should be noted that naturally nucleated cracks manifest themselves in the weakest
configuration along the entire surface of the sample, making their localization arduous
and time-consuming. However, this approach represents the most appropriate method for
studying crack nucleation processes in any material. Another crucial aspect to consider is
the necessity of observing and analyzing not only the surface path of the crack but also,
primarily, its depth and the position of the crack tip in relation to microstructural barriers.
Figure 3 provides surface observations of the non-propagating (or arrested) cracks associ-
ated with the intrinsic fatigue limit of the three microstructures. Additionally, cross-section
examples of these cracks clearly demonstrate the influence of microstructural barriers that
define the intrinsic fatigue limit and allow for their identification. These barriers represent
a microstructural threshold for micro-crack growth. Nowadays, advanced equipment such
as Scanning Electron Microscopy-Focused Ion Beam (SEM-FIB) is available, making the task
of understanding crack nucleation processes much simpler and faster. Therefore, carrying
out this task no longer requires significant effort and should be widely adopted when
analyzing these topics.

In reference to [27], Chapetti et al. conducted a comprehensive analysis of the impact
of four distinct static strengthening methods on fatigue crack initiation, fatigue limit, and
blunt-notch sensitivity in low-carbon steels with a ferrite–pearlite microstructure. The
microstructural barriers’ average distance (d) was kept constant by maintaining a consistent
average grain size, while the effective resistance to crack growth was increased using
static strengthening. All microstructures exhibited a ferrite–pearlite configuration with a
similar grain size (55 µm). To investigate the intrinsic fatigue limits of each configuration,
test specimens were examined at nominal stress levels just below and very close to the
experimental intrinsic fatigue limit (similar to the approach used in references [23,24]).
In all cases, the non-propagating cracks associated with the intrinsic fatigue limit were
consistently found to be arrested by the first grain boundary, with a depth equivalent to the
average grain size. These findings provided further compelling evidence that, in most in-
stances, the intrinsic fatigue limit is determined using the strongest microstructural barrier,
as previously suggested by Miller [6] (see Figure 2). The resistance to crack propagation
is generally greater than the resistance to crack nucleation, reinforcing the critical role of
microstructural barriers in defining the intrinsic fatigue limit of the material.

Based on the experimental evidence, the intrinsic fatigue limit can be precisely de-
fined as the capacity of the strongest microstructural barrier (e.g., grain boundary) to
arrest a micro-crack. Utilizing the intrinsic fatigue limit, ∆σeR, and the average distance
from the surface to the strongest microstructural barrier (corresponding to the average
microstructural size, d), a minimum intrinsic resistance to micro-crack growth (microstruc-
tural threshold, ∆KdR) can be established for a given load ratio R. This formulation was
proposed by Chapetti [8] and is depicted in Figure 2, as follows:

∆KdR = Y ∆σeR
√

π d (1)

Y is the geometric correction factor that is taken conservatively as 0.65 because, in
most cases, microstructural short cracks nucleated at surfaces are considered semicircu-
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lar [23,24,30]. The ‘R’ subscript indicates that as ∆σeR is R-ratio (load ratio) dependent,
∆KdR also is.

Materials 2023, 16, x FOR PEER REVIEW 5 of 20 
 

 

[23,24,30]. The ‘R’ subscript indicates that as ΔσeR is R-ratio (load ratio) dependent, ΔKdR 
also is. 

 
Figure 3. Examples of microstructurally small non-propagating cracks. Ferrite microstructure: (a–c) 
[23], (d) [28], (e–g). Ferrite-Bainite microstructure: (h) [23,24], (i) [24] and (j). Bainite-Martensite mi-
crostructure: (k) [24], (l) [28] and (m). Photographs (d–g,j,m) correspond to cross-sectioning and 
reveal the internal configuration of the arrested cracks as well as the microstructural barriers. Black 
and white arrows indicate the location of the tips of non-propagating cracks associated with the 
intrinsic fatigue limit. 

The ΔKdR parameter, a microstructural threshold, represents the minimum driving 
force we can apply to propagate a crack of size d. Furthermore, it defines a minimum 
intrinsic stress range as a function of crack length associated with the total threshold for 
crack growth, as shown by the red line in Figure 2. 

Figure 3. Examples of microstructurally small non-propagating cracks. Ferrite microstructure:
(a–c) [23], (d) [28], (e–g). Ferrite-Bainite microstructure: (h) [23,24], (i) [24] and (j). Bainite-Martensite
microstructure: (k) [24], (l) [28] and (m). Photographs (d–g,j,m) correspond to cross-sectioning and
reveal the internal configuration of the arrested cracks as well as the microstructural barriers. Black
and white arrows indicate the location of the tips of non-propagating cracks associated with the
intrinsic fatigue limit.
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The ∆KdR parameter, a microstructural threshold, represents the minimum driving
force we can apply to propagate a crack of size d. Furthermore, it defines a minimum
intrinsic stress range as a function of crack length associated with the total threshold for
crack growth, as shown by the red line in Figure 2.

