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Abstract: Both crack-free AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) and Y and Hf co-doping
AlCoCrFeNi2.1 EHEA (YHf-EHEA) coatings were prepared by laser cladding. The solidification
microstructure, thermal stability, and hot corrosion performance of the coatings at 900 ◦C under
75% Na2SO4 + 25% NaCl molten salts were investigated. The experimental results showed that the
structure of the as-deposited coatings consisted of FCC and BCC/B2 phases. After heat treatment, an
Al-rich L12 phase was precipitated in the FCC phase of all coatings. The grain sizes of the EHEA and
YHf-EHEA coatings after heat treatment at 900 ◦C for 10 h increased by 27.5% and 15.7%, respectively,
compared to the as-deposited coatings. Meanwhile, after hot corrosion, the spallation areas of the
YHf-EHEA and EHEA coatings accounted for 14.98% and 5.67% of the total surface area, respectively.
In this study, the Y and Hf co-doping did not change the microstructure morphology and phase
structure of the coatings but did improve the thermal stability and resistance of the hot corrosion
oxide scale spallation, providing a certain amount of data and theoretical support for the application
of EHEA coatings as high-temperature protective coatings.

Keywords: high-entropy alloy; laser cladding; thermal stability; hot corrosion

1. Introduction

Due to the presence of impurities such as Na and S in fuel, the combustion process can
often lead to the deposition of a Na2SO4 salt film on the surfaces of steam pipelines and
the hot-end components of gas turbines, definitely reducing the high-temperature strength
and lifespan of the materials [1–3]. Furthermore, as human activities are increasingly
expanding to coastal areas, the hot-end components in these regions face a more serious
corrosive environment. The presence of NaCl particles in humid air can easily deposit on
the surface of these components, accelerating the process of hot corrosion [4–6]. In order to
mitigate or prevent hot corrosion, the preparation of protective coatings on the surface of
materials is a highly economical and universally applicable method [7–10]. Currently, most
researchers have aimed to investigate the hot corrosion resistance of MCrAlY (M = Fe, Ni,
Co, and Pt) coatings [11–13]. However, there is almost no available research concerning
the high-temperature hot corrosion resistance of high-entropy alloy (HEA) coatings. In the
HEA system, AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) with a BCC+FCC eutectic
microstructure was first proposed by Lu in 2014 [14]. Here, the eutectic structure offers
enhanced strength, hardness, toughness, and corrosion resistance. Therefore, EHEA has
a wider range of potential applications compared to traditional alloys [15,16]. Especially
in high-temperature applications, the microstructure of EHEA, with FCC+BCC phases,
exhibits characteristics that are similar to the γ′ phase of nickel-based alloys, which has
demonstrated outstanding resistance to oxidation [17,18]. Moreover, the unique eutectic
solidification structure of EHEA provides a lower phase interface energy, and the significant
sluggish diffusion effects characteristic of high-entropy alloys show its superior stability at
higher temperatures [19,20]. Therefore, EHEA has great potential as a high-temperature
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protective coating. On the other hand, exploration of the properties of alloying elements and
rare earth elements for high-entropy alloys has also never stopped [21–24]. Research about
the effect of alloying elements on the performance of HEAs has predominantly concentrated
on the mechanical properties while the literature indicates that conventional and high-
entropy alloys and Y and Hf co-doping can effectively enhance the high-temperature
oxidation resistance of alloys [25–27]. In high-temperature corrosive environments, the
stability and hot corrosion resistance performance of HEA coatings is the most significant
field of concern. Given this background, there is a need for an inclusive exploration of
the thermal stability and hot corrosion performance of HEA coatings, especially EHEA
coatings at high temperatures, in order to understand the microstructure and performance
changes of HEA coatings.

Therefore, in order to investigate the high-temperature protective capabilities of EHEA
coatings, AlCoCrFeNi2.1 and AlCoCrFeNi2.1 co-doping with Y and Hf (YHf-EHEA) coatings
were prepared by laser cladding in this paper. After their preparation, the microstructure
and high-temperature thermal stability of the coatings were characterized, and the hot
corrosion performance of the coatings at 900 ◦C under 75% Na2SO4 + 25% (wt.%) NaCl
mixed molten salt was investigated, which provided data support for an evaluation of the
potential applications of high-entropy alloy coatings in harsh service environments such as
steam pipelines and the hot-end components of gas turbines.

