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Abstract: The increase of consciousness towards global warming and the need to reduce greenhouse
gas emissions lead to the necessity of finding alternative applications based on easy-to-use materials
in order to control and reduce global CO2 emissions. Layered Double Hydroxides (LDHs) and LDH-
derived materials are potentially good adsorbents for CO2, thanks to their low cost, easy synthesis,
high sorption capacity, and surface basicity. They have been intensively studied in CO2 capture at
high temperature, presenting variable sorption capacities for MgAl LDHs with the same composition,
but prepared under different synthesis conditions. The ambient temperature coprecipitation synthesis
method is an attractive one-step procedure to synthesize LDHs under mild conditions, with low
energy consumption and short synthesis time. The present study is based on the synthesis and
characterization of hydrotalcites by a mild-conditions coprecipitation process and the production
of derived mixed oxides to be used as CO2 adsorbents. A critical comparison to similar materials
is reported. Moreover, the effect of the surface basicity of the derived mixed oxides (measured by
adsorption calorimetry) and the CO2 sorption capacity are discussed, showing a linear correlation
between the amount of weak and very strong basic sites and the CO2 adsorption behavior.

Keywords: Layered Double Hydroxides; mixed oxides; basicity; CO2 adsorption; adsorption calorimetry

1. Introduction

Global warming, pollution, and health concerns often derive from the environmental
impacts caused from industrial activities. The need to decrease the actual massive use of
fossil fuels boosts the research on alternative solutions for limiting the emissions of CO2.
CO2 is among the main greenhouse gases, and its contribution has been estimated to more
than 60% of the total global warming. The Kyoto Protocol and international conventions
intend to reduce global emissions by 50% with respect to those measured in 2006 by 2050.
Consequently, the necessity of finding easy-to-use materials for CO2 adsorption becomes
more than urgent.

Several methods for the safe control and disposal of CO2 emissions have been widely
studied [1]. For example, steam reforming of hydrocarbons is the most suitable process
for hydrogen production, but it releases high amounts of carbon dioxide [2–4] that must
be adsorbed. An appropriate CO2 adsorbent should satisfy the following criteria: a low
cost, a fast kinetic, a high adsorption capacity and selectivity, and a high thermal and
chemical stability for several adsorption cycles [1,5–7]. Clay minerals are potentially good
adsorbents, but they are generally stable only up to 200 ◦C [8–10]. Due to the loss of
interlayer water (dehydration), the irreversible degradation of the structure takes part
at higher temperatures than 200 ◦C. Among all the materials tested for CO2 capture and
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storage, zeolites [11,12] and LDHs [7,13–15] have been widely studied thanks to their high
surface area, developed pore structure, and high charge density [5]. Zeolites present high
charge density and tunable pore size [16,17], while LDH-based materials represent an
interesting alternative material thanks to their easy synthesis and the tunability of their
chemical composition. Various preparation routes of LDH-based materials have been
considered for synthesizing materials for CO2 capture. In this frame, the impregnation of
commercial hydrotalcites [18], the synthesis of tunable Mg/Al LDHs [14,15,19], and the
formation of mixed oxides derived from their calcination [6,20–22] have been reported.

Layered Double Hydroxides are lamellar materials made of stacked octahedral sheets
containing a mixture of divalent and trivalent cations, according to the following struc-
tural formula:

[M2+
1−xM3+

x(OH)2]x+(An−)x/n.yH2O (1)

where M2+ is a divalent metal cation (Mg2+, Ca2+, or Zn2+, for example), M3+ is a trivalent
metal cation (Al3+, Fe3+, or Co3+, for example), and An− is a compensating anion (such as
Cl−, CO3

2−, or NO3
−).

LDHs are generally compared to conventional clay-like crystalline structures and are
named sometimes “anionic clay” due to the positive charge deficit that is compensated by
anions in the interlayer space. Hydrotalcite is a particular type of LDH made of magnesium
and aluminum cations with a fixed Mg/Al molar ratio equal to 3.

