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Abstract: Infrared detection technology plays an important role in remote sensing, imaging, mon-
itoring, and other fields. So far, most infrared photodetectors are based on InGaAs and HgCdTe
materials, which are limited by high fabrication costs, complex production processes, and poor
compatibility with silicon-based readout integrated circuits. This hinders the wider application of
infrared detection technology. Therefore, reducing the cost of high-performance photodetectors is a
research focus. Colloidal quantum dot photodetectors have the advantages of solution processing,
low cost, and good compatibility with silicon-based substrates. In this paper, we summarize the
recent development of infrared photodetectors based on mainstream lead chalcogenide colloidal
quantum dots.
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1. Introduction

Infrared photoelectric technologies use infrared materials to convert infrared radiation
energy into electrical signals. Infrared photodetectors are widely used in autonomous
driving, machine vision, security surveillance, and other fields [1–5]. In recent years, with
the continuous development of infrared detection technology, more and more infrared
photodetectors have been developed. Currently, the mainstream infrared photodetectors
are mainly based on narrow-gap semiconductors such as InGaAs [6,7], HgCdTe [8–10], and
other materials, which have high sensitivity, wide-band detection capabilities, long-time
stability, and good reliability [11]. However, they still have problems such as high cost,
a complex epitaxial growth process, and poor compatibility with silicon-based readout
integrated circuit chips [12–14], limiting their wider application.

The emergence of colloidal quantum dots (CQDs) provides a feasible way for the
development of infrared photodetectors. As a new type of photoelectric material, CQDs
have the advantages of a wide spectral tuning range, low cost of preparation by thermal
injection, and solution processing [15–17], and CQDs have great application potential in
many practical applications. In addition, CQDs can be directly integrated with silicon-based
readout integrated circuits through solution processing, which reduces the fabrication cost
and difficulty [18,19]. As a result, CQD infrared detectors have been a research hotspot in
recent years. Among CQD infrared detectors [20], lead-based [21] CQD photodetectors
have been demonstrated to have high sensitivity and response speed. Lead-based CQDs
include PbTe, PbSe, and PbS CQDs. Their detection bands are mainly in the near-infrared
and visible light range. Among them, PbSe and PbS CQDs have already been applied to
large-array readout integrated circuits [22]. However, lead-based CQDs have the problems
of easy oxidation and interference from humidity in the air [23].
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In this paper, we discuss the progress of lead chalcogenide colloidal quantum dots for
infrared photodetectors. First, we introduce the CQD synthesis method and illustrate the
passivation effect of different ligand exchanges on the surface of CQDs. In addition, the
development of the device structure of CQD photodetectors is also introduced in detail,
and the advancements of photodetectors combining lead chalcogenide CQDs with organic
materials, two-dimensional materials, and other materials are discussed.

2. PbTe CQD-Based Photodetectors
2.1. Synthesis of PbTe CQDs

Lead-based CQDs have received significant attention in recent years due to their
unique optical and electronic properties. PbX (Te, Se, S) possess a cubic crystal lattice
structure [24–26] and are narrow-band-gap semiconductors with 0.32 eV, 0.28 eV, and
0.41 eV, respectively. As a result, PbX (Te, Se, S) CQDs exhibit size-tunable infrared band
gaps from visible to infrared. Benefitting from mature chemical synthesis technology,
they are attractive for a wide range of applications, including infrared photodetectors,
photovoltaics, and thermoelectric devices. PbTe CQDs, in particular, possess a large exciton
Bohr radius (46 nm) [27], a high dielectric constant (1000) [28], and a high multiexciton
generation yield.

In 1995, Reynoso et al. first grew PbTe CQDs in doped glass, and the absorption
wavelength could be adjusted at 1.1–2.0 µm by changing the heat time and temperature [29].
The application potential of PbTe CQDs in optoelectronic devices was demonstrated. In
2006, Murphy et al. reported a synthesis method for spherical and cubic PbTe CQDs [30],
whose size distribution could reach 7%, and the diameter of synthesized CQDs ranged from
2.6 to 18 nm. The first exciton transition was achieved from 1009 to 2054 nm (Figure 1a).
The photoluminescence quantum yield of spherical PbTe CQDs was as high as 52 ± 2%.
In the same year, Urban et al. synthesized monodispersed PbTe CQDs [31] with obvious
advantages in size tunability and solution processability compared to the early CQDs in
glass (Figure 1b). In addition, the conductivity of the PbTe CQDs film could be increased
by 9–10 orders of magnitude through chemical treatment. Therefore, PbTe CQDs were
expected to be applied in photodetectors.

Aiming at the problem of PbTe CQDs’ susceptibility to oxidation, in 2009, Lambert et al.
proposed a core–shell structure of PbTe/CdTe [32]. The CdTe shell was grown around PbTe
using the cation exchange method (Figure 1c). It was observed that PbTe and CdTe had the
same lattice orientation, achieving seamless matching. This method effectively resolved the
oxidation problem of PbTe CQDs, but it had an anisotropy problem in the exchange process.
To improve the method for the synthesis of PbTe CQDs, in 2012, Pan et al. proposed a
synthesis method for monodisperse hydrophobic PbTe CQDs [27]. Using oleylamine as the
capping ligand and solvent allowed the hydrophobic PbTe CQDs to be easily transformed
into CQDs with different ligands. The application of PbTe CQDs in biomedicine was
possible. PbTe CQDs could be changed from hydrophobic to hydrophilic through ligand
exchange with 4-mercaptopyridine. In addition, the synthesized PbTe CQDs were found to
be air-stable.