It is important to mention here that to experimentally analyze this intrinsic microstruc-
tural propagation threshold associated with the intrinsic fatigue limit of the material, it
is necessary to analyze naturally nucleated cracks. Artificial defects cannot be used be-
cause the intrinsic fatigue limit is given by the weakest microstructural configurations in
microstructural entities favorably oriented to induce surface strain concentrations. Any
artificially introduced defect would neglect this concept and would introduce substantial
changes that would make the configuration finally studied different from the one that
would naturally be generated when a fatigue crack nucleates.

2.2. The Microstructural Threshold ∆KdR and the Surface Strain Concentration

Once the la crack is nucleated and overcome the barrier associated with the intrinsic
fatigue limit, several transition processes take place. These include the effect of surface
strain concentration, which involves the first 3 or 4 microstructural entities, the transition
of the crack opening mode, shifting from mode II during crack nucleation to opening mode
I as the crack propagates and develops further, and the development of the crack closure
phenomenon (initially null when the crack nucleates). The analysis of crack closure and
its fundamental concepts will not be discussed in detail here, but they can be explored
in the extensive available literature [31–36]. Additionally, the concepts related to the
transition of the propagation mode, which depends on various material properties and
its microstructure, will not be covered in this discussion. What is important to highlight
is the concept of surface strain concentration since it is generally unknown or dismissed
by many analyses that only contemplate the development of crack closure as the only
phenomenon associated with the development of the propagation threshold, ∆Kth (see, for
instance [1,2,9,10]). As will be discussed later, this can be the case once the crack has passed
3 or 4 microstructural entities. However, the disregarded phenomenon does not allow
extrapolating the effective thresholds of long cracks (∆Kth,eff) to microcracks associated
with the intrinsic fatigue limit of sizes similar to the microstructural size d.

Figure 4 illustrates the concept proposed by Abdel-Raouf, Topper, and Plumtree [37,38],
elucidating the inherent surface strain concentration phenomenon. The explanation centers
around the disparity in deformation between the material at the free surface and the
interior, where neighboring grains provide support (with increasing constraint at depth).
Additionally, the free surface of polycrystalline alloys comprises numerous randomly
oriented grains, each with different slip system orientations relative to the loading axis.
This leads to a strain redistribution process. The strain in the surface is accommodated due
to the lack of constraint, and the local strain is proportionate to the corresponding grain
orientation. Favorably oriented grains undergo more surface deformation and experience a
higher level of localized slip, thus serving as preferred sites for crack initiation.

In contrast, within the material’s interior, grains mutually support each other, leading
to a decrease in local strain with depth into the specimen until it approaches the nominal
strain range. This results in a constraint gradient, which arises from the variation in
grain orientations and the lack of constraint at the surface. As the local strain diminishes
with depth, it approaches the nominal strain range due to increased constraint and strain
compatibility requirements. Furthermore, they argued that the rate of decay is influenced
by the average grain size d, meaning that larger grains exhibit deeper local resolved shear
strain (greater deformation) and have less surface area per unit volume of contact with
neighboring grains, consequently experiencing less constraint.



Materials 2023, 16, 5874 7 of 20

Materials 2023, 16, x FOR PEER REVIEW 7 of 20 
 

 

sic fatigue limit, ΔσeR, which implicitly includes and quantifies all the phenomena men-
tioned above. Additional work on the estimation of the complementary extension force 
due to the surface strain concentration is reported in reference [26]. 

 
Figure 4. Surface strain redistribution. After Abdel-Raouf et al. [37,38]. 

The concentration of deformations on the surface plays a critical role in defining the 
intrinsic fatigue limit because it is dependent on the weakest configuration that generates 
the dominant crack. This further supports the difficulty in extrapolating the effective 
threshold for long cracks, ΔKth,eff (threshold without crack closure), to determine a non-
propagating crack length connected to the intrinsic fatigue limit. The value obtained from 
this method cannot be linked to the microstructure and does not represent the length 
physically associated with the intrinsic fatigue limit of the material. 

Figure 5 shows the basic differences between models that use the concept of crack 
closure and the Chapetti model. The underlying assumptions associated with the intrinsic 
fatigue limit are different. This is important in order to correctly define an intrinsic fatigue 
limit and the associated variables. While the former assumes that the intrinsic fatigue limit 
is determined by the effective crack propagation threshold, ΔKth,eff (thus, the non-propa-
gating crack length a0,eff associated with the intrinsic fatigue limit increases as the load 
ratio increases because ΔσeR decreases), the latter defines the microstructural threshold 
ΔKdR considering a fixed non-propagating crack length given by the average microstruc-
tural size d, yielding different values of ΔKdR for different fatigue limits ΔσeR (different 
load ratio R). 

