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Abstract: Morphological transformations in emulsions of cellulose and polyacrylonitrile (PAN)
ternary copolymers containing acrylonitrile, methyl acrylate, and methylsulfonate comonomers in
N-methylmorpholine-N-oxide were studied over the entire range of concentrations depending on
temperature and intensity of the deformation action. Based on the morphological and rheological
features of the system, the temperature-concentration range of spinnability of mixed solutions was
determined, and composite fibers were spun. The fibers are characterized by a heterogeneous fibrillar
texture. Studies of the structure of the fibers, carried out using X-ray diffraction analysis, revealed a
decrease in cellulose crystallinity with an increase in the content of PAN. The study of the thermal
properties of the obtained fibers, carried out using DSC, and chemical transformations in them in
a wide temperature range by high-temperature diffuse reflection IR spectroscopy made it possible
to reveal a new intense exothermic peak on the thermograms at 360 ◦C, which according to the IR
spectra corresponds to the transformation of intermacromolecular physical interactions of the PAN
and cellulose into covalent bonds between polymers. In addition, the ester groups found during the
thermal treatment of the PAN part of the composite fibers in the pyrolysis zone can have a key effect
on the process of their further carbonization.

Keywords: cellulose; polyacrylonitrile; N-methylmorpholine-N-oxide; dry-jet wet spinning; fibers;
structure; crystallinity; mechanical and thermal properties

1. Introduction

Among the dual-use fibers that are popular both in the textile and other industries,
polyacrylonitrile (PAN) and cellulose fibers are of particular interest due to the fact that they
are not only sources of wool-like and cotton-like materials, respectively, but also precursors
of carbon fibers (CF) of different assortments [1,2]. CFs from PAN are characterized by high
values of carbon yield (up to 50%) and high mechanical characteristics [3–5], which render
it possible to use them as reinforcing components of composite materials. At the same
time, CFs from cellulose with lower values of carbon yield (about 15–20%) and moderate
mechanical characteristics, due to high thermal conductivity, are completely indispensable
as heat-protection materials and, due to the increased values of the thermal expansion
coefficient [6], are well compatible with mineral fibers of the basalt type in materials for
thermal protection of nuclear reactors [7].

Let us briefly consider some features of the chemical structure and conditions for
processing both polymers into fibers. Their main feature is the non-melting of both PAN
homopolymer and cellulose due to strong nitrile-nitrile interactions in the first case and
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a dense network of hydrogen bonds in the second. To regulate the structure of PAN and
its thermal behavior, comonomers are introduced into polymer chains, usually containing
ester and acid groups: alkyl acrylates and acids—itaconic, acrylic, etc. [8–10]. However,
the main method for producing PAN fibers is a solution (wet and dry-jet wet spinning),
while the melt spinning method is still under development [11–13]. The main difficulties
in obtaining melts of PAN copolymers lie in the polarity of the PAN nitrile groups, which
have a high dipole moment equal to 3.9 D [14]. The dipole-dipole interactions that arise
between polar groups are accompanied by a high melting temperature of the polymer,
which is higher than its degradation point [15].

Aprotic organic solvents such as dimethylsulfoxide (DMSO), dimethylformamide
(DMF), dimethylacetamide (DMAA), ethylene carbonate, ionic liquids, aqueous solutions
of salts such as zinc chloride (ZnCl2), sodium thiocyanate (NaSCN), etc. are widely used
to obtain PAN spinning solutions [16–18]. The content of PAN in dopes, depending on
the nature and amount of comonomers and molecular weight of the copolymer, is usually
in the range of 12–18% [19]. A further increase in the PAN content in solutions leads to a
significant increase in viscosity, which exceeds 104 Pa·s [20–23].

It was shown for the first time in [24,25] that N-methylmorpholine-N-oxide (NMMO)
has a high dissolving activity not only for hydrophilic polymers such as cellulose, which is
widely used in the production of cellulose fibers, but also for hydrophobic PAN. NMMO
containing ~8–10% water makes it possible to obtain PAN solutions with concentrations up
to 55%. The production of CFs from PAN is associated with a long thermal treatment of
precursors (thermooxidative stabilization in the presence of oxygen and carbonization in
an inert atmosphere) [26,27]. To increase the efficiency of thermal-oxidative stabilization,
modify the properties of the resulting CFs, and replace partly synthetic polymers with
renewable natural polymers, such natural polymers as cellulose, lignin, etc. are used as
co-components of spinning dispersions [28–30].