Regarding their widest application, CO2 adsorption is strongly related to the number
and the strength of surface basic sites [6,23,24]. Even if they present a lower CO2 adsorption
capacity, when compared to other more conventional sorbents [25–28], the high presence
of water molecules can increase their CO2 adsorption capacity [29]. However, these ma-
terials are significantly more active for CO2 adsorption after thermal decomposition, to
form basic mixed oxides [30,31]. Thanks to the presence of Al3+ cations in the lattice,
hydrotalcite-derived materials exhibit good performances for the adsorption of CO2 [32,33].
The parameters that play a role in improving the surface acidity and basicity in LDH-
derived materials are the presence of compensating anions in the interlayer space [34–36],
the synthesis method [37,38], and the temperature of the treatment [34]. The tunability
of the surface acid/basic properties is an important parameter, depending on the target
application. As an example, the removal of Cl− by anion exchange leads to an increase in
the surface basicity, as reported by Tichit et al. [31]. The authors concluded that the Cl−

anions block the basic sites of hydrotalcites. The surface basicity of these materials has been
improved by adding alkali salts and by increasing the Mg/Al molar ratio [39]. In addition,
the presence of transition metals in the structure of the hydrotalcites tends to increase the
surface acidity of the corresponding hydrotalcite-derived mixed oxides, as reported by
Pavel et al. [40]. Moreover, the possibility to be regenerated [41,42] and the adsorption
reversibility [43] of the hydrotalcite materials are also important points to enhance the
efficiency of these sorbents in industrial adsorption units.

Coprecipitation in mild conditions is a more recent synthesis route of choice to prepare
hydrotalcites in a shorter time than that employed in the conventional coprecipitation
method [35,44,45]. This coprecipitation method consists of dissolving the inorganic salts
containing the divalent and trivalent metal cations in a solvent, generally ethanol or
water, and increasing the solution pH by adding a basic solution. The base addition
promotes the condensation reaction. This procedure allows for obtaining compounds
without secondary phases in a shorter time and with lower energy consumption than the
conventional coprecipitation method, but with lower crystallinity [46–48].

In the present study, a series of hydrotalcite precursors (LDHs), prepared by the mild-
conditions coprecipitation method, was firstly characterized by X-ray Diffraction, solid-state 27Al
Nuclear Magnetic Resonance spectroscopy, X-ray fluorescence spectroscopy, BET surface area
measurements, and Thermogravimetric Analyses. Due to the difficulty of having insights on the
condensation mechanism, it is still not clear why differences in the acid/base properties (even if
very small) can be measured. Further investigation is then strongly needed on this point. The
present manuscript aims to give some interesting insight to contribute to this debate. At different
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preparation pH values, the condensation reaction to form the hydrotalcites might take part
following different pathways (not yet elucidated up to now) to form a final product with slightly
different ratios among the Mg- and Al-containing phases. Segregation of Mg and Al hydroxide
can also take over, and, even if not detectable by the techniques employed, drive the acid-basic
properties of the final materials. In the present paper, differently to that reported in the most part
of the already published articles, the surface basicity (the key property for CO2 adsorption) of the
calcined materials (mixed oxides) was probed by SO2 adsorption calorimetry. In a second time,
the CO2 sorption capacities of the mixed oxides have been measured in order to compare their
performances with similar materials reported in the literature and find correlations between the
physico-chemical characteristic and the surface basicity. CO2 adsorption was here carried on at
the temperature of 200 ◦C to verify the compatibility of the prepared material with industrial
processes where a high adsorption temperature is required (among others in the so-called
“carbon capture and utilization process”, where CO2, once captured, is utilized as a feedstock
and converted catalytically into methane or methanol).

2. Materials and Methods
2.1. Synthesis of the Layered Double Hydroxides

The synthesis of the MgAl LDHs precursors involves magnesium chloride and alu-
minum chloride as sources of the atoms constituting the material framework. Mag-
nesium chloride hexahydrate MgCl2.6H2O (Sigma-Aldrich, BioXtra, Burlington, MA,
USA, ≥99.0 wt%), aluminum acetylacetonate Al(C5H7O2)3 (Sigma-Aldrich, ReagentPlus®,
99 wt%), aluminum chloride hexahydrate AlCl3 · 6H2O (Fluka Analytical, ≥99.0 wt%),
ethanol CH3CH2OH (Carlo Erba Reagents, Emmendingen, Germany, ≥97 wt%), sodium
hydroxide NaOH (Carlo Erba Reagents, 99.9 wt%), and deionized water (18.2 MΩ·cm)
were used.