Table 1 presents ΔKdR and a0,eff results for values of ΔσeR, ΔKth, and d obtained from 
the literature for various metals [21,27,29,39–42], along with reported or estimated values 
of the effective threshold using the expression ΔKth,eff ≈ 1.3 × 10−5 E [3,43], and E = 200 GPa. 

It is evident that the crack closure model hypothesis gives rise to non-propagating 
cracks linked to the intrinsic fatigue limit that can extend up to four times the size of the 

Figure 4. Surface strain redistribution. After Abdel-Raouf et al. [37,38].

After the crack departs from the region influenced by these phenomena, the dominant
factor in the development of the crack growth threshold, ∆Kth, becomes the crack closure
effect, which initiates during the early stages of crack growth.

Those phenomena were considered by Chapetti when proposing his model. The
minimum threshold ∆KdR (see Equation (1)) is defined by the experimentally measured
intrinsic fatigue limit, ∆σeR, which implicitly includes and quantifies all the phenomena
mentioned above. Additional work on the estimation of the complementary extension force
due to the surface strain concentration is reported in reference [26].

The concentration of deformations on the surface plays a critical role in defining the
intrinsic fatigue limit because it is dependent on the weakest configuration that generates
the dominant crack. This further supports the difficulty in extrapolating the effective
threshold for long cracks, ∆Kth,eff (threshold without crack closure), to determine a non-
propagating crack length connected to the intrinsic fatigue limit. The value obtained from
this method cannot be linked to the microstructure and does not represent the length
physically associated with the intrinsic fatigue limit of the material.

Figure 5 shows the basic differences between models that use the concept of crack
closure and the Chapetti model. The underlying assumptions associated with the intrinsic
fatigue limit are different. This is important in order to correctly define an intrinsic fatigue
limit and the associated variables. While the former assumes that the intrinsic fatigue limit is
determined by the effective crack propagation threshold, ∆Kth,eff (thus, the non-propagating
crack length a0,eff associated with the intrinsic fatigue limit increases as the load ratio
increases because ∆σeR decreases), the latter defines the microstructural threshold ∆KdR
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considering a fixed non-propagating crack length given by the average microstructural size
d, yielding different values of ∆KdR for different fatigue limits ∆σeR (different load ratio R).
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Table 1 presents ∆KdR and a0,eff results for values of ∆σeR, ∆Kth, and d obtained from
the literature for various metals [21,27,29,39–42], along with reported or estimated values of
the effective threshold using the expression ∆Kth,eff ≈ 1.3 × 10−5 E [3,43], and E = 200 GPa.

It is evident that the crack closure model hypothesis gives rise to non-propagating
cracks linked to the intrinsic fatigue limit that can extend up to four times the size of the
microstructure. In the case of materials with small grain sizes, this effect can be even more
pronounced. For instance, in the case of S20C steel with a diameter of 7.8 µm and a stress
ratio R = 0, the estimated non-propagating crack size can reach up to twelve times the
microstructural size.

a0,eff is, by definition and as a result of the crack closure model hypothesis, directly
independent of d and is only defined, for a given ∆Kth,eff, by the intrinsic fatigue limit
∆σeR. However, it is possible to increase the intrinsic fatigue limit without varying the
microstructural size d. This can be observed, for example, in the previously referenced
work [27], where five ferritic steels with similar microstructural sizes (average ferrite grain
size d = 55 µm) but different intrinsic fatigue limits generated using the addition of alloying
elements or precipitation heat treatment are analyzed.

If we analyze the case of the high-strength steel JIS SUJ2 [40], a0,eff is estimated to be
1 µm, one-tenth of the microstructural size d (10 µm). This creates a configuration that
requires an appropriate phenomenological explanation to be justified, which does not allow
the use of the entire microstructural entity to explain crack nucleation.
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Table 1. a0,eff and d comparison.

Material d
[µm] R ∆σeR

[MPa]
∆Kth,eff

[MPa m1/2]

a0,eff
Equation (1)

[µm]
a0,eff/d

∆KdR
[MPa m1/2]

Ti6Al4V
[39] 20

−1 ~900

1.9

4 ~1/4 4.6

0.1 450 13 ~1/2 2.3

0.4 340 23 ~1 1.75

0.6 250 44 ~2 1.28

S20C [21] 55 −1 326

~2.6 *

48 ~1 2.78

S20C [21] 7.8
−1 470 23 ~3 1.51

0 ~235 92 ~12 0.75

JIS SUJ2 [40] 10 −1 2400 ~1 ~1/10 8.7

SM41B [41] 14 −1 396 14 ~2 1.7

2.25Cr1Mo [42] 25
−1 500 20 ~1 2.9

0 ~250 81 ~3 1.44

S10C [27] 55 −1 300 56 ~1 2.56

S10C-CuP [27] 55 −1 600 14 ~4 5.12

UFGS [29] 0.8 −1 800 8 ~10 0.82

* Estimated with ∆Kth,eff ≈ 1.3 × 10−5 E [3,43], and E = 200 GPa.