To enhance the photoluminescence (PL) performance of PbTe CQDs, Protesescu et al.
reported the PL properties of core–shell PbTe/CdTe CQDs in 2016 [33]. PbTe/CdTe CQDs
were demonstrated to have stable near-infrared emission within the 1–3 µm range. During
the cation exchange process, with the addition of excess cadmium oleate, Cd could replace
Pb to shrink the PbTe core, resulting in a shift of the PL peak to a shorter wavelength
(Figure 1d). Compared with pure PbTe CQDs, the PL stability of PbTe/CdTe CQDs was
significantly improved, even in ambient air.

In 2019, Peters et al. studied the fundamental chemistry of PbTe CQDs [34]. The
relationship between the band gap and the NC diameter was measured, and the results
showed that the energy absorbed by the primary optical absorption had a 1/d relationship
with the diameter of the CQDs. And the connection mode of surface ligand oleic acid and
PbTe CQDs was mostly chelating bidentate coordination. In 2020, Miranti et al. proposed
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a core–shell structure of PbTe/PbS CQDs, which established a type II heterojunction that
enabled PbTe/PbS CQDs to carry out electron transport exclusively [35] (Figure 1f). The
structure exhibited maximum electron mobility of 0.62 cm2/Vs with an n-channel current
modulation ratio of 104, which was significantly higher than that of PbTe CQDs and PbS
CQDs. Enhancing n-type transport made core–shell PbTe/PbS promising for applications
in the thermoelectric and electron transport layers of photovoltaic devices.

PbTe CQDs are highly sensitive to oxygen. Modifying the surface of PbTe CQDs
or using other CQDs to wrap PbTe CQDs could be considered in future development to
prevent the interference of external oxygen. And through the combination of other CQDs
and PbTe CQDs, the expansion of the detection band and performance of PbTe CQDs
was expected.
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Figure 1. (a) The left inset shows the infrared absorption spectra of spherical PbTe CQDs with
different sizes, and the right inset shows the absorption (solid line) and photoluminescence (dotted
line) spectra of PbTe CQDs with a size of 2.9 nm [30]. Copyright 2006, Journal of the American
Chemical Society. (b) Transmission electron microscopy (TEM) images and model diagrams of
cuboctahedron and cubic PbTe CQDs [31]. Copyright 2006, Journal of the American Chemical Society.
(c) TEM image of PbTe/CdTe CQDs in the <110> crystal plane [32]. Copyright 2009, Chemistry
of Materials. (d) PL spectrum of PbTe/CdTe CQDs. (e) The energy band diagram of PbTe/CdTe
CQDs [33]. Copyright 2016, ChemPhysChem. (f) The model and energy band diagram of PbTe/PbS
CQDs [35]. Copyright 2020, ACS Nano.

2.2. PbTe CQD Photodetectors

The exceptional electronic and optical properties, along with the controllable synthesis,
made PbTe CQDs a promising candidate for a wide range of applications in various devices.
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By acquiring a deeper understanding of the coordination chemistry between oleic acid
and PbTe CQDs, we can further optimize the synthesis and properties of PbTe CQDs.
This endeavor will lay a robust foundation for their development in future electronic and
optoelectronic devices.

The weak binding energy of PbTe CQDs, easy oxidation in air, and low photocon-
ductivity limited their application in photodetectors. In 2016, Lin et al. proposed a PbTe
CQD photodetector treated with tetrabutylammonium iodine (TBAI) [36] (Figure 2a,b).
The TABI ligand exchange effectively passivated the surface of PbTe CQDs, reducing the
average spacing between CQDs from 4.2 nm to 2.3 nm. As a result, the TABI-treated
PbTe CQDs film transformed from a nonlinear Schottky contact to a symmetrical Ohmic
contact. The maximum responsivity of the device could reach 1.9 mA/W. Under 150 Hz
laser irradiation, the response time of the device reached 0.39 ms and the recovery time
reached 0.49 ms, which effectively improved the response speed of the device (Figure 2c,d).
Moreover, the detector with TBAI-treated PbTe CQDs had a stable photoresponse in air
due to the protective effect of the upper polymethyl methacrylate (PMMA) layer.
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Figure 2. (a) Schematic diagram of the structure of the PbTe photodetector. (b) I–V curve of the PbTe
photodetector. (c) Schematic diagram of the experimental setup for testing the photoresponse of
the PbTe photodetector. (d) Photoresponse curve of the PbTe photodetector under laser irradiation
frequency of 150 Hz [36]. Copyright 2016, RSC Advances. (e) Scanning electron microscope (SEM)
image of PbTe device with crystal and magnetic field. (f) Schematic diagram of PbTe device [37].
Copyright 2022, Nano Letters.
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In 2022, Kate et al. proposed a device structure for selectively growing PbTe
CQDs on InP and characterized the CQD devices in both zero and finite magnetic
fields (Figure 2e,f) [37]. The Coulomb charge stability analysis revealed large even–odd
spacing at zero magnetic field. Further study of the devices under a limited magnetic field
showed that PbTe CQDs exhibit a strong Rashba spin–orbit interaction.

The application of PbTe CQD photodetectors had been limited due to the issue of
easy oxidation. To overcome this challenge, the investigation of surface ligand exchange
for PbTe CQDs could be considered to protect CQDs from oxidation and enhance their
stability. Alongside ligand exchange, exploring other surface passivation strategies was
also important. This included the utilization of inorganic passivation materials such as
metal oxides and chalcogenides, as well as the development of hybrid passivation methods
combining organic and inorganic materials. The study of surface passivation strategies
for PbTe CQDs plays a crucial role in improving their stability and enabling their practical
application in optoelectronic devices.