At first, the required amounts of magnesium and aluminum precursors (to fix the
Mg/Al molar ratio at 3 according to the general structural formula of the hydrotalcites:
[Mg6Al2(OH)16] (An−)2.yH2O), where An− are the Cl− and C5H7O2

− that were dissolved
into 50 mL of ethanol under stirring. The Mg/Al molar ratios were calculated according to
the amounts of each reactant and their molar masses. Then, an aqueous solution of sodium
hydroxide (NaOH) 1M was added to adjust the pH at 11 for the HTCL-1 and HTCL-3
samples and 10 for the HTCL-5 sample (see Table 1). The mixture was left under stirring at
room temperature for 24 h. The solid was recovered by centrifugation at 11,000 rpm for
10 min, washed three times with 30 mL of ethanol, and finally dried for 24 h in an oven
at 60 ◦C. The samples were then labeled “HTLC-x”, where x is the number of the sample.
Two different precursors (AlCl3.6H2O and Al(C5H7O2)3) were used in order to verify if the
substitution of Cl− with C5H7O2

− would lead to an increase of the surface basicity; indeed,
in Ref. [31], the authors concluded that the Cl− anions block the basic sites of hydrotalcites.
Moreover, two samples obtained using AlCl3.6H2O as the Al source were prepared by
adding different amounts of NaOH solution (28 mL for HTLC-1 and 16 mL for HTLC-5) in
order to verify if the different conditions of condensation (at pH 11 and 10, respectively)
will lead to different CO2 adsorption properties of the derived oxides.

Table 1. Coprecipitation synthesis parameters of the MgAl LDHs precursors synthesized with
magnesium chloride and two different aluminum sources, and different amounts of OH−.

Sample Al Source Mg/Al Ratio NaOH Amount (mL)

HTCL-1 AlCl3.6H2O 3.02 28
HTCL-3 Al(C5H7O2)3 2.99 22
HTCL-5 AlCl3.6H2O 3.00 16

Finally, the powders of hydrotalcite precursors were calcined at 450 ◦C for 5 h in an
oven. The calcined samples (hydrotalcite-derived mixed oxides) were labeled “HTLC-x
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CAL”, x corresponding to the number of the sample. The resultant oxides were used for
CO2 adsorption in this study.

2.2. Physico-Chemical Characterization Techniques

The structural properties of the synthesized samples were investigated by X-ray
Diffraction using a Panalytical X’Pert PRO MPD diffractometer with Cu Kα radiation
(λ = 1.5418 Å), and performed from 2 to 70◦ 2θ, with a step of 0.017◦ 2θ and a time per step
of 218 s, with a total time for acquisition of 1 h 15, on randomly oriented powder samples.
Each reflection is associated with a distance between planes according to the Bragg’s Law:
2dhkl.sin(θ) = n.λ (where dhkl corresponds to the distance of the plane (hkl), θ the diffraction
angle, λ the Kα radiation used (1.5418 Å), and n the periodicity index).

Solid-state 27Al MAS NMR spectroscopy spectra were obtained using a Bruker AVANCE
II 400 MHz spectrometer at 104.3 MHz with magic angle spinning (MAS). The samples were
packed in a 2.5 mm diameter cylindrical rotor, spun at a spinning frequency of 25 kHz, and
recorded for 8 h. A short delay time of 1 s and a 4 µs single pulse were used.

Thermogravimetric analysis (TGA) of the synthesized samples was performed using a
Mettler-Toledo TGA/DSC1 LF1100 apparatus, in alumina sample holders, under argon,
with a flow rate of about 100 mL·min−1 from 25 to 600 ◦C and a heating rate of 5 ◦C·min−1.
An empty sample holder was recorded as reference to correct the baseline deviation.

N2 adsorption–desorption isotherms were obtained on a Micromeritics ASAP 2420 appa-
ratus at −196.15 ◦C. The samples were degassed at 100 ◦C for 15 h before the measurements.
The data were analyzed by means of the software MicroActive 5.02.

