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Abstract: This work deals with the study of self-compacting concretes (SCCs) containing recycled
aggregates (RAs) recovered from demolition waste and limestone filler as a partial replacement
for natural aggregates (NAs) and cement, respectively. Four mix designs were developed and
characterized in both the fresh and hardened states. In the fresh state, the properties studied
included slump, sieve stability, and t500 viscosity. In the hardened state, the properties studied were
compressive strength and porosity at 15 h and 28 days, thermogravimetric analysis, and durability
tests involving freeze–thaw cycles and accelerated carbonation. The results indicate the RAs lead to
a decrease in slump flow. However, the substitution rate of aggregate replacement does not affect
the compressive strength. This can be attributed to the optimized mix design, resulting in all SCC
mixtures achieving the same compressive strength class of 30–35 MPa. As for the durability tests, the
incorporation of recycled aggregates modifies the behavior of the concrete during freeze–thaw cycles.
Throughout the 300 freeze–thaw cycles, all concrete mixtures exhibited a mass loss accompanied by a
slight strain increase, but the materials remained visually intact. Additionally, the carbonation depth
is strongly influenced by the rate of aggregate replacement due to changes in the microstructure,
particularly in porosity.

Keywords: recycled concrete aggregates; limestone; self-compacting concrete; fresh properties;
durability

1. Introduction

Concrete is the most widely used construction material globally, with an annual pro-
duction exceeding 10 billion m3 [1]. In terms of regional consumption, Europe stands
out with an annual consumption of concrete surpassing 620 million m3. This highlights
the significant demand for concrete in construction activities throughout the continent.
Specifically, in France, the production of concrete amounts to over 21 million tons per year.
This substantial production volume contributes to the country’s construction industry, gen-
erating a considerable sales revenue of 19 billion euros, according to the French Federation
of the Concrete Industry [2].

However, despite its advantageous qualities in terms of mechanical strength, durabil-
ity, and cost-effectiveness, concrete has significant drawbacks related to its composition
and manufacturing processes. The concrete industry is known for its high energy consump-
tion and adverse environmental impact, particularly in terms of greenhouse gas (GHG)
emissions. It is estimated that the production of concrete contributes to 5.2% of global
GHG emissions. One of the main contributors to these emissions is cement production,
which alone accounts for 52% of the total emissions associated with concrete. In France, for
instance, the production of one ton of cement emits an average of 0.62 tons of CO2eq [3].

Another concerning aspect is the extensive use of concrete in construction, which
has additional negative consequences for the environment. One such consequence is the
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depletion of non-renewable natural resources, particularly sand and gravel, which are
essential components of concrete production [4]. The extraction of these resources can lead
to habitat destruction, erosion of riverbanks, and disruption of ecosystems. In concrete,
aggregates are the most important part, accounting for around 3/4 of the total volume
of the concrete mix [5]. The demand for aggregates tends to increase with the growing
demand for concrete. In this context, the use of recycled aggregates in the manufacture of
concrete is a method of circular economy that meets the needs of sustainable construction
while preserving the environment [6,7].

In addition to its contribution to global warming, the blatant use of concrete leads to
a shortage of non-biodegradable natural resources, namely sand and gravel, which are
essential for its manufacture [4]. Furthermore, the demolition of concrete at the end of
its life generates considerable quantities of waste occupying large surfaces. This waste
represents about 36% of the total waste produced on earth [8]. The environmental impact
of the concrete industry extends beyond carbon emissions and resource depletion. The
indiscriminate use of concrete results in significant amounts of waste when buildings or
infrastructure reach the end of their lifespan. In the United States, concrete waste has
significantly increased from 50 million tons in 1980 to 548 million tons in 2015 [9]. In
China, this amount exceeds 1500 million tons [10]. In Europe, approximately 850 million
tons of concrete waste is produced each year, accounting for about 31% of the total waste
production in the European Union [11] and about 36% of the total waste produced on
earth [8].