2. Materials and Methods
2.1. Materials

AlCoCrFeNi2.1 and AlCoCrFeNi2.1YHf gas atomized spherical powders with a size
of 15–53 µm (D50 = 35.44 and 33.89 µm, respectively) and purity greater than 99.95%
were used in this study. The powders’ compositions were measured using an inductively
coupled plasma atomic emission spectrometer (ICP-AES, ICP-6800, Macylab Instruments
Inc., Shanghai, China), as shown in Table 1. Figure 1 shows the XRD diffraction analysis
results of the powders. It can be seen that both crystal structures of the powders consisted
of FCC (PDF 41,505) and BCC/B2 (PDF 64,999, 184,445). However, the intensity of the
B2 diffraction peak located at a diffraction angle of 31.2◦ was very low, which is different
from that of the AlCoCrFeNi2.1 bulk materials while it is similar to Ding’s result [28]. It
is possible to argue that the fast process does not provide sufficient time for the atomic
ordering necessary for the formation or growth of the B2 structure. Therefore, the intensity
of the characteristic B2 peak located at 31.2◦ was hard to see. The substrate was used
with a 45# low carbon steel tube with a diameter of 89 mm, and the chemical composition
is shown in Table 2, which was detected using a Spark Source AES (SparkCCD 6500,
NCS Testing Technology Co., Ltd., Beijing, China). Meanwhile, the powder underwent a
vacuum drying process at 120 ◦C for 3 h to eliminate moisture. This was crucial to ensure
the powder’s fluidity.

Table 1. Chemical composition of the EHEA powders (wt.%).

Elements Al Co Cr Fe Ni Y Hf O

AlCoCrFeNi2.1 8.45 18.56 16.64 17.89 Bal. - - 0.018
AlCoCrFeNi2.1YHf 8.34 18.14 16.28 17.64 Bal. 0.55 0.45 0.031

Table 2. Chemical composition of 45# steel (wt.%).

Elements C Si Mn P S Cr Ni Cu Fe

Percent 0.44 0.27 0.60 0.018 0.007 0.017 0.009 0.009 Bal.
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Figure 1. XRD patterns of the EHEA and YHf-EHEA powders.

2.2. Coating Preparation

In this study, a laser cladding manufacturing system named ZKZM-4000 (Zhongke
Zhongmei Laser Technology Co., Ltd., Xian, China) was adopted for the coating preparation.
The preparation parameters are presented in Table 3. Central powder feeding was used as
the powder feeding method, which increased the powder utilization. In this study, argon
was used as a protective and transport gas in the processing of the powders. Before the
cladding process, the steel tube was polished, then cleaned with alcohol, and finally dried
thoroughly, and the powder container feeds were cleaned with compressed air. In order
to study the high-temperature thermal stability of the coating, vacuum heat treatment
was performed at 900 ◦C for 10 h and water-cooled after the completion of the coating
preparation, which maintained the high-temperature microstructure of the coatings.

Table 3. The coating preparation parameters.

Content Parameters Content Parameters

Laser power 2000 (W) Working distance 16 (mm)

Scanning speed 25 (mm/s) Protective gas flow rate 14 (L/min)

Feeding rate 17 (g/min) Transported gas flow rate 1.5 (L/min)