2.3. Basicity Measurement by SO2 Adsorption Calorimetry

The surface basicity of the samples was determined by adsorption microcalorimetry
of SO2 at 150 ◦C. The experimental set-up was constituted of a Setaram C80 heat-flow
calorimeter linked to a homemade volumetric apparatus equipped with a Barocel Capaci-
tance manometer, for pressure measurements. Approximately 80 mg of the samples was
preheated in a quartz cell by heating overnight under vacuum at 350 ◦C. The differential
heat of adsorption was measured as a function of the coverage by repeatedly sending
small doses of the gas probe onto the sample until an equilibrium pressure of 0.5 Torr was
reached. The sample was then outgassed for 40 min at the same temperature, and a second
adsorption run was performed at 150 ◦C on each sample, until an equilibrium pressure
of approximately 0.2 Torr. The difference between the amount of the probe gas adsorbed
during the first and the second runs represents the irreversibly adsorbed amount (Virr) of
the probe gas, which provided an estimation of the number of strong basic sites.

2.4. CO2 Adsorption Tests

A Setaram Sensys thermogravimetry–differential scanning calorimetry (TG-DSC)
apparatus has been used to measure the adsorption of CO2. Samples were pretreated in situ
at 300 ◦C under pure N2 flowing at 20 mL·min−1. Then, the temperature was decreased
and stabilized to the adsorption temperature (200 ◦C) always under N2 flow. Once the
mass stabilized, the gas was switched to CO2 with a constant flow of 20 mL·min−1 and
maintained during the CO2 sorption experiments for 4 h until complete saturation of the
samples. The mass losses and uptakes were measured in order to respectively evaluate the
materials CO2 adsorption capacity.

3. Results and Discussion
3.1. Characterization of the Hydrotalcite Precursors

Due to their 2-dimensional structure, the X-ray diffraction patterns of LDHs generally
show (00`) reflections that allow an estimation of the basal spacing (d003) and the c-cell
parameter c = 3 × d003, corresponding to the interlayer distance plus the thickness of a
single layer three times in case of rhombohedral symmetry [49]. Thus, (003) and (110)
reflections are respectively related to the size of the unit-cell, c = 3 × d003, and the metal–
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metal interatomic distance in a sheet, a = 2 × d110. Figure 1 displays the X-ray diffraction
patterns of the precursors synthesized in this study. Seven main reflections are observed,
11.2, 22.7, 34.6, 38.7, 45.5, 60.6, and 61.8 ◦2θ, which correspond to distances of 7.9 (d003),
3.9 (d006), 2.6 (d009), 2.3 (d105), 2 (d00,12), 1.52 (d110), and 1.49 (d113) Å, respectively, that,
according to the Bragg’s law, were detected on the sample HTLC-1 that was the only
sample presenting NaCl impurities (not completely removed during the post-preparation
washing procedure). These positions correspond to MgAl LDHs, also called hydrotalcites,
despite the broadness of the peaks related to a lower structural organization (crystallinity)
due to the coprecipitation synthesis process (short synthesis time without heating). This
phenomenon is observed in the samples HTLC-3 and HTLC-5 by the overlapping of the
d110 and d113 planes, which is related to the reactants used.
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Figure 1. X-ray Diffractograms of the hydrotalcite samples. The star symbols correspond to
NaCl impurities.

Then, solid-state 27Al Nuclear Magnetic Resonance (NMR) spectroscopy was per-
formed to probe the local environment and the coordination state of 27Al into the synthe-
sized LDHs. According to Figure 2, a single resonance can be observed around 9.3 ppm that
corresponds to octahedral aluminum (Al VI coordination state). The configuration of alu-
minum in an octahedral environment is thus confirmed by the presence of this resonance,
observed in all the synthesized samples.

Then, Thermogravimetric Analyses (TGA) have been performed by increasing the
temperature under argon flow from 25 to 600 ◦C, as shown in Figure 3, in order to evaluate
the thermal stability of the precursors and the evolution of the hydrotalcite into the final
mixed oxides. All samples present the typical thermogravimetric (left axes) and derivative
thermogravimetric profile (right axis) of hydrotalcites decomposition. The samples exhibit
similar profiles with a first weight loss of about 13 to 16.4 wt% between 25 and 200 ◦C, and
related to the dehydration of the LDHs (loss of the surface water). A second weight loss
of about 25.5 to 31.3 wt% between 200 and 600 ◦C was assigned to the dehydroxylation
of the lamellar materials to form the corresponding mixed oxides. The third weight loss,
observed in the sample HTLC-3 between 390 and 550 ◦C, was related to the departure of
CO2 (derived from C5H7O2

− anions) present in the interlayer space. Compared to similar
materials in the literature [50–53], Table 2 shows that the MgAl LDHs sample here prepared
are as thermally stable as conventional LDHs that are mainly synthesized by methods with
longer synthesis durations.
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Figure 3. Thermogravimetric analyses of the hydrotalcite samples, recorded from 25 to 600 ◦C. The
weight losses are shown in solid lines and their derivatives in dotted lines.