In addition, nanocrystalline cellulose (NCC) is introduced into PAN via the spinning
suspension [31], and only 0.1% of this additive increases the strength of the white fibers
by 20% and the elastic modulus by a third. As well, for carbon fibers obtained from these
precursors, an increase in mechanical characteristics was observed. The introduction of up
to 2% of NCC nanoparticles with a length of 350 nm and a thickness of up to 20 nm into
PAN leads to an increase in the strength and elastic modulus of composite precursor fibers
by almost 50% compared to the neat fibers [32]. The carbonization of composite precursors
also revealed a significant effect of NCC on the strength and elastic modulus of CFs, which
almost doubled compared to carbon fibers obtained from PAN precursors. The authors
of [33] managed to obtain composite fibers based on PAN with a NCC content of up to 40%.
Thermolysis of composite precursors at a temperature of 1000–1400 ◦C resulted in CFs
with a strength of up to 2.3 GPa and an elastic modulus of up to 265 GPa. Unfortunately,
the authors of these publications did not analyze the anisotropic elastic properties of
graphite crystal inclusions. Such analysis was performed in [34] for prepregs containing
CFs carbon fibers from different sources (PAN and pitch) in epoxy matrix, based on the
nanoidentation technique. Elastic constants for extension and shear moduli with various
orientations of crystallites relative to the long axis of fibers were calculated, which indicate
a strong anisotropy of mechanical properties in longitudinal and transversal directions. The
presence of two precursor components—CFs and NCC—requires estimating orientation
parameters for both of them.

In addition to using nanocrystalline cellulose, ordinary cellulose for chemical pro-
cessing can also be used as a PAN partner. It is the use of NMMO as a solvent of both
polymers that allows for expanding the concentration limits of mixed spinning solutions to
create composite CF precursors on their basis. However, it should be borne in mind that
cellulose and PAN are thermodynamically incompatible polymers and remain incompatible
in a common solvent, NMMO; therefore, all mixed solutions in NMMO are two-phase,
i.e., emulsions. Emulsions are movable colloid systems that change morphology under
the action of different factors. Especially important is deformation action leading to the
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transformation of emulsion morphology due to orientation phenomena. Moreover, the
heterogeneous morphology of the spinning compositions should lead to a heterogeneous
morphology of the spun fibers. In addition, the specific interaction between functional
groups of PAN and cellulose in the presence of a very active solvent and high temperatures
should be considered.

That is why the following issues are studied in detail in this paper: the morphology of
emulsions depending on the composition and intensity of the deformation; the rheological
behavior of the obtained emulsions at different temperatures; the optimal temperature-
concentration regimes of the dry-jet wet spinning process for composite fibers; the structural
features of polymers in solutions and fibers; and a set of fiber properties. Since these fibers
are considered potential precursors of CFs, special attention will be paid to the thermal
properties and evolution of the chemical composition of polymer components along the
temperature scale (until 600 ◦C).

2. Materials and Methods
2.1. Materials

To obtain 18% solutions based on PAN and cellulose in NMMO, powdered cellu-
lose (Baikal Pulp and Paper Mill, Baykalsk, Russia) with a polymerization degree of
600, a moisture content of ~8%, a content in the dry state of the α-cellulose of ~92%, a
particle size of no more than 250 µm, and a PAN terpolymer of the following composi-
tion: acrylonitrile—93.9%, methyl acrylate—5.8%, and methyl ester of sulfonic acid—0.3%
(Mw = 85,000 g/mol) with an average particle size of 50 µm (Goodfellow, Huntingdon,
UK) were used.

As a solvent for cellulose and PAN, we used NMMO with Tm = 120 ◦C (water content
~10%), manufactured by Demochem (Shanghai, China). To inhibit the thermooxidative
degradation of cellulose, 0.5% of propyl gallate (Sigma-Aldrich, St. Louis, MO, USA) was
introduced into the system under dissolution.