On the other hand, in the case of ultrafine-grained steel (0.8 µm), the concept of crack
closure applied to the intrinsic fatigue limit yields an a0,eff ten times the microstructural size
d. Experimental evidence shows that it was not possible to find non-propagating cracks
larger than d associated with the intrinsic fatigue limit. This was only possible for fatigue
limits with stress concentrators: anp = 2 µm for kt = 2, and anp = 4 µm for kt = 2.8 (see details
in reference [29]), far from the estimated a0,eff = 10d.

This author has not been able to find conclusive experimental evidence in the literature
correlating the observed non-propagating crack length at the intrinsic fatigue limit for a
given load ratio and the length estimated using the ∆Kth,eff criterion. In fact, this author
proposed Equation (1) as a minimum threshold for microcrack growth for the intrinsic
fatigue limit as a result of being unable to explain the experimental observations using only
the concept of crack closure [24,26,28].

2.3. Fatigue Crack Propagation Threshold Curve: ∆Kth vs. a, estimation Models

Let us analyze the transition between the threshold associated with the intrinsic
fatigue limit, ∆σeR (or ∆KdR, the minimum threshold value), and the threshold for long
crack propagation, ∆KthR (the maximum threshold value). This transition is complex as it
involves dealing with very small cracks in threshold configurations within a specific range
of crack lengths. The Chapetti model [8] and the Murakami–Endo model [7] are used here
to analyze the short crack regime. Refer to references [11,44] for a detailed analysis of this
range of short cracks and a discussion of hypotheses regarding various prediction models
for threshold curves and their differences.

Based on the analysis conducted in the previous section, models that rely solely on the
concept of crack closure will not be used. Neither is the El Haddad model [12], as it does
not allow for the definition of a minimum threshold value in terms of ∆Kth associated with
the intrinsic fatigue limit (in fact, this model indicates ∆Kth = 0 for a = 0).
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2.3.1. The Chapetti Model

In Section 2.1, Chapetti’s hypothesis was introduced, stating that the minimum ∆Kth
associated with the intrinsic fatigue limit is equal to ∆KdR. It can be estimated using the
same intrinsic fatigue limit and the average microstructural size d (e.g., grain size) as
expressed in Equation (1) (refer to Figure 2). This hypothesis is based on the idea that the
intrinsic fatigue limit is determined using the capacity of the strongest microstructural
barrier (e.g., grain boundary) to arrest a micro-crack. The parameter ∆KdR represents the
minimum driving force required to propagate a crack of size d. This value serves as the
starting point for the threshold, which then evolves until it reaches its maximum value,
defined by the long crack threshold, ∆KthR.

According to Chapetti’s model, the threshold for crack growth comprises both a
“microstructural” component, ∆KdR, and an “extrinsic” component, which is a function of
crack length and is equal to (∆Kth − ∆KdR). As the crack length increases, this extrinsic
component fully develops and reaches a maximum value (∆KthR − ∆KdR) for long cracks.
Chapetti proposed an exponential function to model the development of (∆Kth − ∆KdR),
leading to the following expression for estimating the threshold for short crack growth as a
function of crack length [8]:

∆Kth = ∆KdR + (∆KthR − ∆KdR)
[
1− e−k(a−d)

]
a ≥ d (2)

where a is the crack length and k is a material constant given by the following expression [8]:

k =
1

4 d
∆KdR

(∆KthR − ∆KdR)
(3)

Equations (2) and (3) are fully defined once ∆σeR, ∆KthR, and d are known. Further
details of this model can be found in references [8,11].

In Chapetti’s model, the resistance curve ∆Kth vs. a does not require a “fitting pa-
rameter” k. Equation (3) is derived from hypotheses associated with the proposed model,
and factor 4 is the only contribution stemming from both the model’s hypotheses and a
fitting procedure applied to various sets of threshold data for short cracks at the time of
proposal [8]. However, when utilizing the model, Equations (2) and (3) do not necessitate
any fitting procedure and offer a direct estimation of the threshold curve, providing a
reliable and pure prediction of crack growth thresholds.

Equations (2) and (3) are widely employed by various authors to estimate the resis-
tance curve in models considering that the minimum crack propagation threshold, ∆Kth,
associated with the intrinsic fatigue limit, is represented by the effective propagation thresh-
old, ∆Kth,eff (crack closure models). This approach yields acceptable results, particularly
in analyses where the intrinsic length a0,eff related to the fatigue limit exhibits dimensions
similar to the microstructural size d, but it cannot be generalized, as this practice can yield
considerably different results, as we have seen in Section 2.2.