Nowadays, the use of recycled aggregate in the manufacture of new concrete is
becoming increasingly widely practiced. Recycled aggregate is obtained by processing
concrete waste, demolishing structures, or reclaiming materials from other sources. The
main advantage of using recycled aggregate is that it reduces the amount of construction
waste sent to waste disposal sites, thus helping to preserve the environment. In addition,
its use reduces the demand for natural materials, such as virgin aggregates extracted from
quarries, thus helping to preserve natural resources. Although recycled aggregate may have
slightly different particle sizes and properties compared to natural aggregates, it can be
adapted and used effectively in the manufacture of concrete. Studies and research have been
carried out to determine the appropriate proportions of recycled aggregate to use in each
type of concrete, considering the required mechanical properties [12,13]. The use of recycled
aggregate in new concrete does not compromise the quality and performance of the final
material. In fact, it has been demonstrated that concretes containing recycled aggregate can
perform comparably to, or even better than, traditional concretes with natural aggregates.
Moreover, the use of these recycled materials can contribute to obtaining environmental
certifications for construction projects by reducing the overall carbon footprint [14]. In order
to address these problems, the use of recycled aggregate and alternative binders in concrete
mix designs is necessary and constitutes an unavoidable solution [15]. The path towards
the production of concrete that is more respectful of the environment and less polluting
for the planet will be confronted with several important challenges, including rheological
and mechanical performances, durability, and adaptability to the intended application.
However, the use of recycled aggregates in the development of self-compacting concrete
(SCC) is justified and technically feasible [16–18], although it is imperative to adjust the
mix design each time due to the irregularity of the intrinsic characteristics of recycled
aggregates. For this replacement to be effective, it is necessary to remedy the adverse
effect of old mortar on SCC containing recycled aggregates. Potential aggregate treatment
methods have been investigated to promote the maximum use of recycled aggregates [19].
Nevertheless, it is necessary to monitor changes in mechanical strength and durability over
time. To this end, indirect estimation of these properties through non-destructive testing is
now possible [18].

Several current studies aim to find the appropriate mix design of low-carbon self-
compacting concretes based on recycled gravel, obtained by adding a superplasticizer
whose excess can lead to segregation and by incorporating mineralogical additives and
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recycled aggregate at relatively high rates [20], without the latter adversely affecting the
mechanical and rheological performance of the concrete [21]. Therefore, extensive research
and testing are required to optimize the mix design of low-carbon self-compacting concretes
based on recycled aggregate [22]. This includes the careful addition of a superplasticizer
to prevent segregation and the incorporation of mineral additives and recycled aggregate
at high rates without compromising the mechanical and rheological properties of the
concrete [23–25].

In fact, limestone fillers are widely used in the production of SCC [14]. Limestone
fillers, also known as fine limestone powders, are fine materials that can partially replace
cement or traditional fillers (such as silica fillers) in the composition of SCC. Limestone
fillers offer several advantages in SCC. Firstly, they help to improve the workability of
the mix [26], enabling better particle distribution and filling of voids [27]. This facilitates
concrete placement without the need for vibration, reducing construction time and, thus,
labor costs. Limestone fillers also have a beneficial effect on the mechanical properties of
concrete [28].

To address the environmental issues associated with concrete production, the use of
recycled gravel and alternative binders in concrete mix designs is indeed a necessary and
viable solution. This approach helps to reduce the need for natural aggregates, as well as the
depletion of natural resources and the carbon footprint. However, implementing these changes
in concrete production does come with several significant challenges, namely rheological and
mechanical performances, durability, and adaptability to the intended application.

2. Materials and Methods

Experiments were carried out to investigate the partial or total replacement effect of
aggregates by those resulting from the demolition of old buildings. The use of recycled
aggregates would affect fresh and hardened properties of SCC. For all mix designs, cement
(CEM I-52.5 R) provided by AALBORG® (Rochefort, France) was replaced with limestone
filler produced by Omya® (Noisy le Roi—Yvelines, France) with a mass replacement ratio
of 35%. Sand and coarse natural aggregates are classified as 0/4 and 4/12.5, respectively.
Recycled aggregates are classified as 4/14, and their property classification is type 1 accord-
ing to EN 206-1 [29]. Figure 1 presents the particle size analysis curve for the aggregates
used. It can be seen that recycled aggregates are coarser than natural ones but contain fine
material derived from the dust of the old cementitious matrix of the old concrete. Table 1
provides the amounts in kg/m3 of the different constituents of the SCC. In fact, in the case
of self-compacting concrete, the volume of binder paste should be around 40% of the total
volume, to the detriment of the volume of aggregates.