Spot diameter 2 (mm) Overlap ratio 50%

2.3. Coating Characterization

The prepared coatings were cut into 10 × 10 × 5 mm specimens by wire cutting,
and the microstructure of the surface and the cross-section of the coatings were observed.
Before observation, the specimens were polished to 3000 grit using sandpaper, and then the
specimens were polished to a mirror-like surface using 0.5 µm polishing paste. The coating
microstructure was characterized by scanning electron microscopy (SEM) equipped with
energy-dispersive X-ray spectroscopy (ZEISS SUPRA5 and Zeiss Genimi 450 Carl Zeiss AG,
Jena, Germany). The phase structure was analyzed using an X-ray diffractometer (XRD,
Smartlab Rigaku, Tokyo, Japan) with a scanning step of 2◦/min and a scanning range of
25◦ to 85◦. The coating samples for the SEM test were prepared by electrolytic corrosion
using a solution of CrO3 (10 g) + H2O (90 mL), and the SEM tests were conducted at a
voltage of 15 kV. The voltage and current were 5 V and 1–2 A, respectively. Electrolytic
polishing samples were made with 5 vol.% perchloric acid alcohol solution, and the voltage
and current were 20 V and 1–2 A, respectively.
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2.4. Hot Corrosion Test

The hot corrosion samples with a size of 10 × 10 × 5 mm were polished. They were
placed on a 120 ◦C heating plate, and a mixture of molten salts was evenly applied to the
surface of the samples using a high-pressure spray bottle. The mixed salt content on the
sample surface was maintained at 2–3 mg/cm2. The samples were dried and placed in
alumina crucibles and then transferred to a muffle furnace at 900 ◦C for insulation. After
60 h of hot corrosion, the hot corrosion samples were cleaned in boiling distilled water for
30 min to remove loosely adhered surface oxides, and then they were characterized by the
XRD test. The surface of the hot corrosion samples was observed by the SEM test after
gold spraying, and the purpose of gold spraying was to enhance the conductivity of the
corrosion test samples.

3. Results and Discussion
3.1. Microstructure of the Coatings

Figure 2 shows the XRD results of both as-deposited coatings. It can be observed that
their structures consisted of FCC and BCC/B2, which are the same as the XRD results of
the powders.

Materials 2023, 16, x FOR PEER REVIEW 4 of 16 
 

 

2.4. Hot Corrosion Test 
The hot corrosion samples with a size of 10 × 10 × 5 mm were polished. They were 

placed on a 120 °C heating plate, and a mixture of molten salts was evenly applied to the 
surface of the samples using a high-pressure spray bottle. The mixed salt content on the 
sample surface was maintained at 2–3 mg/cm2. The samples were dried and placed in 
alumina crucibles and then transferred to a muffle furnace at 900 °C for insulation. After 60 
h of hot corrosion, the hot corrosion samples were cleaned in boiling distilled water for 30 
min to remove loosely adhered surface oxides, and then they were characterized by the 
XRD test. The surface of the hot corrosion samples was observed by the SEM test after gold 
spraying, and the purpose of gold spraying was to enhance the conductivity of the corro-
sion test samples. 

3. Results and Discussion 
3.1. Microstructure of the Coatings 

Figure 2 shows the XRD results of both as-deposited coatings. It can be observed 
that their structures consisted of FCC and BCC/B2, which are the same as the XRD re-
sults of the powders. 

 
Figure 2. XRD patterns of the as-deposited EHEA and YHf-EHEA coatings. 

Figure 3 shows the cross-sectional microstructures of the EHEA and YHf-EHEA 
coatings. From Figure 3a,d, one can see that their thicknesses were 744 and 671 µm, re-
spectively. No significant cracks were found on them. Figure 3b,c,e,g shows the micro-
structures of the top and bottom portions of the coatings, respectively. All of the coatings 
showed a predominantly different structure (the dark and bright regions represent the 
FCC and BCC/B2 phases, respectively). The microstructure morphologies of the top por-
tion of the EHEA and YHf-EHEA coatings are presented in Figure 3b,e, which are com-
posed of cellular dendrites. However, those at the bottom portion of both coatings ex-
hibited columnar dendrites, as shown in Figure 3c,g. The growth of dendrites are deter-
mined by the temperature gradient (G) and cooling rate (V) at the solid–liquid interface 
[29]. At the bottom of the coating, the temperature gradient within the melt pool reaches 
its maximum value. And the solidification rate is slow, promoting the growth of planar 
crystals. Additionally, at the front of the solid–liquid interface, the composition is su-
percooled due to solute redistribution. As a result, the advancement of the straight in-
terface is quickly interrupted, and the growth of columnar crystals begins. The columnar 
dendrites at the bottom portion of the coating grow along the laser build direction, which 
is the direction of the heat flow. As the solid–liquid interface advances toward the top of 
the coating, the cooling rate increases and the ratio of G/V decreases. As a result, the co-
lumnar dendrites transform into cellular dendrites. Moreover, Figure 3f displays the 

Figure 2. XRD patterns of the as-deposited EHEA and YHf-EHEA coatings.