2.2. Methods
Preparation of Dopes

At the first stage of the preparation of mixed spinning solutions, solid-phase polymer
systems (cellulose-PAN-NMMO) were subjected to preliminary activation under conditions
of all-around compression and shear deformation according to the procedure described
in [24,35]. To obtain liquid solutions, the activated solid-phase pre-solutions were passed
through the operating zone of a HAAKE Minilab II twin-screw laboratory mixer (Ther-
moFisher Scientific, Dreieich, Germany) at a temperature of 120 ◦C and a screw rotation
speed of 100 rpm.

The viscosity of the solutions was evaluated on a HAAKE MARS 60 Rheometer
(ThermoFisher Scientific, Dreieich, Germany) and a Physica MCR 301 (Anton Paar, GmbH,
Graz, Austria) rotary rheometer. As operating units, a cone-plane with a diameter of 20 mm
and an angle of one degree under steady-state deformation in the shear stress τ range of
10–106 Pa and a cylinder-cylinder unit with an inner diameter of 10 mm were used. To
exclude contact of the sample with the environment, the end of the gap was surrounded
with PMS-100 silicone oil (Silan, Moscow, Russia). The tests were carried out in the
temperature range of 110–130 ◦C.

The morphology of solutions was studied using polarizing microscopy (Boetius mi-
croscope, VEB Kombinat Nadema, Ruhla, Germany, former DDR).

2.3. Fiber Spinning

The spinning of composite fibers was carried out by the dry-jet wet method on a
Rheoscope 1000 capillary viscometer (CEAST, Torino, Italy) equipped with a winding
device at temperatures of 100–140 ◦C.
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2.4. Fiber Characterization
2.4.1. Structural and Morphological Characterization

The fiber structure was studied by X-ray diffractometry and IR Fourier spectroscopy.
X-ray diffraction patterns were obtained using a Rigaku Rotaflex RU-200 setup (Rigaku
Corporation, Tokyo, Japan) equipped with a rotating copper anode (linear focus
0.5–10 mm, source operation mode 50 kV–100 mA, wavelength of characteristic CuKα radi-
ation λ = 1.542 Å, secondary graphite monochromator), a D-Max/B horizontal goniometer,
and a scintillation detector. The X-ray survey was carried out in the transmission mode
according to the Bragg-Brentano scheme in the continuous θ–2θ scanning mode in the
angular range of 5–40◦, at a speed of 2◦/min with a scanning step of 0.04◦. The measure-
ments were carried out at room temperature. The objects used were bundles consisting of
100–150 monofilaments, which were fixed on a flat square aluminum frame perpendicular
to the plane of rotation of the detector (equatorial position).

Estimation of crystallinity index CI and background removal were performed accord-
ing to the Segal method [36–38]:

CI = (I002 − Iam)/I002 × 100, (1)

where I002—the intensity of the 002 reflex and Iam—the intensity of diffraction between
reflexes of 110 and 200 at 2θ = 18◦, which corresponds to the amorphous phase of cellulose.

The crystallite size was estimated according to the Scherrer method [39], according to
Equation (2):

D = 0.89λ/β cos θ, (2)

where D—the average crystallite size, λ—the X-ray wavelength, β—the integral reflection
width (in radians), and θ—the diffraction angle (Bragg angle).

The morphology of the surface and transverse fiber cleavage was studied by the
low-voltage scanning electron microscope FEI Scios (Hillsboro, OR, USA) at an accelerating
voltage of less than 1 keV in the secondary electron mode.

The IR spectra of the composite fiber with a composition of 60% cellulose—40% PAN
were recorded by high-temperature IR diffuse reflectance spectroscopy in situ (DRIFTS
spectra) in the temperature range 25–450 ◦C in an argon atmosphere on a HYPERION-2000
IR microscope coupled with an IFS IR-Fourier spectrometer −66 v/s Bruker (Billerica,
MA, USA) (crystal—Ge, scan 50, resolution 2 cm−1, range 600–4000 cm−1) (Bruker Optics,
Ettlingen, Germany).

2.4.2. Mechanical Testing

The mechanical properties of the fibers were measured on an Instron 1122 tensile machine
(Instron, Norwood, MA, USA) at an extension rate of 10 mm/min on a base of 10 mm.