3. PbSe CQD-Based Photodetectors
3.1. Synthesis of PbSe CQDs

PbSe CQDs are a material with strong quantum confinement, having an exciton Bohr
radius of 46 nm [38]. This characteristic contributes to stronger electron coupling, which
leads to improved charge carrier transport within the PbSe CQD film.

In 1997, Lipovskii et al. successfully synthesized size-controllable PbSe CQDs with
a size between 2 and 15 nm and a size distribution of about 7% [39]. In 2004, Pietryga
et al. studied the mid-infrared PL properties of PbSe CQDs [40]. The experimental results
showed that the synthesized PbSe CQDs had excellent fluorescence tunability and narrow
size distribution (Figure 3a,b). In 2007, Baek et al. synthesized monodisperse PbSe CQDs
using solution chemistry and realized the use of two different ligands of acetic acid (AA)
and hexanoic acid (HA) to control the size of CQDs [41] (Figure 3c). The experimental
results showed that AA and HA could replace part of the oleate on the surface of PbSe
CQDs, resulting in a reduction in steric hindrance and a reduction in the average size of
CQDs. To enhance the antioxidant ability of PbSe CQDs, in 2012, Hughes et al. proposed a
method of ligand exchange for PbSe CQDs using alkyl selenides [42] (Figure 3d). Alkyl
selenides could completely replace the oleic acid ligands on the surface of CQDs. Compared
with the oleic acid ligand, the combination between the Pb atom on the surface of the alkyl
selenide ligand and the alkyl selenide ligand was more stable, thereby improving the
oxidation resistance of the surface of CQDs.

In 2017, Campos et al. proposed a method for the synthesis of PbSe CQDs through N,
N, N′-Trisubstituted selenourea precursors [43]. The size of CQDs (1.7–6.6 nm) could be
well regulated, with a narrow size distribution of 0.5–2% and a narrow spectral absorption
peak (Figure 3e). Experiments had proved that the N, N, N’-Trisubstituted selenourea had a
slower and more controllable conversion reaction than the N, N’-Trisubstituted selenourea
and the N, N, N’, N’-tetrame-thylselenourea. The proposal of trisubstituted selenourea
provided a feasible strategy for other CQDs synthesized from selenium precursors. PbSe
CQDs usually required complex and tedious synthesis steps. In 2020, Liu et al. proposed
a method for the direct synthesis of PbSe CQDs at room temperature in one step, which
simplified the synthesis steps and costs [44] (Figure 3f). The experimental results confirmed
that CQDs had excellent surface passivation ability.
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Figure 3. (a) TEM image of PbSe CQDs. (b) PL spectra of CQDs with different sizes at room
temperature (size distribution = 10%) [40]. Copyright 2004, Journal of the American Chemical Society.
(c) Infrared absorption spectra of PbSe CQDs with different contents of AA and HA. The molar ratios
of PbO:Se:oleic acid (OA): HA = 1:3:4.5:X, where X = 0.002, 0.02, 0.1, 0.2, 0.5, 1.0, (a–f). The molar ratio
of PbO:Se:OA:AA = 1:3:4.5:X, where X = 0.02, 0.1, 0.2, (b’–d’) [41]. Copyright 2007, Journal of Colloid
Interface Science. (d) Process for surface ligand exchange of PbSe CQDs using alkyl selenides [42].
Copyright 2012, ACS Nano. (e) Absorption spectrum and TEM images of PbSe CQDs synthesized
using N, N, N’-Trisubstituted selenourea [43]. Copyright 2017, Journal of the American Chemical
Society. (f) Procedure for the direct synthesis of PbSe CQDs using a one-step approach [44]. Copyright
2020, ACS Energy Letters.

3.2. PbSe CQD Photodetectors

Due to the gradual maturity of PbSe CQD synthesis technology, photodetectors based
on PbSe CQDs were studied. In 2010, Sarasqueta et al. first proposed an ITO-PbSe-
Al infrared photodetector prepared with PbSe CQDs, and the responsivity could reach
0.67 A/W [45] (Figure 4a). The PbSe surface was passivated by chemical treatment, which
effectively reduced the dark current of the device. The performance of the devices under
different ligand exchanges was also explored, and the current density of the device treated
with benzonedthiol (BDT) was 2 orders of magnitude higher than that of the untreated
device. Treatment with BDT showed a 20-fold increase in hole mobility and an 80-fold
increase in electron mobility. In 2016, Fu et al. enhanced the stability of synthesized PbSe
CQDs by ammonium chloride treatment and prepared Au/PbSe/PMMA/Au photode-
tectors [46] (Figure 4b). The responsivity of the device reached 64.17 mA/W, and the
detectivity reached 5.08 × 1010 Jones at 980 nm. This work on PbSe CQDs demonstrated a
highly promising approach for the development of infrared detectors.
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sectional schematic of a FET-based photodetector [46]. Copyright 2016, Nanotechnology. (c) Schematic
of a device based on bilayer PbSe CQDs. (d) Schematic diagram of energy bands based on bilayer
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To extend the detection band of PbSe CQD photodetectors, in 2019, Zhu et al. proposed
a PbSe CQD photodetector with a detection range from the ultraviolet to the mid-infrared
region (350–2500 nm) [47] (Figure 4c,d). The hole-trapping-induced photomultiplication
effect was realized by p-type EDT (ethanedithiol)-PbSe CQDs and an n-type TABI-PbSe
CQDs double-layer film. Experimental results showed that the photodetector had a quan-
tum efficiency of 450% in the visible region and a detectivity of more than 1012 Jones at
room temperature. In the infrared region, the quantum efficiency could reach 120% and the
detectivity could reach 4 × 1011 Jones. Such photodetectors provided a feasible way for the
development of uncooled, broadband photodetectors.