For more details on the prediction models that use the crack closure concept, refer-
ences [9] and [10] can be consulted for the proposals of McEvily et al. and Tanaka and
Akiniwa, respectively. McEvily’s model is often confused with Chapetti’s model, but they
only have in common the exponential mathematical expression to express the develop-
ment of the propagation threshold since the models are based on substantially different
hypotheses. Some studies even use the McEvily model (and its hypotheses) but resort to the
parameter k of the Chapetti model (Equation (3)) to estimate its exponential development
parameter (see, for instance, [45,46]). These procedures mix hypotheses and run the risk of
generating weakly supported conclusions, mainly for alloys with relatively small defects.

2.3.2. The Murakami–Endo Model

The Murakami–Endo model [7] provides an estimation of the threshold ∆Kth for small
cracks and defects by considering the Vickers hardness, HV, and the area1/2 parameter,
which is the square root of the area resulting from projecting a small defect or crack
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onto a plane perpendicular to the maximum principal stress. To estimate the threshold
stress range ∆σth for surface cracks with R = −1 [4,7], Murakami and Endo proposed the
following expression:

∆σth =
2.86 (HV + 120)(√

area
) 1

6
(4)

where area1/2 is in µm and HV in kgf/mm2, given ∆σth in MPa. In the case of the threshold
for short crack growth, in terms of the ∆K, the following expression was proposed [4,7]:

∆Kth = 0.0033 (HV + 120)
(√

area
) 1

3 (5)

Equations (4) and (5) are applicable under fully reversed loading conditions, i.e., for
load ratio R = −1. The effect of load ratio is taken into account by the model by multiplying
the expressions (4) and (5) by the following factor [4,7]:(

1− R
2

)α

(6)

with α given by the expression α = 0.266 + HV × 10−4.
An essential feature of this model is its proposition of a constant potential relationship

between the propagation threshold and the defect size. However, as ∆Kth approaches the
long crack growth threshold, it no longer depends on the defect size, as we have exited
the domain of short cracks. The threshold for long crack growth thus establishes an upper
limit (in terms of crack length) for the applicability of the Murakami–Endo model, as
demonstrated in reference [47].

3. The Intrinsic Fatigue Limit

Here, we will delve into the importance of distinguishing between the intrinsic fatigue
limit of the material, given by ∆σeR or ∆KdR, and the fatigue limit of a material containing
small cracks or defects larger than the microstructural size d. In these materials, what is
being experimentally measured or estimated using the Murakami model is the fatigue limit
of the matrix-defect ensemble. In this case, it is not possible to experimentally measure the
intrinsic fatigue limit of the matrix, so it becomes necessary to estimate it appropriately.
Next, it will be demonstrated how this intrinsic fatigue limit represents a lower bound to
the Murakami model and how it could be estimated to properly apply fracture mechanics
models in materials with defects larger than d, which are, in many cases, inherent to the
manufacturing process.

Figure 6 illustrates the propagation thresholds in terms of ∆σth (Figure 6a, K-T di-
agram) or ∆Kth (Figure 6b), as predicted by the Murakami–Endo and Chapetti models.
These models provide insights into the critical values required for crack propagation. The
Murakami model is bounded by both lower and upper limits. The upper limit corresponds
to the long crack threshold value, ∆KthR, discussed and exemplified in reference [47]. On
the other hand, the lower limit is determined by the microstructural size d associated with
the material’s intrinsic fatigue limit. As reviewed by Miller [6,30], any defect or initial crack
smaller than this d value would have no significant impact on the intrinsic fatigue limit of
the material.

In the schematic representation of Figure 6, the predictions of the Murakami–Endo
and Chapetti models are matched when a = d. This assumption implies that both models
predict the same intrinsic fatigue limit of the material when there are no defects or cracks
exceeding the size of d. In fact, this is a hypothesis that has been applied when conducting
analyses using various prediction models, as in the works of Schönbauer and Mayer [48].
In the remaining part of this section and in the following ones, this hypothesis is examined
in more detail, particularly when utilizing it to estimate ∆KdR. Let us remember that in the
case of the Chapetti model, ∆σeR is a data (input) that needs to be measured or estimated,
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while in the Murakami–Endo model, ∆σe (fatigue limit) is estimated by the model itself
based on the hardness and size of the defect or crack.
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Figure 6. Schematic representation of the estimated threshold for crack growth. Murakami–Endo
model (dark line) and Chapetti model (red line). (a) Kitagawa–Takahashi type diagram, ∆σth vs. a.
(b) Threshold in terms of the stress intensity factor range, ∆Kth vs. a. Limits of the Murakami–Endo
model are shown in terms of the crack length: d, minimum limit given by the fatigue limit (∆σeR or
∆KdR), and asc, maximum limit given by the threshold for log cracks, ∆KthR.