2.4.3. Thermal Characterization

The thermal behavior of the fibers was studied by differential scanning calorimetry
(DSC) on a thermal analysis device, TGA/DSC1 Mettler Toledo (Mettler Toledo, Greifensee,
Switzerland). The measurements were carried out in aluminum oxide crucibles with a
volume of 70 µL in the temperature range of 30 to 400 ◦C at a heating rate of 10 ◦C/min.
The inert gas (argon) flow rate was 10 cm3/min.

3. Results and Discussion

The morphology of dopes plays an important role in their processing into spun fibers.
For two-phase solutions of cellulose and PAN in NMMO, the morphology is determined
by the history of preparation, composition, and intensity of the deformation. The intense
mixing of the emulsion, which can be achieved in a twin-screw extruder, results in the
formation of a micro-heterogeneous dispersion over the entire composition range. However,
as can be seen from the micrograph (Figure 1a), the emulsion containing a 30% PAN solution,
after flowing through the capillary of the viscometer, is textured, forming fibrils with a
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diameter of no more than 1 µm, oriented in the flow direction. With an increase in the
emulsion of the dispersed phase of the PAN solution up to 50 and more percent, i.e., when
the PAN solution becomes the dispersion medium, the fibrillar texture of the emulsion is
not only preserved but becomes more regular (Figure 1b,c).
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The color processing of photographs makes it possible to more clearly visualize the
formed extended fibrils (see inserts in Figure 1b,c). The nature of the observed fibrils was
determined by the method of selective dissolution of PAN in DMF. The isolated dispersed
phase is, as can be seen from Figure 2, long, thin cellulose microfibers with a diameter of
about 1–2 µm.
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Figure 2. A micrograph of cellulose microfibers after PAN removal from composite fibers that
previously contained 60% PAN.

Thus, when the content of the dispersed phase of the PAN solution in the composite
emulsion is around or more than 30%, under shear conditions, the dispersed droplet-like
morphology of the system transforms to the fibrillar one.

To reveal the influence of the morphological features of the studied emulsions on
the nature of their flow, the rheological behavior of the studied emulsions of different
compositions was studied in a wide temperature range (80–150 ◦C). The shape of all
dependencies of viscosity on PAN content (Figure 3) is almost identical at all temperatures,
and the differences are only in the absolute values of viscosity, which are predetermined
by the emulsion composition and temperature. The introduction of PAN into the cellulose
solution leads to some increase in the viscosity of the emulsions compared to the cellulose
solution up to a 50% PAN content, i.e., to the point of phase inversion. For all solutions,
there is a positive deviation from the dependence predicted by the rule of logarithmic
viscosity additivity for a two-component system.
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Figure 3. Dependences of the viscosity of 18% mixed solutions (at a shear rate of 0.01 s−1) on the
content of the PAN solution.

This means a strong intermolecular interaction between the polymer components of
the system. To analyze its mechanism, it makes sense to return to earlier works devoted to
this issue [40,41]. Thus, IR spectral studies have shown that in the process of dissolution
and fiber formation in NMMO at 120 ◦C, PAN, except for the partial cyclization of nitrile
groups, undergoes deeper chemical transformations, namely hydrolysis reactions with the
formation of acrylamide units—C-C(O)-NH2, which easily (with the participation of water
molecules or directly) form H-bonds with cellulose hydroxyl groups. The appearance of
sufficiently strong contacts between the chains of PAN and cellulose leads to a change in
the conformation of PAN and cellulose macromolecules, and their regions, not connected
by hydrogen and dispersion bonds, will repel each other due to the hydrophobicity of
the preserved nitrile groups. In other words, cellulose and PAN macromolecules form
unique associates within which cellulose chains are located and surrounded by PAN macro-
molecules (see schemes in Figure 4), i.e., the mixed PAN and cellulose emulsion consists of
self-formed macromolecular formations with more strong intra-associate interactions and
weaker inter-associate interactions.
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Figure 4. Schematic image of PAN (P)-cellulose (C) associate in mixed solution (a) and illustration of
specific H-bond formation between polymers via –C-C(O)NH2 (~) links (b).