In order to achieve PbSe CQD compatibility with silicon-based substrates, in 2021,
Chen et al. proposed a photodetector using PbSe CQDs in Si, with an infrared spec-
tral response range of 450–1550 nm [48] (Figure 4e,f). The device achieved a responsiv-
ity of 648.7 A/W and a response time of 32.3 µs at 1550 nm. The detectivity reached
7.48 × 1010 Jones, and the external quantum efficiency reached 6.47 × 104%. The device
had the advantages of being low-cost and easy to integrate with silicon-based readout cir-
cuits. In the same year, Peng et al. proposed a near-infrared detector using PbSe CQDs [49]
(Figure 4g,h). PbSe CQDs were created using the method of one-step synthesis at room
temperature and directly introduced iodide ions, which realized in situ passivation of
iodide ions and avoided redundant ligand exchange processes. The device had a respon-
sivity of 970 mA/W and a detectivity of 1.86 × 1011 Jones at 808 nm. Compared with the
pure PbSe CQD detector, the photocurrent of the heterojunction detector increased from
7.6 × 10−9 A to 7.4 × 10−8 A, and the dark current decreased from 1.3 × 10−9 A to
7.7 × 10−11 A, effectively reducing the dark current of the device.

Since pure PbSe CQDs were easily oxidized, which led to the degradation of the device
performance, the concept of combining PbSe CQDs with other materials had been proposed.
A composite material was prepared with materials such as organic polymers and metal
oxides, enabling the interaction between different materials to optimize device performance.
It provided a novel way to achieve an extended band and improve device stability.

In 2015, Wang et al. proposed a near-infrared photodetector with a field-effect tran-
sistor structure combining PbSe CQDs and poly (3-hexylthiophene-2, 5-diyl) (P3HT) [50]
(Figure 5a). Responsivity and detectivity reached 500 A/W and 5.05 × 1012 Jones, respec-
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tively. Two-dimensional materials became a research hotspot because of their excellent
optical and electrical properties. Two-dimensional materials have high carrier performance,
so combining with CQDs could make up for the shortcomings of CQDs. In this combi-
nation, a quantum dot layer is used as a photosensitive material, and a two-dimensional
material can improve the mobility of carriers and other properties. Therefore, devices
combining zero-dimensional and two-dimensional materials could effectively improve
the performance of detectors. In 2019, Luo et al. reported a device combining PbSe CQDs
and Bi2O2Se [51] (Figure 5b,c), realizing 2 µm short-wave detection. The responsivity was
greater than 103 A/W, and the response time could reach 4 ms. High sensitivity and quick
response were realized. In 2022, Peng et al. reported a photodetector integrated with PbSe
CQDs and two-dimensional material MoS2 [52] (Figure 5j). The photo–dark current ratio
of the heterogeneous photodetector could reach 102, the maximum responsivity could
reach 23.5 A/W, and the maximum detectivity could reach 3.17 × 1010 Jones under 635 nm
illumination. And the detection band of the detector could be extended to the near-infrared
region. Under the illumination of 808 nm, it achieved a responsivity of 19.7 A/W and a
detectivity of 2.65 × 1010 Jones. The proposed heterojunction photodetector improved the
performance of photodetectors based on zero- and two-dimensional materials.
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Figure 5. (a) Schematic diagram of P3HT: PbSe CQD photodetector. (b) Output characteristics of
FET-based photodetector Au(Gate)/PMMA/P3HT:PbSe/Au(Source, Drain) in dark [50]. Copyright
2015, IEEE Photonics Technology Letters. (c) Schematic illustration of PbSe/Bi2O2Se photodetector.
(d) I−V curves of bare Bi2O2Se, PbSe, and PbSe/Bi2O2Se hybrid photodetectors under dark and
illumination (532 nm, 3.7 mW/cm2) [51]. Copyright 2019, ACS Nano. (e) Schematic diagram of
CsPbBr3/PbSe photodetector. (f) Typical I–V curves of the CsPbBr3/PbSe heterostructure-based
PDs under 365 nm [53]. Copyright 2021, Journal of Materials Science & Technology. (g) Schematic
diagram of PbSe/CsPbBr1.5I1.5. (h) Energy band structure diagram of PbSe/CsPbBr1.5I1.5. (i) I–V
curves of photodetector ITO/ZnO/PbSe:CsPbBr1.5I1.5/P3HT/Au in dark and under 405 nm [54].
Copyright 2022, Advanced Functional Materials. (j) Schematic diagram of PbSe/MoS2 fabrication
process [52]. Copyright 2022, Journal of Materials Chemistry C. (k) Schematic diagram of PbSe/PbI2

photodetector. (l) Schematic diagram of the imaging process of the camera. (m) “AE” logos obtained
by the camera [55]. Copyright 2021, Scientific Reports.
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Due to the rise of perovskite materials, in 2021, Hu et al. proposed a flexible broadband
photodetector based on a CsPbBr3/PbSe CQD heterostructure, which took advantage of the
excellent properties of perovskite nanocrystalline materials and detected a wide range of
wavelengths, from ultraviolet to long-wave infrared [53] (Figure 5e,f). The responsivity of
the device was 7.17 A/W and the detectivity was 8.97 × 1012 Jones under 365 nm light and
5 V voltage. Response rise and decay times were 0.5 ms and 0.78 ms, respectively. Moreover,
the flexible detector could retain 91.2% of its initial performance even after being bent
thousands of times. It provided a feasible strategy for the development of flexible devices.
In 2022, Sulaman et al. proposed a self-powered broadband photodetector combining PbSe
CQDs with CsPbBr1.5I1.5 [54] (Figure 5g–i). The responsivity could reach 6.16 A/W, and
the detectivity could reach 5.96 × 1013 Jones.