Table 2. TGA analyses and the weight losses of hydrotalcite precursors compared to similar materials
reported in the literature.

Sample
Weight Loss

25–200 ◦C
(%)

Weight Loss
200–600 ◦C

(%)

Total Weight Loss
(%) Comments Ref.

HTCL-1 17.02 26.04 43.06 - This article
HTCL-3 13.03 31.32 44.36 - This article
HTCL-5 16.44 25.46 41.90 - This article
LDH1 12.7 29.3 42.00 Commercial MgAl LDH [50]
LDH2 15.2 26.7 41.90 Commercial MgAl LDH [50]

LDH_amm 15 38.83 53.83 Coprecipitation with ammonia [51]

LDH_70 15 29 44.00 Coprecipitation at low supersaturation,
then pretreatment at 70 ◦C [52]

LDH_140 10 30 40.00 Coprecipitation at low supersaturation,
then pretreatment at 140 ◦C [52]

Mg/Al_LDH 24 23 47.00 Coprecipitation at low supersaturation [53]
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3.2. Characterization of the Hydrotalcite-Derived Mixed Oxides

The mixed oxides obtained after calcination of the hydrotalcite precursor at 450 ◦C for
5 h under air were also characterized.

The structural modifications due to the calcination process were evidenced by XRD,
reported in Figure 4. Despite the presence of NaCl impurities observed in the precursors,
the layered structure of the hydrotalcite precursor clearly collapsed after calcination. An
amorphous phase characterized by broad peaks was observed. The peaks centered at 35.1,
37.2, 43.4, and 63◦ 2θ corresponded respectively to the precursor (35.1◦ 2θ), MgAl2O4 oxide
(37.2◦ 2θ), and MgO oxide (43.4 and 63◦ 2θ). These structural changes are associated to
the dehydroxylation of the materials observed by TGA (between 200 and 600 ◦C) and the
formation of mixed oxides.
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Then, the nitrogen adsorption/desorption isotherms were collected to determine
the specific surface area and the microstructure of the calcined hydrotalcite samples (see
Figure 5). Despite the different Al-sources used for the synthesis of the hydrotalcite
precursors (respectively, acetylacetonate and chloride for HTLC-3 and HTLC-1), all calcined
samples presented isotherms of type IVa and hysteresis loops of type H2b, characteristic
of mesoporous adsorbents, according to the IUPAC classification [54]. Such a type of
hysteresis is characteristic of a complex and interconnected pore structure. The specific
surface areas have been calculated by the BET method. The samples showed high surface
areas, respectively, of 138, 180, and 139 m2·g−1 for the HTCL-1 CAL, HTCL-3 CAL, and
HTCL-5 CAL, with medium pore volumes in the 0.20–0.22 mmol·g−1 range in all the
calcined samples. These results are in agreement with the ones reported in the literature
for similar mixed oxides [55–57]. The samples prepared with the precursor containing the
acetylacetonate anion lead to a material with a slightly higher surface area. On the other
hand, the amount of OH− added had little effect on the surface area of the calcined samples,
despite the differences observed for non-calcined samples in terms of crystallinity.
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3.2.1. SO2 Adsorption Calorimetry

Adsorption calorimetry is the most adapted technique for determining the concentra-
tion (from the adsorption volumetric isotherms), strength, and strength distribution (using
the differential heat of adsorption as a function of coverage) of the basic sites [58] involved
in CO2 adsorption. Then, the hydrotalcite-derived mixed oxides surface basicity has been
probed by adsorption calorimetry of SO2.