It is for this reason that fibrils appear in the emulsion during the flow, which are
caused not by the deformation of the droplets of the disperse phase but by the specific intra-
and intermacromolecular interaction between polymers, which enhances the longitudinal
and weakens the transverse ordering of macromolecules. The implementation of such
associates in the system can lead to an increase in viscosity. A further increase in the PAN
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content in the system is above 50%, i.e., when the phase inversion point is overcome and the
low-viscous PAN solution phase becomes a dispersion medium, the viscosity of emulsions
begins to decrease.

Previous experience has shown that for the successful spinning of composite fibers,
the viscosity of the spinning dope must be in the range between 103 and 104 Pa·s, which
corresponds to emulsions containing up to 60% PAN in the temperature range of 100 to
130 ◦C. These temperatures were chosen for spinning fibers according to the traditional
dry-jet-wet scheme. The hot jet of emulsion emerging from the capillary was drawn into
the air gap with a drawing ratio of up to 25 at a spinning rate of up to 100 m/min. The
distance between the spinneret and the surface of the coagulation bath was 10 cm. Next,
the solution jet entered the water bath at room temperature (T = 20 ± 2 ◦C). The path in the
bath did not exceed 5 cm. Moreover, the as-spun fiber was directed to the winding device.

To completely remove NMMO from the as-spun fiber, it was washed with water at
room temperature for a day in a static mode, and after this operation, the fiber was dried in
a free state. The low viscosity of 18% PAN solutions in NMMO did not allow the formation
of fibers even at a significant decrease in temperature. That is why PAN fibers were spun
from 30% solutions, for which at 120 ◦C the viscosity value exceeds 102 Pa·s.

The study of the spinning process of emulsions of different phase compositions made
it possible to determine the temperature-concentration range of stable fiber formation.
Figure 5 shows the dependence of stable fiber spinning temperatures on the content of the
PAN solution in the emulsion.
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The plotted concentration dependence has two limiting regions corresponding to
the temperatures of stable formation of 18% cellulose solutions (130 ◦C) and 30% PAN
solutions (105 ◦C) in NMMO. The conditions revealed for the stable formation of the
studied emulsions are directly related to their morphological and rheological features.

The obtained composite fibers were investigated by various methods. First of all, their
structure was studied by X-ray diffraction analysis, and the corresponding diffractograms
are shown in Figure 6.

For cellulose fibers, the main reflections are in the angular positions 2θ ~ 12.1◦, ~20.1◦,
and ~21.5◦, which correspond to the crystallographic planes (101), (101), and (002) (marked
in Figure 6 by a black dotted line), which are inherent to regenerated cellulose [42]. The
diffraction pattern of PAN fibers contains two reflections at 2θ = 16.9◦ (d = 0.524 nm) and
2θ = 29.4◦ (d = 0.303 nm), as well as a wide reflection in the region of 25.7◦ [41], marked
in a red dotted line. Regarding the structure of PAN, two hypotheses are considered in
the literature. According to the first one, reflections 1 and 3 in the diffraction patterns
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are attributed to the crystalline phase of PAN and the halo-like peak 2 (2θ ~ 26◦) to the
amorphous phase [43]. According to the second point of view, reflection 2 in the diffraction
pattern is assigned to a rotationally disordered mesophase [44].
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Figure 6. Equatorial diffraction patterns of composite fibers formed from 18% mixed solutions with
different PAN contents (indicated in the graph).

All the diffraction patterns presented in Figure 6 of the composite fibers are a superpo-
sition of the diffraction patterns of both polymers, and the characteristic PAN reflections
begin to appear in the diffraction patterns of composite fibers only at concentrations above
30%. Hence, on the diffraction pattern of fibers composed of 60% cellulose and 40% PAN,
only the PAN reflection is observed in the region of 2θ ~ 16.9◦, and the other two reflections
at 2θ = 29.4◦ and 25.7◦ are absent (or have very low intensities). The main reflections of
cellulose also decrease with an increase in the proportion of PAN in fiber. At the same time,
the ratio of the intensities of the main reflections also decreases, which indicates a decrease
in the ordering of the cellulose structure in the (101), (101), and (002) planes. With an
increase in the PAN content to 70%, the cellulose reflections practically disappear, and the
first PAN reflection, on the contrary, increases, while other characteristic PAN reflections
appear as a wide, amorphous halo. When the PAN content reaches 90%, the cellulose
reflection at 2θ ~ 12.1◦ completely disappears, and the other two are hidden under the right
shoulder of the first PAN reflection.