Due to the excellent electrical and optical properties of PbSe CQDs, in 2021, Dortaj et al.
suggested a 10 × 10-pixel high-speed mid-infrared (3–5 µm) camera based on PbSe/PbI2
core–shell CQDs [55] (Figure 5k–m). The procedure involved spin-coating PbSe/PbI2 CQDs
onto the substrate of interdigitated electrodes, followed by surface passivation with epoxy
resin. Subsequently, the imaging results were obtained on the display through the readout
circuit, as shown in Figure 5l,m. Experimental results showed that the response rise time of
the detector could reach 100 ns. The camera could achieve 1 million frames per second, so
high-resolution images were obtained.

As a new type of photoelectric conversion device, PbSe CQD photodetectors offer
several advantages, including fast response, high sensitivity, low cost, and easy preparation.
The performance of PbSe CQDs could be further improved by combining them with other
materials. To further improve performance, one approach is to employ a new ligand
solution for surface modification of PbSe CQDs. Additionally, the integration of new
materials or optical devices can also be considered to achieve performance enhancements.

4. PbS CQD-Based Photodetectors
4.1. Synthesis of PbS CQDs

PbS CQDs have a wide tunable band-gap range (0.6–1.6 eV), a high molar broadband
absorption coefficient (≈106 M−1 cm−1), and a large Bohr exciton radius (~18 nm) [27].
These characteristics make PbS CQDs excellent candidates for low-cost broad-spectrum
photodetectors.

In 1990, Nenadovic et al. first prepared 4 nm PbS CQDs in an aqueous solution [56].
In 2011, Lingley et al. proposed a new method of ligand exchange by replacing the oleic
acid ligands on the surface of PbS CQDs with nonanoic and dodecanoic acid ligands [57]
(Figure 6a). And a high quantum efficiency (55%) could be maintained. In 2013, Zhang et al.
synthesized PbS CQDs with good size distribution using H2S as a sulfur source, and the
stability and reproducibility of CQDs prepared by this method were better [58] (Figure 6b).
In addition, the long ligand of oleic acid on the surface of PbS CQDs was replaced by a
short ligand (butylamine), which could effectively extend the carrier lifetime. In 2017, Lin
et al. proposed a liquid-phase ligand exchange method for PbS CQDs, transferring PbS
CQDs to the polar solvent DMF for ligand exchange [59] (Figure 6c). The ligand-exchanged
PbS CQDs could achieve enhanced mobility and were stable for several months, which
laid a solid foundation for the development of photodetectors in the future. In the same
year, to produce stable PbS CQDs, Shestha et al. proposed a method of pre-combining
thiol ligands with Pb2+ before ligand exchange [60], which effectively improved the ligand
exchange efficiency of PbS CQDs (Figure 6d). Experimental results showed that 78%
of the original oleic acid-terminated CQD photoluminescence quantum efficiency could
be maintained after ligand exchange in PbS CQDs by Pb-thiolate. To further study the
influence of reaction conditions on PbS CQDs, in 2020, Shuklov et al. proposed a method
to synthesize 1.7–2.05 µm PbS CQDs through a mixture of oleic acid and oleylamine [61].
The experimental study showed that the reaction temperature could significantly affect
the size of PbS CQDs, while the reaction time had little effect on the PbS CQDs. Good
monodisperse PbS CQDs could be obtained when Pb: S = 3: 1. At present, most of the
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syntheses of PbS CQDs use PbO as the precursor of lead, but it increases the hydroxyl
ligands on the surface of PbS CQDs. In 2023, Wang et al. used lead (II) acetylacetonate as
the lead precursor to reduce the influence of the hydroxyl ligands on the surface of PbS
CQDs [62], and the synthesized PbS CQDs could achieve better binding to iodine ligands
during the ligand exchange (Figure 6e). Thus, the surface passivation of PbS CQDs was
improved, and the carrier transport ability was enhanced.
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Figure 6. (a) Schematic diagram of ligand exchange [57]. Copyright 2011, Nano Letters. (b) Diagram
of the synthesis setup for PbS CQDs [58]. Copyright 2013, CrystEngComm. (c) Schematic diagram of
the ligand exchange process. The right inset is the phase transfer photo of PbS CQDs [59]. Copyright
2017, Journal of the American Chemical Society. (d) Schematic diagram of the ligand exchange using
Pb-thiolate [60]. Copyright 2017, Small. (e) Schematic diagram of PbS CQD synthesis process using
lead oxide and lead acetylacetonate [62]. Copyright 2023, Advanced Science.