Following the steps presented in Figure 2, The raw materials were prepared and
weighed before dry mixing for 1 min. After that, water and admixture were added,
respectively. Indeed, the target concrete class was C30/37 with a consistency of SF2. Four
concrete mix designs were studied: a reference concrete with natural aggregates (NAs) and
three concretes incorporating recycled aggregates (RAs). The substitution rates of NA by
RA are 20, 50, and 100%. These are noted 0%RA, 20%RA, 50%RA, and 100%RA, respectively.
The aggregates were stored under ambient conditions (Temperature T = 20 ◦C and relative
humidity RH = 50%). All concretes were manufactured at a temperature of 23 ◦C. The
11 cm × 22 cm cylindrical specimens were demolded 24 h after production and stored at
T = 20 ◦C and RH = 95%. A total of 28 specimens for each mix design were made to study the
property evolution at a hardened state in the laboratory for 15 h and 28 d. In order to assess
the RA effects, the different concrete compositions were characterized in terms of slump
flow, segregation strength, and t500 according to the European standard EN 12350-8 [30],
critical sieve stability according to the European standard EN 12350-11 [31], compressive
strength according to the French standard NF EN 12390-3 [32], thermogravimetric analysis
(TGA) and its derived factor (dTG), and water absorption and porosity according to AFPC-
AFREM [33].
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Figure 1. Particle size analysis curve.

Table 1. Mix design of SCC studied (kg/m3).

0%RA 20%RA 50%RA 100%RA

Sand 0/4 786 786 786 786

Natural aggregate 4/12.5 726 580.8 361 -

Recycled aggregate 4/14 - 145.2 361 726

Blanc CEM I-52.5 R 320 320 320 320

Limestone 160 160 160 160

Efficient water 161.81 161.81 161.81 179

Total water 168 168 168 185.19

Superplasticizer 4.8 4.8 4.8 4.8

Set accelerator 3.80 3.80 3.80 3.80

Water-repellent 0.78 0.78 0.78 0.78
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From the durability test point of view, the extreme freeze–thaw test was carried out
on 3 test specimens measuring 10 cm × 10 cm × 40 cm for each mix design according to
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the European standard NF P 18-424 [34]. The test specimens were placed in a freezing
chamber, allowing 300 cycles of temperature variation to be reproduced at a freezing
rate of 6 ◦C/h until −18 ◦C was reached. The freeze period was maintained for 30 min,
followed by a programmed thaw period of 30 min at 9 ◦C with a 45 min rise time. Test
specimens were recovered every 30 cycles after thawing, wiped dry, and stored at room
temperature for 90 min. Two measurements were carried out, the first measuring specimen
strain and the second mass loss. In addition, concrete carbonation depth was measured on
7 cm × 7 cm × 28 cm prismatic specimens placed in a carbon incubator with a regulated
CO2 concentration of 3%, a temperature of 23 ◦C and a relative humidity of 60%, in
accordance with standard XP P18-458 [35]. After 7, 28, and 70 days of carbonation, the
prisms melted in the transverse direction. Immediately after splitting, the surface was
wiped clean, and phenolphthalein solution was sprayed on, allowing the pH of the surface
to be measured. Phenolphthalein is colorless at a pH below 8.2, corresponding to a change
in microstructure, particularly portlandite phase, which becomes carbonated and generates
a calcite phase, and deep pink at a pH above 9.9. In general, 12 depth measurements,
i.e., the colorless part, were taken for each sample.

3. Results and Discussion
3.1. Fresh State

Figure 3 illustrates the slump flow results 15 and 45 min after mixing for the studied
SCC. The findings indicate that the variation in workability at 15 min after mixing was
not significant for the SCC based on RA compared to the reference SCC (0%RA). This
conservation of workability can be attributed to the presence of superplasticizers in the
different SCC mix designs. However, a significant change in workability occurs at 45 min
after mixing was observed for the SCC completely formulated with RA (100%RA). The
use of RA changed the rheological properties and extended the workability maintenance
period. Whereas, in the case of 100%RA, the SCC lost its fluidity. This change can be
explained by the presence of fines from old concrete, which increases the water demand
and adversely affects workability 45 min after mixing.
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Figure 3. Slump flow of SCC studied.