Figure 7 shows the dependence of the cellulose crystallinity index on the PAN content
in composite fibers.
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As is seen from the above dependence, the introduction of PAN into cellulose leads to a
gradual decrease in the degree of crystallinity and, accordingly, to cellulose amorphization.
According to the nature of the change in the obtained equatorial diffraction patterns, the
introduction of cellulose into PAN also disturbs the regularity of the ordering of PAN
macromolecules. Thus, the combination of these two polymers in the composition leads to
a disturbing effect in terms of the manifestation of their structural order. At the same time,
oddly enough, the size of cellulose crystallites, estimated by the Scherrer equation for the
reflection corresponding to the (101) plane, has an extremal dependence on the composition
(Figure 8).
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Apparently, this is due to the above-discussed morphology of composite fibers caused
by strong intermacromolecular interaction, which is, in fact, a gradient, i.e., more pro-
nounced in the longitudinal direction, along the long axes of macromolecular associates.
However, this effect manifests itself only up to a PAN concentration in the fiber of the
order of 30% or more. Further, the phenomenon of inhibition of crystallization processes
in each of the polymers comes into force as a result of blocking their individuality and a
decrease in the size of the crystallites in the cellulose phase. This is a fundamental difference
from the structure of Orcel cellulose fibers [45], in which, due to the high orientation of
amorphous regions, a conditional increase in the degree of crystallinity and crystallite size
in the longitudinal direction is observed.

The morphology of the composite fiber with a high PAN content is shown in Figure 9.
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Figure 9. Micrograph of a composite fiber of composition: 40% cellulose—60% PAN.

Unlike cellulose fibers such as Lyocell or Orcel, in which the high longitudinal orienta-
tion of both crystalline and amorphous regions promotes the formation of fibrils with a
size not exceeding 0.08–0.1 µm with such dense packing that they do not appear on the
cross sections of the fibers, the obtained composite fibers are characterized by a larger
heterogeneous texture, formed by microfibers of the order of 1 µm rather than by fibrils.
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Microfibers are also heterogeneous and consist of many oriented fibrillar subunits. The
surface of the fiber is striated due to the microfibers protruding from the surface, but the
cross-section is generally round.

It is difficult to state unambiguously the phase compositions of the resulting structures,
but the cellulose fibrils isolated after the removal of PAN suggest that PAN macromolecules
or their associates are located on the surface of cellulose formations [40]. By the way, the
high interfacial forces exerted between non-lignified fibers (which are rich in cellulose
content) and polar matrixes were observed in [46]. Simultaneously, it is possible to consider
that a certain contribution to the structure formation of the composite fiber is also made by
different rates of mass transfer processes of polymer solutions of the emulsion in contact
with the coagulant, which leads to high fiber heterogeneity.

The lack of monolithic character in the composite fiber affects its mechanical character-
istics. As is seen from Figure 10, where stress-strain curves are presented, the introduction
of PAN into cellulose leads to a decrease in the strength and modulus of composite fibers
while maintaining low values of elongation at break, which are intrinsic for cellulose fibers.
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Comparison of the deformation curves of fibers shows that the introduction of the
PAN copolymer into the cellulose matrix leads to a decrease in the ability to resist fracture,
but the ability to deform under the influence of mechanical stresses gradually increases and
reaches the maximum values for PAN fibers. The character of fracture changes from brittle
to ductile at a PAN concentration in the composite fiber of the order of 70–80%. Such a clear
deterioration in the mechanical properties of composite fibers with the accumulation of
PAN in their composition is apparently associated with a specific interaction between the
functional groups of polymers, which leads to the loss of each of the polymers’ individuality.

In particular, as far as such losses occur deep and as far as it is important from the
standpoint of using them as precursors of carbon products, Figure 11 reveals DSC thermo-
grams of cellulose, PAN, and composite fibers of composition: 60% cellulose—40% PAN.