4.2. PbS CQD Photodetectors

PbS CQDs are widely used in photodetectors because of their simple preparation,
spectral tunability, and wide wavelength response. In 2006, Konstantatos et al. reported an
infrared photodetector based on PbS CQDs [63] (Figure 7a,b). The normalized detectivity
of the device at 1.3 µm at room temperature reached 1.8 × 1013 Jones, and the responsivity
reached 103 A/W. Its performance was comparable to that of epitaxially grown InGaAs
detectors. In 2014, Liu et al. first reported a flexible NO2 gas sensor based on PbS CQDs [64]
(Figure 7c,d), which achieved high sensitivity and reproducible performance at room
temperature. The experimental results showed that p-type doping was achieved by adding
NO2 on the surface of PbS CQDs. The smaller binding energy was favorable for the rapid
desorption of NO2 from the surface of PbS CQDs, which led to the rapid recovery of the
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signal. In order to promote the development of photoconductive devices, in 2016, Iacovo
et al. proposed a photoconductive device based on PbS CQDs [65] (Figure 7e). The device
achieved high responsivity and detectivity at 1.3 µm under 1 V bias, and the maximum
values could reach 30 A/W and 2 × 1010 Jones. It was expected to realize applications in
silicon integrated circuits.
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and trap state lifetimes [63]. Copyright 2006, Nature. (c) Schematic illustration of NO2 gas sensors.
(d) Response of PbS CQDs sensors to different gases (50 ppm) [64]. Copyright 2014, Advanced
Materials. (e) Schematic diagram of PbS CQD photodetector on interdigitated contacts [65]. Copyright
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illumination of 0.20 mW/cm2 [66]. Copyright 2017, Advance Materials. (i) Schematic diagram of
PbS-EDT/PbS-PbI2 photodetector [67]. Copyright 2017, RSC Advances. (j) Schematic diagram of PbS
CQD photodetector. (k) Dark current density of Si/PbS PD made using light-doped, medium-doped,
and heavy-doped Si wafers [68]. Copyright 2020, ACS Applied Materials & Interfaces. (l) Schematic
diagram of PbS-EDT/PbS-TABI/Si photodetector [69]. Copyright 2020, Nanotechnology.

Due to the low performance of single-layer CQDs, in 2017, Ren et al. proposed a
photodetector combining PbS-TABI and PbS-EDT [66] (Figure 7f–h). The detectivity of
the double-layer CQD device could reach 1.71 × 1012 Jones under 580 nm illumination,
which was about 3 times higher than that of the single-layer CQD device. The photo–dark
current ratio of the bilayer device was 152.35, much larger than that of PbS-EDT (13.41) and
PbS-TABI devices (36.9). In the same year, Qiao et al. further improved the double-layer
CQD device and proposed the photodetector structure of PbI2/PbS-PbI2/PbS-EDT [67]
(Figure 7i). The detector could increase the photocurrent while reducing the dark current
and achieved a detectivity of 1.3 × 1013 Jones and a responsivity of 0.43 A/W. Since silicon-
based photodetectors were gradually applied to the field of photodetection, in 2020, Xu et al.
proposed a photodetector combining n-type silicon with p-type PbS CQDs [68] (Figure 7j,k).
The device had a lower band offset and better charge trapping. Under 1540 nm illumination,
a detectivity of 1.47 × 1011 Jones and a responsivity of 0.264 A/W were achieved. In the
same year, Shi et al. proposed a silicon-compatible PbS CQD photodetector that could be
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integrated into a chip [69] (Figure 7l). The detectivity reached 3.95 × 1012 Jones, and the
external quantum efficiency could reach 4.96 × 105%. This photodetector could realize a
broadband response wavelength in the 405–1550 nm range. The mature silicon processing
technology and rational band optimization of CQDs further enhanced the capabilities of
PbS CQD-based photodetectors.

Detectors based on pure PbS CQDs were still limited in the detection band, so the
purpose of extending the band and improving performance was achieved by combining
them with other materials. In 2009, Krisztina et al. proposed a photodetector combined
with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and PbS CQDs (Figure 8a), and its
spectral range covered the visible and near-infrared regions [70]. The detectivity obtained
at 1200 nm was 2.5 × 1010 Jones. In 2014, He et al. reported a flexible photodetector
combined with Ag nanocrystals (NCs) and PbS CQDs (Figure 8b–e), which could effectively
reduce dark current and enhance photocurrent [71]. Experiments proved that adding 0.5%
to 1% Ag NCs could effectively improve the detection ability of the device. Ag NCs
could capture photogenerated electrons, effectively prolonging the lifetime of carriers,
thereby improving the photocurrent. The detectivity of the flexible device could reach
1.7 × 1010 Jones. The combination of Ag NCs and CQDs opened up a new strategy for
future detector development.
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Figure 8. (a) SEM of the PbS/PCBM device [70]. Copyright 2009, Advanced Materials. (b) Schematic
diagram of PbS CQD/Ag NC photodetector. (c) I−V characteristics of the 1% Ag NC composite
device under different levels of light illumination ranging from 10 to 430 µW/cm2. (d) Current as a
function of time. The inset shows the detector bent at different angles. (e) Dynamic current–time (I−T)
curves of PbS CQD/Ag NC composite (100:0, 100:0.5, and 100:1) photodetectors under 36 µW/cm2

illumination and 40 V voltage [71]. Copyright 2014, ACS Photonics. (f) Photograph of PbS/graphene
photodetector on a silicon wafer. (g) Schematic diagram of PbS/graphene [72]. Copyright 2017, ACS
Nano. (h) Schematic diagram of PbS/CuSCN photodetector. (i) I–V characteristics of the photodiodes
fabricated with and without the CuSCN film in the dark and under illumination with a 532 nm laser
at 0.5 mW/cm2 [73]. Copyright 2020, ACS Photonics.
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To realize low-cost and high-performance optoelectronic devices, in 2017, Bessonov
et al. proposed a method of coupling PbS CQDs with CH3NH3PbI3 (Figure 8f,g), and the
detectivity could reach 5 × 1012 Jones [72]. The addition of CH3NH3PbI3 enabled PbS
CQDs to generate greater gains. To further reduce the dark current of the device, in 2020, Ka
et al. reported a strategy combining copper thiocyanate (CuSCN) and PbS CQDs to reduce
the dark current of PbS CQD-based photodetectors [73] (Figure 8h,i). The detectivity of the
prepared photodiode could reach 1011 Jones. The dark current was reduced by 2 orders of
magnitude, effectively reducing the dark current of the photoelectric device.