Figure 3 shows the cross-sectional microstructures of the EHEA and YHf-EHEA coat-
ings. From Figure 3a,d, one can see that their thicknesses were 744 and 671 µm, respectively.
No significant cracks were found on them. Figure 3b,c,e,g shows the microstructures of
the top and bottom portions of the coatings, respectively. All of the coatings showed a
predominantly different structure (the dark and bright regions represent the FCC and
BCC/B2 phases, respectively). The microstructure morphologies of the top portion of
the EHEA and YHf-EHEA coatings are presented in Figure 3b,e, which are composed
of cellular dendrites. However, those at the bottom portion of both coatings exhibited
columnar dendrites, as shown in Figure 3c,g. The growth of dendrites are determined by
the temperature gradient (G) and cooling rate (V) at the solid–liquid interface [29]. At the
bottom of the coating, the temperature gradient within the melt pool reaches its maximum
value. And the solidification rate is slow, promoting the growth of planar crystals. Addi-
tionally, at the front of the solid–liquid interface, the composition is supercooled due to
solute redistribution. As a result, the advancement of the straight interface is quickly inter-
rupted, and the growth of columnar crystals begins. The columnar dendrites at the bottom
portion of the coating grow along the laser build direction, which is the direction of the heat
flow. As the solid–liquid interface advances toward the top of the coating, the cooling rate
increases and the ratio of G/V decreases. As a result, the columnar dendrites transform
into cellular dendrites. Moreover, Figure 3f displays the high-magnification backscatter
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electron diffraction microstructure of the YHf-EHEA coating, revealing the presence of a
Re-precipitate phase at the grain boundaries, which was identified as a bright color.
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Figure 4 shows the electron backscatter diffraction (EBSD) analysis of the EHEA and
YHf-EHEA coatings’ surface. Figure 4a,d display the surface EBSD morphologies. It can be
observed that the coating surface was composed of a mixture of coarse and fine grains. The
coarse-grained region represents the heat-affected zone of the subsequent coating layer on
the previous coating layer while the fine-grained region represents the remelted zone of
the previous coating layer. Subsequent statistical analysis was conducted on the average
size of the surface grains and the misorientation angles of the grain boundaries. It can be
observed that the average grain sizes of the EHEA and YHf-EHEA coatings were 20.44 and
26.27 µm, respectively. Meanwhile, the volume fractions of the low-angle grain boundaries
(LAGBs, 2◦ ≤ θ < 15◦) in the two coatings were 20.5% and 20.2%, respectively, indicating
that both coatings consisted of high-angle grain boundaries (HAGBs, θ > 15◦).
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YHf-EHEA (d–f).

3.2. Thermal Stability of the Coatings

Figure 5 illustrates the XRD results of the coatings after heat treatment (HT) at 900 ◦C,
showing that the coatings consisted of FCC and BCC/B2, which is the same as the as-
deposited coatings. This indicates that the microstructure of the coatings retained the
as-deposited phase structures after heat treatment, but small precipitate sizes and low
contents can also result in XRD detection being inconclusive. Therefore, it was necessary to
further characterize the microstructure of the coatings after heat treatment.
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Figure 5. XRD patterns of the EHEA and YHf-EHEA coatings.

