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Abstract: To study the flow and strength characteristics of loess-based backfill materials, orthogonal
tests were used to design a cemented backfill material combining loess, high-water content materials,
cement, and fly ash. By using the range, analysis of variance, and multi-variate regression analysis,
influences of four key factors on the initial setting time, diffusivity, compressive strength, and shear
strength of the backfill material were investigated. These four factors included the mass concentration
of loess water (A), the content of high-water content materials (B), cement content (C), and content
of fly ash (D). The results showed that the initial setting time, diffusivity, compressive strength,
and shear strength of the backfill material were 13~33 min, 400~580 mm, 0.917–3.605 MPa, and
0.360–0.722 MPa, respectively, all distributed in wide ranges. For the initial setting time, the four
factors were listed in descending order as A > D > B > C according to their influences; for diffusivity,
the four factors were listed as A > B > C > D; for the compressive strength, the four factors were
ranked as A > C > D > B; for the shear strength, the four factors were ranked such that A > C > D > B.
With regard to the comprehensive index, the four factors were such that A > B > D > C. That is, the
factors were listed in descending order as the mass concentration of loess water, cement content,
the content of fly ash, and content of high-water content materials according to their significance in
influencing characteristics of the loess-based backfill material. Comprehensive analysis indicated that
the fluidity of the material was mainly influenced by the mass concentration of loess water, and the
two were negatively correlated. The hydro-consolidation effect of materials with high-water contents
accelerated material solidification. The strength of the backfill material was mainly influenced by the
cement content while only slightly affected by contents of other materials. In this way, a prediction
model for characteristic parameters, namely, fluidity and strength, of the loess-based backfill material
under the action of various factors was established.

Keywords: loess-based; backfill; initial coagulation time; diffusion; compressive strength; shear
strength; analysis model

1. Introduction

Loess, as an important geological material, plays a key role in filling technology. Filling
technology involves waste or recyclable materials generated in the process of mining or
other underground mining, through reasonable treatment and arrangement, being a backfill
to the goaf or pre-mined areas [1,2]. This cannot only solve the geological environment
problems remaining as legacy issues after mining, but can also improve the recovery rate
of resources to the greatest extent and promote sustainable development [3].

Loess has a series of unique properties, making it an ideal choice for filling materials.
Loess is a natural soil composed of fine soil particles, the main components of which are
clay minerals and non-clay minerals [4,5]. These components make loess demonstrate
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good cohesiveness, fluidity, and durability, which is conducive to achieving stable volume
growth and uniform distribution in the filling process. In addition, loess also has low
permeability and better water stability, which helps to reduce the waste of water resources
and the risk of occurrence of geological disasters [6–9].

With the continuous development of mining activities, filling technology will play a
more important role in the future. In mining activities, with the deepening of the mine, the
goaf and waste accumulation become more serious, affecting the environment [10–12]. By
using loess as filling material, not only can the gob be filled, but this can provide better
geological stability and support, and reduce the risk of surface subsidence and geological
disasters. In addition, as an environmentally friendly filling material, loess will help reduce
the damage to the natural ecological environment in the mining process and promote
the development of the mining industry in the direction of green and environmental
protection [13–15].

The present research aims to explore the application potential of loess as a filling
material in mining, analyze the properties and characteristics of loess material in depth,
and forecast its future application in mining activities. By means of systematic research and
discussion, we attempt to provide valuable reference and theoretical support for promoting
the development and optimization of mine filling technology, and encouraging the mining
industry toward a more sustainable and environmental protection direction [16–20].

2. Orthogonal Test Schemes and Test Results
2.1. Experimental Raw Material Analysis

By adjusting all factors and levels, orthogonal experimental design can obtain more
comprehensive results in fewer experiments and is used to determine the best factor
ratio [21].

Firstly, an analysis was conducted on four types of experimental raw materials, namely
loess, high-water-content material, cement, and fly ash. The loess was natural loess collected
in the Loess Plateau area of Shaanxi Province. The high-water-content material was
developed and produced by China University of Mining and Technology. The cement was
42.5 ordinary Portland cement (the C-S-H content was approximately 15% to 20%) and
the fly ash was second-grade fly ash produced by the power plant (the CaO content was
approximately 8% to 12%.).

The high-water-content material was composed of two materials; high-water-content
material A was composed of sulfoaluminate cement clinker, a small amount of ultra-
retarding agent, and suspension agent; high-water-content material B was composed of
lime, gypsum, a suspension agent, and a composite rapid setting and early strength agent.
The two materials do not solidify through pulping alone, and rapidly react after mixing. In
the experiment, high-water-content materials A and B each accounted for half of the added
amounts of such materials [22,23].

The original images of the experimental materials, particle size analysis, and electron
microscope scanning are shown in Figure 1.