Since PbS CQDs could realize photodetection in the visible to infrared region, and
CQDs had the advantages of solution processability and substrate compatibility, PbS CQDs
were applied in readout circuits. In 2015, Klem et al. proposed a short-wavelength readout
circuit photodiode based on PbS CQDs, which consisted of a linear 320-pixel array [74].
The dark current density at room temperature was 6.8 nA/cm2, and the specific detectivity
could reach 1012–1013 Jones, which was comparable to that of the InGaAs photodiode.

Due to the rise of graphene materials, in 2017, Goossens et al. proposed a 388 × 288 array
complementary metal oxide semiconductor (CMOS) imaging system combining PbS CQDs
and graphene [75] (Figure 9a,b). The CQD layer and the graphene layer formed a vertical
heterojunction; the graphene layer trapped holes, and the CQD layer trapped electrons.
The detectivity reached up to 1012 Jones in the range of 300–2000 nm.
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Figure 9. (a) Schematic diagram of graphene transfer process on 388 × 288 array image sensor.
(b) Visible and near-infrared photograph of a standard image reference “Lena” printed in black
and white on paper illuminated with an LED desk lamp [75]. Copyright 2017, Nature Photonics.
(c) Device structure of PbS/CH3NH3PbI3 photodetector. The right inset shows photoelectric imaging
of the letter “I” under near-infrared light [76]. Copyright 2019, ACS Applied Materials & Interfaces.
(d) Schematic diagram of PbS CQD/InGaZnO photodetector. (e) Imaging schematic diagram of the
PbS CQD/InGaZnO photodetector [77]. Copyright 2020, ACS Photonics. (f) Schematic diagram of
PbS CQD readout circuit. (g) Schematic diagram of PbS CQD imager and cross-section of PbS CQD
imager [21]. Copyright 2022, Nature Electronics.
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In 2019, Zhang et al. further optimized a device combining PbS CQDs with CH3NH3PbI3
and fabricated a 10 × 10 array photodetector [76] (Figure 9c). It realized a wide-band
detection capability in the ultraviolet–visible–near-infrared region, the responsivities could
reach 255 A/W and 1.58 A/W at 365 nm and 940 nm, respectively, the detectivities at
365 nm and 940 nm were 4.9 × 1013 Jones and 3.0 × 1011 Jones, and the response time
was 42 ms. The appearance of this detector laid the foundation for the development of
high-sensitivity broadband photodetectors and imagers. In the same year, Georgitzikis et al.
proposed an imager combining a polymer (organic) with PbS CQDs [78]. The photodiode
combined with the polymer and PbS CQDs was integrated into a 512× 768-pixel focal plane
array to realize imaging in visible and infrared environments. The maximum detectivity
could reach 2.3 × 1012 Jones, the minimum rise response time was 13 µs, and the minimum
fall response time was 30 µs. High-resolution and high-sensitivity infrared imaging was
realized. In 2020, Choi et al. proposed a 1 × 6 linear array photodetector combined with
PbS CQDs and InGaZnO [77] (Figure 9d). At 1310 nm, the detector achieved a responsivity
of 104 A/W and a detectivity of 1012 Jones. Imaging of the pattern was finally achieved
(Figure 9e). The surface modification of PbS CQDs with TABI increased the stability and
oxidation resistance of the devices. However, the devices surface-modified with EDT lost
their detection ability within 2 weeks. In 2022, Liu et al. proposed a 640 × 512-pixel
high-resolution imager based on PbS CQDs, with a spectral range of 400–1300 nm [21]
and a detectivity of 2.1 × 1012 Jones, and the spatial resolution of the imager could reach
40 line-pairs per millimeter (Figure 9f,g). Experiments showed that the imager realized
vein imaging and substance identification, which promoted the development of PbS CQDs.
The PbS CQD imager had the advantages of high sensitivity, high resolution, fast response,
and multispectral imaging.

Consequently, compared with single-photon detectors, array detectors have broad
development prospects. But in future development, further cost reduction and smaller size
are required. Meanwhile, during the synthesis process, PbS CQDs can be susceptible to
oxidation and volatility, necessitating the implementation of additional protective measures
in future developments.

In addition to the aforementioned CQD detectors, lead chalcogenide photodetectors
also encompass bulk semiconductor photodetectors. However, lead chalcogenide CQD
photodetectors have numerous advantages over lead chalcogenide bulk photodetectors.

(1) The band structure of lead chalcogenide bulk materials is relatively fixed and difficult
to control, resulting in a limited spectral tuning range. In contrast, the band structure
of lead chalcogenide CQDs can be adjusted by tuning their size, thereby expanding
the spectral tuning range and leading to broader potential applications.

(2) Lead chalcogenide bulk semiconductor thin films are usually prepared using the
chemical bath deposition method [79,80], which poses challenges in integrating bulk
materials with silicon-based readout circuits. In contrast, CQDs are synthesized using
a thermal injection method, leading to lower manufacturing costs for CQD detectors.
Moreover, CQDs can be directly integrated with silicon-based readout circuits through
solution processing, thereby expanding the potential applications of lead chalcogenide
CQD photodetectors.

(3) Photodetectors based on lead chalcogenide bulk materials need to undergo high-
temperature sensitization at 300–600 ◦C in a specific atmosphere, such as an oxygen-
rich and iodine-rich atmosphere [81]. However, the existing sensitization process lacks
repeatability, stability, and uniformity, thereby restricting their application [82,83].
Lead chalcogenide CQD photodetectors can operate at room temperature, reducing
the manufacturing cost and difficulty.