As for viscosity, measured by the time it takes for the slump flow to reach a diameter
of 500 mm (t500) and depicted in Figure 4, an increase in the slump flow time was observed
with the rise in RA replacement rate. This increase is a consequence of RA being less
mobile due to the decrease in paste content [36]. In particular, the 100%RA mix design
loses its workability and ceases to flow. This can be attributed to the presence of excess fine
material in the RA, leading to a higher water demand [15]. This higher water demand is
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associated with the increased water absorption observed when the RA replacement ratio is
raised [36,37].
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Figure 4. Viscosity of SCC studied.

Figure 5 shows an assessment of the segregation resistance determined by measuring
the amount of laitance passed through a 5 mm sieve. The results obtained by the sieve
stability test qualify the 0%RA and 100%RA as stable concretes, the percentage of laitance
being lower than 15%, which expresses a good segregation stability for these two concretes.
Contrary to the 20%RA and 50%RA, which represent critical stability, expressed a laitance
exceeding 15%. This can be attributed to the granular discontinuity between RA and NA
used in these two mix designs. In agreement with the literature, the segregation tended
to decrease with the increased substitution rate. This is due to the high water absorption
capacity of RA with fine material [36,37].
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3.2. Hardened State

The water-accessible porosity and water absorption results at 28 days are presented
in Figure 6. An increase in porosity and water absorption with the increase of the RA
substitution rate was observed. Indeed, the porous structure of the SCC based on RA was
related to the presence of an interfacial transition zone (ITZ) between the old and new
mortars, according to what is found in the literature [38]. In general, concrete consists of a
blend of aggregate, cement, and water, with each of these components contributing to the
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strength and durability of the building material. However, the presence of distinct elements
and their interactions results in the formation of an interfacial transition zone (ITZ) [39].
This ITZ represents the most vulnerable connection between cement mortar and coarse
aggregates. It occupies a range of 20–40% of the overall volume of cementitious material,
typically measuring around 40 µm in thickness [40]. The ITZ has a significant impact on
the mechanical and long-lasting qualities of solidified concrete. Often, concrete failures
occur at the ITZ due to its limited capacity for stress transmission [41].
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In standard concrete, a single ITZ exists, positioned between mortar and natural coarse
aggregate. However, when incorporating recycled aggregate sourced from construction and
demolition waste, a three-phase composite emerged. This composite includes aged natural
aggregate, the associated cement mortar, and the previous ITZs between these materials.
Consequently, the integration of recycled aggregate introduces at least two distinct types
of ITZs into the concrete matrix [42]. These new ITZs can be further categorized into two
groups: the ITZ between old and new mortar, and the ITZ between the aged aggregate
surface and new mortar, as well as the pre-existing ITZ between the original aggregate and
its attached aged mortar.

In addition, due to the consistency required in the fresh state, the 100%RA contained
more water than the other mix designs due to the high absorption of recycled aggregate, as
shown in Table 1 [15]. This can lead to the formation of voids in the cementitious matrix
and inefficient packing of the binder particles with the aggregates [43].

Figure 7 presents the compressive strength values at 15 h and 28 d of curing. In general,
concretes reach a strength higher than 22 MPa after 15 h of curing. This high strength is the
result of the use of 52.5 R cement, which has a short-term rapid hardening, in addition to
the use of limestone fillers that close the pores. It was also observed that all the SCCs made
with RA had better compressive strength than the natural SCC (0%RA), even at an early age.
Indeed, the incorporation of RA, even with high percentages in the SCCs, improved their
mechanical performance. The SCC mix designs with RA had a higher compressive than
NA because the recycled aggregate’s physical and mechanical characteristics improved
upon interlocking with the cementitious matrix [44]. In fact, the RA used was type 1, which
comes from old concrete and contains no plastic, gypsum, masonry, or glass waste.
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Figure 7. Compressive strength at 15 h and 28 d of studied concretes.

In order to discuss the mechanical strength results, thermogravimetric size analysis
was carried out on all concrete at 15 h and 28 d of curing. The results shown in Figure 8
indicate the presence of three phases. The first is attributed to the departure of (absorbed)
water from the constitution of certain hydrates such as C-S-H and ettringite AFt at 100 to
130 ◦C. The second is linked to the dehydration of the water chemically bound with the
portlandite (Ca(OH)2) at a temperature of between 400 and 480 ◦C, and the last relates to the
decarbonation of the calcite phase (CaCO3) at between 750 and 850 ◦C [45]. Furthermore,
a variation in hydrate quantities was observed for samples tested at 15 h and 28 d. This
variation is explained by the kinetics of the hydration process of cement and limestone
fillers. These concretes contain less of the portlandite phase and more calcite as a result
of the addition of limestone fillers, which are very rich in CaCO3 [46]. The findings show
that RA has no effect on the hydration process in terms of CSH gel formed, ettringite,
portlandite, and calcite. This is due to the quality of the recycled aggregates, which are
type 1 according to EN 206-1 [29] and contain only old concretes.