As shown in Figure 6, it can be observed that after heat treatment, both coatings still
maintained an intact BCC structure. However, small rod-shaped precipitates with widths
ranging from 110 to 340 nm were found in the FCC phase. Higher temperatures cause
the precipitation of the Al-rich ordered phase L12 within the FCC phase of AlCoCrFeNi
high-entropy alloys. Some reports have indicated that the transformation to the ordered
phase occurs at temperatures of 778± 2 ◦C [30–32]. Al has a more negative mixing enthalpy
with other elements such as Ni and Co(Al-Ni, −22 KJ/mol, Al-Co −19 KJ/mol). At 900 ◦C,
the diffusion of Al intensified, leading to the formation of precipitate phases with other
elements. Therefore, the preliminary judgment is that the rod-shaped phase that was
precipitated in the FCC is the L12 phase. L12 and FCC exhibited a high degree of coherency.
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XRD could not distinguish them. The elemental analysis results of the YHf-EHEA coating
are shown in Figure 7. From Figure 7a, it can be observed that the BCC phase was AlNi-rich.
Moreover, one can see that the Al, Co, Cr, Fe, Ni, Y, and Hf elements in the FCC phase were
uniform. However, after heat treatment, rod-like precipitates formed in the FCC phase,
which were found to be Al-rich after the EDS line scan (Figure 7b,c). In conclusion, both
coating samples maintained the initial BCC/B2 morphology after heat treatment and the
Al-rich rod-like L12 order precipitate phase was observed in the FCC.
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In order to investigate the grain evolution of the coatings after heat treatment, EBSD
analysis was performed on the coating surface. Figure 8a,d display the surface EBSD
morphologies of the EHEA and YHf-EHEA coatings, respectively. It can be seen that the
grains in the as-deposited coatings have a tendency to grow after heat treatment. From
the statistical analysis of the average grain size and volume fraction of the low-angle grain
boundaries (LAGBs) in both coatings after heat treatment, it can be observed that the grain
sizes of the EHEA and YHf-EHEA coatings increased by 27.5% and 15.7%, respectively,
compared to the as-deposited coatings. Additionally, the volume fractions of the LAGBs
decreased by 13.9% and 8.3% in the EHEA and YHf-EHEA coatings, respectively. However,
it can still be observed that the surface of the coating after heat treatment maintained
a mixed structure of coarse and fine grains. The reason for the higher thermal stability
of the YHf-EHEA coating compared to the EHEA coating can be attributed to the solid
solution of reactive elements in the matrix, which enhances the sluggish diffusion effect of
high-entropy alloys. Additionally, the presence of Re particles at the grain boundaries and
phase interfaces can hinder grain growth (Figure 3c).
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3.3. Hot Corrosion Behavior

The XRD patterns of both coatings after hot corrosion for 60 h are shown in Figure 9.
It can be observed that the oxide layer of the coating is mainly composed of Al2O3, Cr2O3,
and spinels. The PDF numbers are 26,790, 90,157, and 35,002, respectively.
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After 60 h of hot etching, the coatings retained an intact form within the crucible, but
some black oxide products were found at the bottom of the crucible. Figure 10 shows
the surface morphologies of the coatings after 60 h of hot corrosion at 900 ◦C under
Na2SO4 + 25% NaCl molten salts. Table 4 shows the EDS analysis of the points that are
marked in yellow in Figure 10. From Figure 10a,e, it can be seen that after 60 h of hot
corrosion, both coatings were covered by oxides and corrosion products. However, the
YHf-EHEA coating had a lower spallation area of oxide scales on its surface compared to the
EHEA coating. After hot corrosion, the mass losses for the EHEA and YHf-EHEA coatings
were determined to be 33.99 and 29.05 mg/cm2, respectively. The spallation areas in the
EHEA and YHf-EHEA coatings accounted for 14.98% and 5.67% of the total surface area,
respectively. Specifically, a certain amount of warped oxides were present in the YHf-EHEA
coating oxide scales that are marked in white circle in Figure 10e. The reason for the lower
spallation area of the YHf-EHEA coating compared to the EHEA coating can be attributed
to the uniform distribution of the Re(YHf) and stable phase structure, which is beneficial
for maintaining the beneficial RE function and improving the scale adhesion [33]. The
oxide scale morphologies of the coatings are shown in Figure 10c,g and the EDS analysis is
shown in Table 4. It can be concluded that the oxidation corrosion products of the coatings
were mainly Al-rich oxides. Additionally, there was also a certain amount of FeCr-rich
oxides. Combined with the XRD results in Figure 9, it can be concluded that the corrosion
product was mainly Al2O3. By analyzing the morphology and EDS of the corroded areas,
it can be concluded that the elemental depletion of the EHEA coating was faster than that
of the YHf coating, and trace amounts of sulfur elements were detected in the corroded
areas of the EHEA. In conclusion, all coatings exhibited the same corrosion mechanism.
The YHf-EHEA coating showed better resistance to the 75% Na2SO4 + 25% NaCl molten
salts hot corrosion than the EHEA coating at 900 ◦C. The mechanism for the coatings under
Na2SO4 + NaCl hot corrosion is described as follows [34–37]. Initially, chlorine reacts
with the metal to form metal chlorides (MClx). However, at a temperature of 900 ◦C, the
metal oxides (MxOy) have a lower Gibbs formation free energy than the metal chlorides,
leading to the transformation of the metal chlorides into metal oxides. At the same time,
the aluminum chlorides and oxides have the lowest Gibbs free energy at 900 ◦C, so they
can form AlCl3 (−347.1 KJ/mol) and Al2O3 (−1295.0 KJ/mol). Among them, the Al-rich
oxide (Al2O3) is the most stable. In another way, Na2SO4 decomposes into SO3 and O2,
which oxidize the Al, Cr, and Fe elements to form metal oxides.