(4) Lead chalcogenide CQD photodetectors can be self-assembled in vertical or horizontal
directions, forming more complex structures. The feature provides lead chalcogenide
CQD photodetectors with a distinct advantage in terms of integration and multi-
channel detection.
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5. Conclusions

In this review, we reviewed the development of lead chalcogenide CQD photodetec-
tors in recent years. Table 1 summarizes the performance of lead-based CQD photode-
tectors. The lead-based CQDs include PbTe, PbSe, and PbS CQDs. One can see that lead
chalcogenide CQD photodetectors have developed quickly, developing from single-pixel
photodetectors to large array imagers. However, compared with traditional bulk semi-
conductor photodetectors, CQD-based photodetectors still face challenges, such as low
detectivity and large dark current. There are several challenges that need to be addressed:

Table 1. The summary of CQD-based photodetectors.

Year Photoactive Material Detection
Range (nm) Detectivity (Jones) Responsivity

(A/W)
Rise

Decay Time Refs.

2006 PbS CQDs 1300 1.8 × 1013 103 -- [63]
2009 PbS CQDs/PCBM 1200 2.5 × 1010 1.6 -- [70]
2010 PbSe CQDs 1400 -- 0.67 -- [45]
2014 PbS CQDs/Ag NCs 1100 1.7 × 1010 0.0038 -- [71]
2015 PbSe CQDs/P3HT 980 5.05 × 1012 500 -- [50]
2016 PbSe CQDs 980 5.08 × 1010 0.06417 -- [46]

2016 PbTe CQDs 1064 -- 0.0019 0.39 ms
0.49 ms [36]

2016 PbS CQDs 1300 2 × 1010 30 160 ms
3 s [65]

2017 PbS-EDT/PbS-TABI 580 1.71 × 1012 0.25 3.63 ms
29.56 ms [66]

2017 PbS-EDT/PbS-PbI2 850 1013 0.43 5.3 µs
4.9 µs [67]

2017 PbS CQDs/CH3NH3PbI3 520 5 × 1012 2 × 105 10 ms
0.5s [72]

2019 PbS CQDs/CH3NH3PbI3 365/940 4.9 × 1013@365 nm
3.0 × 1011@940 nm

255@365 nm
1.58@940 nm

42 ms
-- [76]

2019 PbSe-TABI/PbSe-EDT 1300/2400 1012@1300 nm
1011@2400 nm

0.05–0.2 140 µs
410 µs [47]

2019 PbSe CQDs/Bi2O2Se 2000 -- 103 4 ms [51]

2020 PbS-TABI/PbS-EDT 1540 1.47 × 1011 0.264 2.04 µs
5.34 µs [69]

2020 PbS CQDs/CuSCN 532 1011 -- 50 µs
110 µs [73]

2021 PbSe CQDs 1550 7.48 × 1010 648.7 32.3 µs
73.2 µs [48]

2021 PbSe CQDs 808 1.86 × 1011 0.97 0.34 s
0.67 s [49]

2021 PbSe CQDs/CsPbBr3 365 8.97 × 1012 7.17 0.5 ms
0.78 ms [53]

2022 PbSe CQDs/MoS2 635/808 3.17 × 1010@635 nm
2.65 × 1010@808 nm

23.5@635 nm
19.7@808 nm

0.36s@635 nm;
0.38s@808 nm
0.52s@635 nm;
0.86s@808 nm

[52]

2022 PbSe CQDs/CsPbBr1.5I1.5 532 5.96 × 1013 6.16 350 ms
375 ms [54]

2022 PbS CQDs 940 2.1 × 1012 -- 1.15 µs
0.49 µs [19]

(1) CQD surface passivation. CQD have large surface to volume ratio. As a result, they
are overly sensitive to the environment. Surface modification with organic or in-
organic ligands could improve CQD stability and protect their physical properties.
For instance, PbTe CQDs, are susceptible to oxidation, making them less suitable for
photodetector applications. To address the problem of oxidation, surface modification
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techniques utilizing organic or inorganic ligands can be employed to enhance the
stability and photoelectric conversion efficiency of PbTe CQDs. This improvement is
expected to enhance the overall photoelectric performance and lifespan of photode-
tectors. In addition, the directional assembly of CQDs and the fine regulation of their
optical properties can be achieved through surface modification.

(2) Dark current reduction on CQD-based photodetectors. Compared with InGaAs
and HgCdTe based photodetectors, CQD-based photodetectors typically suffer the
disadvantage on large dark current. The dark current is usually generated by the
surface defects on the CQDs, which can trap and recombine charges. Additionally,
thermal excitation in CQD-based devices can lead to dark current generation. To solve
this problem, reducing the surface defects and band tail regulation should be the key.
In addition, transport property improvement would also be useful such as doping
density and mobility modification.

(3) Large array photodetectors. At present, most research focus on single-pixel CQD
detectors. However, in real application, it is usually necessary to use array detectors.
Large area array photodetectors can be prepared by nanoimprinting technology and
micro-nano processing technology. There are many technical challenges need to
be solved.

(4) Broad band photodetectors. At present, the main research on lead based CQD pho-
todetector could only cover near-infrared to short-wave infrared. More research
is necessary to promote the progress on broad band photodetection. For example,
combining PbS CQDs with graphene, perovskite, and other materials can achieve
detection in the visible and near-infrared bands. Therefore, combining CQDs with
other materials achieves the purpose of broad-spectrum detection.
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