The lower limit of the Murakami–Endo model has not been adequately addressed in
previous analyses, as discussed in references [11]. Some claims have even suggested that
the intrinsic fatigue limit estimated by the Murakami–Endo model could involve up to 3 or
4 microstructural entities [4,49,50]. This implies that defects or cracks smaller than 3d or
4d would not have an impact on the fatigue limit of the material or component. However,
this author believes that such claims arise from the analysis of works involving artificial
defects or metals with very low strength relative to other materials. In the last case, the
fatigue strength is significantly low in terms of ∆Kth compared to the threshold of long
cracks, ∆KthR, which is associated with a wider range of short cracks. Similar observations
can be made when analyzing relatively low-strength copper alloys, as demonstrated in
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reference [42], where the intrinsic fatigue limit is associated with 2d. Furthermore, the short
crack range (d-asc in Figure 2) increases as the strength or hardness of the metal decreases,
as shown and explained in reference [11], for instance. This leads to a situation where
the evolution of the fatigue limit with the crack length (or defect size) exhibits a small
average slope in the Kitagawa–Takahashi diagram (see Figure 1). Consequently, it raises
the likelihood that the material’s intrinsic fatigue limit is linked to micro-crack sizes that
surpass the microstructural size, d. For further examination of this matter, reference [50]
can also be analyzed.

In order to illustrate the challenges associated with defining intrinsic fatigue resistance,
the study conducted by Merot et al. [51] will be examined. The researchers investigated the
fatigue behavior of a 316L steel produced using laser powder bed fusion, which contained
various populations of defects, including lack of fusion (LoF), corrosion pits (CP), and
electric discharge machined hemispherical defects (EDM). The study found that the crack
leading to failure consistently initiated from a single surface defect, and interestingly, the
nature and morphology of the critical defect did not appear to have any influence on the
fatigue strength. Instead, only the size of the defect seemed to matter. To incorporate the
critical defect size into the analysis, the Murakami–Endo, El Haddad, and Chapetti models
were implemented and calibrated. Subsequently, a modified Paris propagation law was
employed to model the regime of short cracks and predict the ∆σ-N curve domains based
on the range of critical defect sizes.

The focus of this analysis lies in examining various concepts related to the application
of fracture mechanics models for estimating the threshold curve, specifically in cases where
inherent material defects resulting from processing are present. However, the comparison
and potential advantages of different models will not be discussed in detail in this context.
For a more comprehensive understanding of the topic, further insights can be gained by
referring to references [11,44].

The observed results are influenced by the combined effect of the material matrix’s
strength and the presence of inherent defects, which impact the damage process and the
determination of fatigue resistance. Data reported by Merot et al. are: tensile strength
σU = 642 MPa, Vickers hardness Hv = 225 Kgf/mm2, grain size d = 49 µm, and threshold
for long cracks (load ratio R = −1) ∆KthR = 9.04 MPa m1/2 [51]. Figure 7 illustrates the
fatigue lives of all the tested specimens, with an indication of the type of defect leading to
fracture [51,52]. It is important to note that the fatigue life reported by Merot et al. for failure
initiated within the matrix (without involvement of defects) does not exceed 5 × 105 cycles.
Therefore, this value should not be considered representative of the intrinsic fatigue limit.
From Figure 7, it is evident that if one were to extrapolate towards 107 cycle lives using
slopes similar to those observed in the remaining data, the intrinsic resistance would be
significantly lower. However, Merot adopts an intrinsic fatigue limit ∆σeR = 900 MPa based
on the stress range level applied for the failure from the matrix and the data reported by
Andreau for a similar material [53].

A similar analysis can be conducted concerning the fatigue lives of all other reported
experiments. Notably, none of these fatigue lives exceed a million cycles, and more than
half of them do not surpass 5 × 105 cycles. These findings indicate that, in these cases, the
applied stress intensity factor (∆K) is considerably higher than the propagation threshold
(∆KthR) associated with the matrix. Lifetimes approaching 10 million cycles are expected
to be associated with an applied ∆K close to the propagation threshold (∆KthR) for crack
growth. However, Merot et al. deviated from the conventional approach by modifying
a parameter in each model using an adjustment derived from the collected data. This
approach holds significant implications while drawing conclusions because it no longer
estimates the propagation thresholds of the matrix (as the models typically do). Instead,
the models are adjusted to fit the experimental results.
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Figure 7. Fatigue life data was reported by Merot et al. for various populations of defects: lack of
fusion (LoF), corrosion pits (Pits), and electric discharge machined hemispherical defects (EDM). The
fatigue life for a failure from the matrix is also shown. R = −1 [51,52].

On the other hand, Merot et al. did not measure the propagation threshold for long
cracks, ∆KthR. Instead, they reported a value of ∆KthR equal to 9.04 MPa m1/2, which was
obtained using the Murakami–Endo model with the parameter area1/2 equal to 300 µm and
under the assumption that the range of short cracks had already been surpassed, indicating
the threshold for long cracks had been reached.

Regarding the microstructural size, they estimated a value of d = 11.4 µm, which was
obtained by using it as a fitting parameter when applying the Chapetti model to explain the
experimental results. However, it is essential to note that they also measured the average
microstructural size for the analyzed material, which was reported to be equal to 49 µm. In
the current analysis, the measured microstructural side d = 49 µm is used in accordance
with the assumptions of the Chapetti model.