Cl− + O2 → O2− + Cl2

M + Cl2 → MClx(g)(M = Al, Cr, Fe, etc.)

MClx(g) + O2 → MOy + Cl2(M = Al, Cr, Fe, etc.)

SO2−
4 → O2− + SO3 → O2− + S2 + O2

2Al + SO3 = Al2O3 +
1
2

S2

2Cr + SO3 = Cr2O3 +
1
2

S2

Fe + O2 → Fe2O3 + Cr2O3 → FeCr2O4
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Table 4. The elemental compositions (at%) corresponding to the points marked in Figure 10.

Points O Al Cr Fe Co Ni S

1 28.24 8.57 17.93 42.93 0 2.34 0

2 46.50 43.47 3.28 5.40 0.54 0.81 0

3 45.47 43.78 4.68 6.07 0 0 0

4 53.09 40.97 3.19 2.09 0 0.67 0

5 17.44 10.63 12.66 19.02 14.00 24.81 1.43

6 9.89 9.12 13.62 22.34 15.87 28.61 0.53

7 48.29 8.09 4.26 28.09 7.52 3.74 0

8 49.48 40.53 4.35 5.64 0 0 0

9 50.73 36.76 4.45 6.88 0.38 0.79 0

10 7.82 6.25 14.83 23.95 16.09 31.05 0

11 6.31 5.74 15.10 24.71 15.50 30.17 0

12 12.14 9.55 13.53 21.94 16.66 32.48 0

4. Conclusions

In this work, AlCoCrFeNi2.1 EHEA and co-doping Y and Hf AlCoCrFeNi2.1 YHf-EHEA
coatings were successfully prepared by laser cladding. The solidification microstructure,
thermal stability, and hot corrosion of the coatings at 900 ◦C under 75% Na2SO4 + 25%
NaCl molten salts were investigated.

1. The YHf co-doping did not alter the solidification microstructure and phase structure
of the EHEA coating. The microstructure morphologies of the top and bottom portions of
coatings were composed of cellular and columnar dendrites, respectively. And the phase
structure consisted of FCC and BCC/B2.

2. After heat treatment at 900 ◦C for 10 h, the BCC/B2 structure was relatively stable
in all coatings while the nanoscale Al-rich L12 phase was precipitated in the FCC.

3. The grain sizes of the HT-EHEA and HT-YHf coatings after heat treatment at
900 ◦C for 10 h increased by 27.5% and 15.7%, respectively, compared to the as-deposited
coatings. Additionally, the volume fractions of the LAGBs decreased by 13.9% and 8.3% in
the HT-EHEA and HT-YHf coatings, respectively.

4. Al2O3 was found to be formed when the surface oxide products of the coatings were
hot corroded at 900 ◦C for 60 h under Na2SO4 + 25% NaCl molten salts. The YHf-EHEA
coating showed better resistance to scale spallation compared to the EHEA coating.
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