Figure 6 exhibits the SO2 adsorption isotherms of the calcined hydrotalcite samples
HTLC-1 CAL, HTLC-3 CAL, and HTLC-5 CAL. Some differences can be observed between
the samples: HTLC-5 CAL has a higher SO2 uptake (up to 578 µmol·g−1 at 0.5 Torr),
which is associated to a higher basicity than the other samples. After a fast uptake at low
equilibrium pressure (p < 0.1 Torr) due to the adsorption on the strongest sites, the SO2
uptake reaches a plateau around 550 µmol·g−1, even increasing the equilibrium pressure.
Despite the difference in terms of specific surface area of the samples HTLC-1 CAL and
HTLC-3 CAL (138.3 and 174.8 m2.g−1, respectively), their SO2 adsorption isotherms are
quite similar.
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In Figure 7, the SO2 differential heat curve shows a pseudo plateau placed at around
140 kJ·mol−1, indicating the homogeneity in the strength of the basic sites present in the
mixed oxide. This is not a common result for such kinds of samples, which generally
present a more heterogeneous strength site distribution [59,60]. For more insights: at low
coverage, the curves present a few points characterized by a relatively high adsorption
heat (between 150 and 180 kJ·mol−1, which can be connected to the presence of Lewis
adsorption sites (very strong sites)). At a coverage higher than 50 µmol·g−1, a plateau (that
ends up, respectively, around 350, 400, and 450 µmol·g−1 for HTLC-3 CAL, HTLC-1, and
HTLC-5) can be ascribed to SO2 adsorption on relatively strong sites and characterized by
an almost constant heat. The sites represented by this plateau correspond to homogeneous
BrØnsted sites (most probably –OH groups). After the plateau, a region characterized by
steep decreasing in the differential heat curve can be observed and assigned to the presence
of a small number of heterogeneous sites (probably of Lewis type) [60]. The last part of the
curve corresponds to the reversible adsorption domain (physisorption of the SO2 probe) or
to very weak Lewis acid sites.
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More in detail, the basic sites can be divided into four groups according to their strength:
very strong (above 150 kJ·mol−1), strong (in the range 100–150 kJ·mol−1), medium (in the range
60–100kJ·mol−1), and weak (below 60 kJ·mol−1). The distribution is reported in Figure 8.
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Some differences can be observed among the samples. The sample HTLC-5 CAL, for
example, presents the highest SO2 adsorption and the highest ratio of strong basic sites.
As a general observation, the three samples present a low proportion of very strong sites
(Q > 150 kJ·mol−1). This is a positive feature in view of the application of these materials
as CO2 adsorbents, because the strong site can lead to the formation of surface carbonates
that react in an irreversible way with CO2.

The amount of SO2 adsorbed is not directly related to the specific surface area of the
materials: the sample HTLC-3 CAL that exhibits the highest surface area (179.9 m2·g−1)
presents an intermediate total SO2 adsorption value of 539.2 µmol·g−1 at 0.5 torr. The
highest SO2 sorption value is observed in the sample HTLC-5 CAL that exhibits a lower
surface area (139.4 m2·g−1).

3.2.2. CO2 Adsorption Tests

Finally, a screening of the adsorption capacity of CO2 has been performed on the calcined
samples. As an example, the CO2 uptake curve (performed at 200 ◦C) and the pretreatment
and adsorption temperature program are shown in Figure 9 for the sample HTLC-3 CAL. The
results are shown in Figure 10, which shows that the studied samples exhibit CO2 adsorption
capacities between 0.38 and 0.53 mmol·g−1. The reproducibility of the experiments was
verified and the error on the measurements estimated at ±0.002 mmol·g−1.
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Table 3 compares these adsorption values with similar materials found in the literature,
and proves that the samples here synthesized in mild conditions are as efficient (under
similar analyses conditions) as other hydrotalcites synthesized by other methods for the
adsorption of CO2. They present adsorption capacities around 0.5 mmol·g−1, without the
need of additional treatments or structural modifications.

Table 3. Comparisons of the BET surface areas and CO2 adsorption capacities between the calcined
hydrotalcite samples and similar materials reported in the literature.

Sample Mg/Al
Molar Ratio

Tpretreatment
(◦C)

Tadsorption
(◦C)

SSA
(m2·g−1)

CO2 Adsorption Capacity
(mmol·g−1) Ref.

HTLC-1 CAL 3 300 200 138 0.386 This work
HTLC-3 CAL 3 300 200 180 0.527 This work
HTLC-5 CAL 3 300 200 139 0.417 This work
HTLC_Low 2 500 450 63 0.270 [61]
HTLC_High 2 500 450 154 0.260 [61]

LDO200 3 400 200 167 0.486 [62]
Htlc-200 3 200 200 66 0.604 [63]
Htlc-400 3 400 200 184 0.896 [63]

Htlc 3 - 300 74 0.5 [64]

Sample HTLC-3 CAL, which exhibits a large amount of weak basic sites (mainly below
60 kJ·mol−1) and the highest specific surface area (179.9 m2·g−1), shows the highest CO2
adsorption capacity (0.527 mmol·g−1).