The thermogram of cellulose fiber is characterized by the presence of an endothermic
peak with a maximum of 80.7 ◦C and an extended exothermic peak at 314 ◦C. The endother-
mic peak in the given thermogram corresponds to the removal of adsorption water, and
the exothermic peak at 314 ◦C corresponds to the first stages of pyrolysis. The thermogram
of PAN fibers contains three exothermic peaks: the peak at 215 ◦C can be due to PAN
crystallization or mesophase ordering; the peak at 303 ◦C is due to the cyclization of nitrile
groups; and the high-temperature peak corresponds to deeper transformations of PAN or
its decomposition products under pyrolysis conditions.
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Figure 11. DSC thermograms of cellulose (1), composite (60% cellulose—40% PAN) (2), and PAN
fibers (3).

The composite fiber thermogram is not a superposition of the thermograms of two
initial polymers. Of particular interest is the appearance of a new, rather intense exothermic
peak in the region of 360 ◦C and its nature. Certain considerations about the reasons for
the appearance of this peak can be made by analyzing the change in the heats of two
exothermic peaks at 303 and 360 ◦C, depending on the composition of composite fibers
(Figure 12). As can be seen from the figure, the heat of the new peak at 360 ◦C increases up
to 30% PAN content in the mixture system and then decreases and practically disappears as
the system approaches 100% PAN, while the thermal effect of the PAN cyclization reaction
at 303 ◦C increases monotonically as the PAN content in the system increases.
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of mixed fibers.

As can be seen from the date presented in Figure 12, the thermal effect of structural-
chemical transformations of cellulose at the stage of pyrolysis is more than an order of
magnitude less than the thermal effect of PAN cyclization, while the positions of the
maxima of the exothermic peaks of cellulose and PAN are close and correspond to 314
and 303 ◦C, respectively. It is impossible to draw any conclusions from the thermogram of
the composite fiber about the nature of cellulose transformations during heat treatment;
therefore, the features of cellulose structural rearrangements were established based on the
analysis of IR spectra obtained in the temperature range of 25–400 ◦C, i.e., in the area of
thermal oxidation of PAN in the air atmosphere.

First of all, a feature of the spectra is the disappearance at certain temperatures of the
absorption bands recorded for the neat samples and the appearance of new groups. Hence,
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in the region of absorption of OH, N-H, and C-H in PAN (Figure 13a), at temperatures
above 200 ◦C, the long-wavelength shoulder of the 3135 cm−1 band disappears, which
may be due to the disappearance of associated -N-H. . .O links since the bands from them
usually lie at 3200 cm−1 and below.
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Figure 13. DRIFTS spectra of 60% cellulose—40% PAN composite, recorded at different temperatures
in the absorption regions of OH, N-H, C-H (a) and C=O, C=C (b) bonds.

The disappearance of amide groups from PAN was accompanied by a change in
the location of C=O groups (Figure 13b). It can be seen that in the temperature range of
25–200 ◦C, the intensity of the band at 1676 cm−1, which is for C=O valence bonds in amide
groups, drops sharply, and at 200 ◦C, it completely disappears. Instead of this band, a new
intense band appears at 1701 cm−1 from C=O stretching vibrations, intrinsic already for
the carboxyl group –C(O)OH, and its shoulder is 1725 cm−1 for ester groups. This means
that during the heat treatment of fibers, water is released; that is, it is easy to imagine the
hydrolysis of amide groups with the formation of carboxyl groups:

RC(O)NH2 + H2O→ RC(O)OH + NH3

The ester groups can easily be formed from associates of amide groups with OH
groups of cellulose:

R1C(O)N(H)H. . .O(H)R1 → R1C(O)OR2 + NH3,

where R1 is the PAN chain and R2 is the cellulose chain.
Hence, it can be concluded that non-covalent specific interactions of PAN and cellulose

through hydrogen bonds formed during the dissolution of polymers in NMMO and the
formation of the composite fiber, upon further thermal treatment, are transformed into
covalent bonds between polymers, and the main role in the formation of such bonds
belongs to amide groups.