To apply the Chapetti model to the experimental data reported by Merot et al., it is sup-
posed that the Murakami–Endo and Chapetti models predict similar ∆KdR values, as shown
in Figure 6. The minimum ∆Kth (∆KdR) is estimated using the Murakami–Endo model
(Equation (5)) for R = −1, given ∆KdR = 4.49 MPa·m1/2 for d = 49 µm. These values are
associated with an intrinsic fatigue limit ∆σeR = 497 MPa (according to Equation (4). When
comparing this value with the tensile strength (642 MPa), it appears that the estimation
made here is more reasonable than the value reported by Merot et al. (900 MPa).

Furthermore, to determine ∆KthR, the original Murakami–Endo model (Equation (5))
is employed instead of the modified model utilized by Merot et al. The parameter area1/2

is set to 300 µm, aligning with the assumption made by Merot et al. that the range of
short cracks has already been surpassed, indicating the threshold for long cracks has been
reached. The estimation yields a value of ∆KthR = 7.62 MPa·m1/2.

In Figure 8, the data presented by Merot et al. is depicted using black symbols, along
with their estimated threshold curve obtained using the Chapetti model and a fitting
procedure (black dashed line). Additionally, the estimation developed here using the
Chapetti model is represented by red lines. The crack length serves as the input variable,
calculated by equating the parameter area1/2 to 1.253 times the crack length. This calculation
assumes that the area corresponds to that of a semicircular surface crack. Figure 8a displays
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the Kitagawa–Takahashi diagram, while Figure 8b presents the same results but in terms of
the stress intensity factor range.
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Figure 8. Data reported by Merot et al. (black symbols) for 316L steel and R = −1 [51,52], their
threshold curve estimated using the Chapetti model and a fitting procedure (black dashed line), and
the estimation using the Chapetti model developed here (red line). (a) Applied ∆σ and threshold
∆σth as a function of crack length (or defect size), K-T diagram. (b) Applied ∆K and threshold ∆Kth.
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As expected, nearly all of the experimental data lies significantly above the threshold
curve, which represents the ∆Kth value associated with the fatigue limit as a function of
defect size. The primary distinction between the two implementations of the Chapetti
model lies in the assumptions, criteria, and methodologies employed to estimate the
intrinsic fatigue limit, ∆σeR.

Additionally, there is an inherent uncertainty associated with the long crack threshold.
It is important to bear in mind that when utilizing the Murakami–Endo model to estimate
it, it is necessary to consider the upper limit of its validity, precisely determined by that
threshold. The use of crack lengths exceeding the upper limit of the range of short cracks
(asc) may result in overestimations of the threshold, as illustrated in Figure 6b. If this were
the case, the correct result would be a threshold curve with lower stress ranges for similar
crack lengths, resulting in a better explanation of the analyzed fractures. These uncertainties
highlight the need to experimentally measure or properly and conservatively estimate the
threshold for long cracks, which is the upper limit value for the threshold curve.

4. ∆KdR Estimation

Let us now analyze two formulas proposed here to estimate the intrinsic fatigue limit,
∆σeR, or alternatively, the associated propagation threshold, ∆KdR.

If Figure 6b is observed, it can be inferred that it would be possible to estimate the
intrinsic strength of the material using the Murakami–Endo model (Equation (5)) and the
microstructural size d, in the following manner (as it was proposed in [11]):

∆KdR = 0.00356 (HV + 120) d
1
3 (7)

where d is in µm and HV in kgf/mm2, given ∆KdR in MPa.m1/2. In Equation (7), the
relationship between area1/2 and the microstructural size d has been considered, assuming
a semicircular crack of depth d (hypothesis of the Chapetti model).

On the other hand, Chapetti has proposed the following expression to estimate ∆KdR
for steels as a function of HV hardness and the microstructural size d [54]:

∆KdR = 1 + 0.5 HV
√

π d (8)

where d is in m and HV in kgf/mm2, given ∆KdR in MPa·m1/2. Figure 9 shows the ∆KdR
values given by Equation (1), along with the corresponding estimations obtained using
Equations (7) and (8) for the steels data reported in [22,24,29,55,56]. The data utilized and
the resulting estimations are presented in Table 2. The black line in Figure 9 represents the
equality between the values obtained from Equation (1) and the estimations, indicating the
satisfactory performance of Equation (8).

The results clearly demonstrate a higher estimation when using Equation (7), which
assumes that the Murakami model allows estimating ∆KdR for a = d (see Figure 6a). The
overestimation of Equation (7) compared to Equation (8) remains at approximately 90%,
yielding values almost twice as high. For a conservative estimation, Equation (8) could be
preferred over Equation (7), although data collection and statistical analysis for different
load ratios should be further explored in order to expand and improve it, even for other
metallic alloys. To perform this task, it is necessary to gather sets of values for ∆σeR, d, and
Hv of the analyzed materials.
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Table 2. Steel data and ∆KdR estimations.