The interaction of CO2 with the basic sites of the material depends on their strength.
Typically, low-energy basic sites (Q < 60 kJ·mol−1), measured by SO2 adsorption calorimetry,
correspond to weak physisorption sites and are related to reversible sorption. On the other
hand, high-energy basic sites (Q > 150 kJ·mol−1) are related to strong chemisorption. Thus,
low-energy sites remain accessible after thermal regeneration, which is important for the
reusability of the materials. High-energy sites cannot be regenerated and are irreversibly
poisoned by acid/amphoteric probes, such as CO2. In the present sample series, a very
good linear correlation between the concentration of low- (Q < 60 kJ·mol−1) and very high-
(Q > 150 kJ·mol−1) energy sites and the CO2 adsorption capacity can be noticed. This
observation is illustrated in Figure 11: the higher the concentration of these sites, the higher
the sorption capacity of the material. This demonstrates that the sorption capacity of these
hydrotalcites is strongly influenced by the type of sites. Even if the correlation with the amount
of weak and very strong adsorption sites is linear, very strong sites can irreversibly adsorb
CO2. Then, the reusability of the sorbents might be maximized when the sample presents a
high number of weak adsorption sites and a limited amount of strong energy sites. This point
will need further investigation prior to the application of such materials in real applications.
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4. Conclusions

Layered Double Hydroxides, especially hydrotalcites, are very interesting adsorbents for
carbon dioxide thanks to their lamellar structure and strong basicity. In this work, hydrotalcites
with a Mg/Al molar ratio of 3 have been successfully synthesized by coprecipitation in mild
conditions and characterized by complementary physico-chemical techniques. The influence
of the pH and of the Al source has been investigated. Their thermal stability has been evaluated
by DTA/TGA, showing a major structural change around 325 ◦C, due to the formation of
mixed oxides. These oxides show a high specific surface area (up to 180 m2·g−1 for the sample
prepared starting from MgCl2.6H20 and Al(C5H7O2)3), as well as a surface basicity (high
quantity of medium and weak basic sites) adapted to the reversible adsorption of CO2. The
calcined hydrotalcites exhibit CO2 adsorption capacities of around 0.5 mmol·g−1, a value
similar to those reported in the literature for samples generally synthesized by conventional
coprecipitation methods. The use of the Al(C5H7O2)3 gave rise to the sample with the highest
specific surface area and containing the optimum quantity of the basic site of adapted energy
(measured by adsorption microcalorimetry) for CO2 adsorption.

On the other hand, the modification of the pH of condensation during synthesis did not
impact the main microstructural properties of the samples that presented the same specific
surface area and pore volume for the synthesis performed at pH = 10 and 11. Only the
surface basicity was modified; the calcined sample derived from the hydrotalcite prepared
at pH 10 presented a slightly higher surface basicity and, in particular, a prominence of
the basic site in the 100–150 kJ·mol−1 range, and associated with a higher CO2 adsorption
capacity, when compared to the sample prepared at pH = 11. This result can be explained by
the fact that at pH = 11, a small portion of the aluminum precursor could form Al(OH)4

−

and not be integrated in the condensation reaction, this resulting in the enrichment of
the sample in Mg, known for its basicity. This hypothesis could not be proved by the
detection of Al2O3 in the calcined sample (HTCL-5 CAL), but probably the very low
quantity of alumina and its presence in an amorphous or highly dispersed form can prevent
its detection by XRD analysis.

This work demonstrates that the coprecipitation method in mild conditions leads to the
formation of hydrotalcites with similar (sometimes higher) performances than conventional
LDHs prepared by time- and energy-consuming methods. The linear correlations between
the surface basicity (concentration of low- and high-energy sites) of these lamellar materials
with the adsorption capacity shows their possibility to be reused several times in the same
application. The possibility to tune the Mg/Al molar ratio is a promising feature to obtain
a wide range of LDHs (with tuned surface basicity) that might reveal to be more efficient
towards the adsorption of CO2 in the future.
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