It is extremely important to note that the ester groups formed during heat treatment,
both in PAN and in cellulose, introduce certain changes in the conformations of polymer
macromolecules, thereby favoring the formation of carbon-carbon bonds with further
transformation into carbocyclic compounds, i.e., having a kind of catalytic effect on the
carbonization process. The formation of carbonyl and carboxyl groups in the composite
precursor of cellulose with PAN during in situ pyrolysis can be an important positive factor
in the process of obtaining CFs from them.

In Figure 14, spectra allow us to analyze what happens to cellulose during high-
temperature processing of a composite fiber with PAN.
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Figure 14. The DRIFTS spectra of a composite fiber composed of 60% cellulose—40% PAN were
recorded in the temperature range 25–400 ◦C in the absorption region of C-O bonds.

The intense band at 1123 cm−1 from vibrations of C-OH bonds in glucopyranose cycles
is slightly shifted to the region of long waves and changes intensity in a complicated way
in the temperature range of 25–250 ◦C; at higher temperatures, it significantly decreases in
intensity. A comparison of the spectra of the composition at 25 ◦C before heating and after
cooling, shown in Figure 15, shows that after heat treatment, 82% of “free” glucopyranose
rings remain in the system, and 18% are chemically bound to PAN. The formation of
chemical interactions between cellulose and PAN also manifests itself in the spectral bands
responsible for the degree of ordering of cellulose. The broad band with a maximum at
680 cm−1, which reflects complex vibrations in the ordered regions of cellulose, sharply
decreases in intensity with increasing temperature. In the spectra recorded at 400 ◦C,
the bands at 1443 and 1372 cm−1, which are considered to be responsible for vibrations
of C-C-O and C-O-C bonds in glucopyranose cycles in the crystalline phase of cellulose,
disappear completely.
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The band at 893 cm−1, which is responsible for the amorphous phase of cellulose, also
decreases in intensity by 20% after heating the sample compared to the spectrum of the
neat mixture. While an assessment of the relative intensity of the band of nitrile groups at
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400 ◦C indicates the transformation of 64% of nitrile groups into other structural forms, only
about 20% of cellulose is connected by covalent bonds with PAN. Based on the structure
of composite fibers consisting of cellulose fibrils surrounded by PAN macromolecules, it
is possible to imagine that covalent bonds concern mainly the surface of cellulose fibrils
“protected” by PAN macromolecules. It is a reason for the preservation of 82% of cellulose
cycles while more than 60% of nitrile groups in PAN have undergone chemical changes.

The results obtained allow us to conclude that the intermolecular covalent bonds
between polymers formed during high-temperature treatment of a composite cellulose-PAN
fiber up to 400 ◦C change the mechanism of cyclization of nitrile groups and slow down the
processes of high-temperature structural-chemical transformations of cellulose. Accepting
that successful carbonization of the composite precursors depends on the orientation of
two neat species: cellulose and PAN, the approach disclosed in [34] for CFs on anisotropic
elastic constants could be spread at carbonization on both carbon and graphite inclusions
owned by two components.

4. Conclusions

1. The morphology of cellulose and PAN emulsions in NMMO with an increase in
the PAN content above 30% transforms from finely dispersed droplets to fibrillar,
predetermining the rheological behavior of emulsions and the structure of the fibers
obtained on their basis.

2. Fibrillation is caused by the specific structure of emulsion, consisting of associates
with the inner part of cellulose molecules surrounded by PAN molecules manifesting
the hydrophobic repulsion of nitrile groups.

3. The non-covalent interaction in mixed solutions in NMMO at high temperatures
consists of H-bonding between amide groups, formed at the cyclization of nitrile links
in PAN, and hydroxyl groups of cellulose.

4. The concentration dependence of the optimal temperature for stable fiber spinning is
constructed; the composite fibers have been obtained in a wide range of component
ratios, and their mechanical properties have been analyzed.

5. During the high-temperature treatment of composite fibers up to 400 ◦C, the specific
dispersion interactions of PAN and cellulose, which are formed during the dissolution
of polymers in NMMO and the fibers spinning, are transformed into covalent bonds.
This is the first example of PAN-cellulose copolymer synthesis by means of sequential
transformation and dispersion interaction into covalent bonds.

6. The driving force of this transformation is the more deep cyclization of nitrile groups
in solution of NMMO compared with traditional stabilization of PAN fibers.
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