Steel d
[µm]

∆σeR
[MPa]

HV
[Kg/mm2]

∆KdR Equation (1)
[MPa m1/2]

∆KdR Equation (8)
[MPa m1/2]

Chapetti

∆KdR Equation (7)
[MPa m1/2]

Chapetti-Murakami–
Endo

S10C [55]

15.9 470 445 2.16 2.57 4.90
30 495 355 3.12 2.72 3.80
50 530 399 4.32 3.50 6.70

89.9 350 347 3.82 3.91 7.30

S20C [55]

12.8 480 444 1.98 2.41 4.60
27.4 520 483 3.14 3.24 6.30
49.5 490 470 3.97 3.93 7.60
80.4 460 442 4.75 4.51 8.50

SNC21 [55]
12 630 472 2.51 2.45 4.70

24.9 680 437 3.91 2.93 5.70

S15C [56]
21 364 175 1.92 1.71 2.85
43 362 175 2.73 2.02 3.6

116 330 273 4.09 3.61 6.70

S35C [56]
8 442 185 1.44 1.46 2.13

26 382 247 2.24 2.12 3.80
67 388 252 3.66 2.83 5.30

S55C [56]

5 548 239 1.41 1.47 2.14
6 510 228 1.44 1.49 2.20

30 388 213 2.45 2.03 3.60
6 432 254 1.22 1.55 2.38

S45C [22] 14 430 241 1.85 1.80 3.00

S10C [24] 55 300 103 2.56 1.68 1.65
UFG [29] 0.8 800 250 0.82 1.20 1.22
CGS [29] 12.5 550 187 2.24 1.57 2.48
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5. Concluding Remarks

In some manufacturing processes, such as additive manufacturing, inherent defects
can occur, which eliminate or minimize the initiation stage of fatigue cracks. This, combined
with the advancements in understanding the behavior of small cracks and the development
of fracture mechanics models that can predict it, has made the damage tolerance methodol-
ogy the best tool for designing safe mechanical components. However, fracture mechanics
analysis requires estimating the resistance curve of the material in the absence of defects.
This estimation relies on knowledge of the intrinsic fatigue limit of the material, which
represents its resistance without any defects.

This study aims to enhance our understanding of high-cycle fatigue damage and
fracture mechanics models by exploring their fundamental concepts and assumptions. It in-
troduces the concept of intrinsic fatigue resistance and provides experimental evidence that
establishes its correlation with non-propagating cracks and the position of microstructural
barriers. Furthermore, the study conducts comparative analyses of the Murakami–Endo,
Chapetti, and crack closure-based models, uncovering disparities and limitations within
these approaches. By incorporating intrinsic fatigue resistance, a recent publication show-
cased notable outcome variations, emphasizing its crucial significance in comprehending
fracture mechanics models’ application.

From the analysis conducted and the results obtained, the following points can
be emphasized:

• It is necessary to remember, consider, and explore in future work the hypothesis that
the fatigue limit represents a threshold for the propagation of micro-cracks associ-
ated with the microstructural configuration (phase sizes, hardness, etc.) where they
are generated.

• This hypothesis generates a minimum crack length value that represents the lower
limit of validity for fracture mechanics models using the concept of a resistance curve
(propagation threshold as a function of crack length) to estimate fatigue limits or
high-cycle fatigue lives of metallic components.

• This minimum crack length value, defined in this study by the average microstructural
size d, is, in turn, associated with a microstructural threshold in terms of the stress
intensity factor range, ∆KdR, which should coincide with the estimated minimum
propagation threshold predicted using the models. In the case of models based on the
concept of crack closure, there is still a lack of overwhelming experimental evidence
regarding this minimum value and its connection to the intrinsic fatigue limit.

• It is necessary to emphasize the limitations associated with the application of threshold
prediction models for fitting procedures to experimental data that do not represent
threshold configurations (and with associated fatigue lives lower than those considered
run-outs for fatigue or endurance limits). For nominal applied stress range values
higher than the fatigue limit of the analyzed material, fracture mechanics models
should only be used for estimating finite fatigue lives, comparing the applied ∆K
curves with the threshold ∆Kth curve.

• Two methods are proposed and compared for estimating the minimum threshold for
crack propagation, ∆KdR, associated with the intrinsic fatigue limit. These methods are
applied to experimental results reported in the literature. The first method (Equation
(7)) involves determining the minimum threshold using the Murakami–Endo model
for a crack length equal to the average microstructural size d. The second method
(Equation (8)) utilizes a simple expression that also incorporates the Vickers hardness
and the parameter d and provides lower estimation values that exhibit very good
agreement with the experimental data for steels.

• The concept of intrinsic fatigue limit is then introduced and applied to reanalyze a
recent publication, which has been very useful in clarifying the topics discussed.
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