3.3. Durability
3.3.1. Freeze–Thaw Results

Figure 9 shows a quasi-linear increase in strain with freeze–thaw cycles for the 0%RA
material and a non-linear increase for other mix designs. In addition, the maximum strain
was 0.55, 0.8, 0.85, and 1.2 mm/m for 0%GR, 20%GR, 50%GR, and 100%GR, respectively.
From the mass loss point of view, the expansionary behavior of the concrete samples in
response to freeze–thaw cycles led to a weakening and cracking of the surface material,
resulting in a mass loss (cf. Figure 10). All these results are in accordance with those for
porosity. In fact, freeze–thaw behavior was improved by replacing part of the cement with
limestone fillers, as demonstrated by Zeng et al. [46].

3.3.2. Accelerated Carbonation

The accelerated carbonation results in Figure 11 show that the rate of CO2 penetration
was proportional to the exposition time [47]. This is explained by the synthesis process
between the cementitious matrix and the absorbed CO2, which reduces the pH of the pore
solution [48], resulting in the formation of the calcite phase (CaCO3) to the detriment of
the calcium silicate hydrate (CSH), the portlandite phase (Ca(OH)2), and calcium oxide
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(CaO), as shown by [49]. Moreover, all mix designs had the same CO2 uptake at 7 days of
exposition. After that, the carbonation depth increased with the replacement rate of the
recycled aggregates. In general, the accelerated carbonation results were in accordance with
those for porosity related to the ITZ. Indeed, CO2 penetrates through the concrete’s pore
network and reacts with the concrete’s old and new cementitious matrix [50]. Furthermore,
the carbonation rate of the concretes studied was calculated in accordance with standard
FD P 18-480 [51] and showed a rate of 1.8 mm/day0.5 for all SCCs based on RA, (20%RA,
50%RA, and 100%RA) and 0.96 mm/day0.5 for the reference concrete (0%RA), which, for
our mix designs, can be used in a carbonation exposure class of XC4 according to EN 206-
1 [29]. This change may be related to the fact that RA containing old cementitious matrix in
its interface comes from the already carbonated concrete of old building materials [52].
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Figure 8. TGA and dTG at 15 h and 28 d of SCC studied.
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Figure 9. Strain due to the freeze–thaw cycles of tested concretes.
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4. Conclusions

This study is part of an environmental transition process aimed at reducing the
carbon footprint associated with construction materials and addressing the issue of non-
biodegradable waste occupying vast landfill areas. The focus of this research was on
investigating the properties of self-compacting concretes containing 35% limestone and
recycled aggregates in both fresh and hardened states, including slump flow, t500 viscosity,
sieve stability, porosity and water absorption, mechanical strength, thermogravimetric
analysis, freeze–thaw, and accelerated carbonation. The results obtained are encouraging
and align with the specified requirements and intended applications. The findings are
outlined as follows:

• The use of recycled aggregates reduces the time required to maintain consistency due
to the fine particles present in the aggregates and their significant water absorption.

• The sieve stability of the 20%RA and 50%RA self-compacting concretes was greatly
modified by the granular discontinuity, in contrast to homogeneous aggregate mix
designs such as 0%RA and 100%RA.

• The recycled aggregates do not affect either the mechanical compressive strength or
the binder hydration, as demonstrated by TG analyses.
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• The self-compacting concretes tested exhibit good freeze–thaw resistance, and the
difference between them is strongly related to the porosity. The 0%RA presents a
quasi-linear behavior, and this increases with the higher replacement rate by 45%, 54%,
and 110% for 20%RA, 50%RA, and 100%RA, respectively.

• The developed self-compacting concretes have a carbonation rate of 0.96 mm/day0.5

for the 0%RA and about 1.8 mm/day0.5 for the other mix designs.

The comprehensive experimental characterization campaign presented in this work
and the resulting findings constitute valuable additions to the database on self-compacting
concretes. Another study will be carried out on the application of these materials in a
demonstrator building.
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