Particle size analysis: loess was selected as the main filling material, and high-water-
content material was added as a water reducer, with cement and fly ash used as the
binder. The particle size of the loess material mainly ranged from 10 µm to 500 µm, with
a higher proportion of particles in the 10 µm to 100 µm range. The high-water-content
material was divided into two types, A and B, with particle sizes mainly distributed from
1 µm to 100 µm. The particle size of the cement material mainly ranged from 1 µm to
100 µm, while the particle size of the fly ash mainly ranged from 1 µm to 100 µm. Due to
the varying composition and moisture content of different minerals in the experimental
materials, the particle density might be affected. If mass percentages are used, the particle
size distribution could be influenced, leading to misleading interpretations. Therefore, in
Figure 1, the particle size distribution is presented in volume percentages.
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Figure 1. From top to bottom, the image shows the original experimental material, the particle size 
analysis results, and 100× and 500× magnification SEM micrographs. In a particle size analysis dia-
gram, different colored lines represent multiple measurements of the same material. 
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Cement and fly ash can be used as binders to increase the strength and hardness of the 
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Figure 1. From top to bottom, the image shows the original experimental material, the particle size
analysis results, and 100× and 500× magnification SEM micrographs. In a particle size analysis
diagram, different colored lines represent multiple measurements of the same material.

Electron microscopy analysis: by using a scanning electron microscope (SEM) to
magnify the experimental material 2000 times, the three-dimensional morphology and
topological structure of the sample surface were obtained, and the composition of the
material was analyzed.

(1) Loess: the microstructure of the loess mainly presents uniformly sized block shapes,
and the clay minerals exhibit a distinct layered structure, imparting strong adsorption
performance and plasticity to the soil while the loess has a high specific surface area and
porosity, and these pores play an important role in the transportation of water and gases.

(2) High-water-content material: the microstructure of high-water-content material is
irregular particles with uneven particle size and rough and irregular surfaces. The rough
surface increases its surface area, which is conducive to the adhesion of gels and other
substances generated by hydration on its surface, thereby making the bond between the
mixture particles closer.

(3) Cement: the microstructure of cement presents irregular block shapes, with small
particle sizes and a rough surface. The tiny particles can rapidly enter the pores between
larger particles.

(4) Fly ash: the microstructure of fly ash is relatively regular, presenting spherical
particles with high density and low surface area. These spherical particles are conducive to
their own transportation and flow, and are more likely to pass through the pores between
larger particles, thereby increasing the opportunity to react with the hydration products
of cement.

Based on the analysis of the experimental materials above, yellow soil, as the main
filling material, was combined with some materials to improve the performance of yellow
soil. High-water-content material can act as a water reducer, reducing the water content
in the filling material, thereby improving the strength and durability of the filling body.
Cement and fly ash can be used as binders to increase the strength and hardness of the
filling body (all experimental levels were designed in proportion to mass).

2.2. Experimental Scheme Design

According to previous experience in preparing paste backfill materials, three materials,
namely the high-water-content material, cement, and fly ash, were used as additives to
prepare the cemented backfill material together with loess water. Through several simple
proportioning tests, the prepared loess-based cemented backfill material was found to be
both well consolidated and economically efficient when the mass concentration of loess
water was 35%, 40%, 45%, and 50%, and mass fractions of the high-water-content material,
cement, and fly ash were 2.5~5.0%, 5.8~9.5%, and 4.1~7.3% of the total, respectively. In
the following articles, the mass concentration of yellow mud, high-water-content material,
cement content, and fly ash content are all replaced by A, B, C, and D.

Combined with the field backfilling practice in coal mines and for the convenience
of description and calculations, the total mass of loess water was fixed at 400 (percentage)
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in the design, and four test levels for four factors were determined. On this basis, the
orthogonal test table and scheme of four factors at four levels were designed, please refer
to Table 1 for details.

Table 1. Orthogonal test factor table (designed by mass scale).

Number of Level Groups A. Loess Mass Concentration B. High-Water Content C. Cement Content D. Fly Ash Content

1 140:260 (concentration 35.00%) 12 28 20
2 160:240 (concentration 40.00%) 16 34 25
3 180:220 (concentration 45.00%) 20 40 30
4 200:200 (concentration 50.00%) 24 46 35

The fluidity of the material prepared at a room temperature of 25 ◦C was measured.
The samples were placed in a curing box at 25 ◦C and a relative humidity of 90% to be cured
for 28 d. Thereafter, the uniaxial compressive strength and uniaxial shear strength of each
sample were measured. The test results are listed in the table below. Equal proportional
weights of 0.25 were assigned to four indices, and their sum was the summative quantitative
index. It is worth noting that, differently from cement-based backfill materials, loess-based
backfill material has such a low strength that its initial setting time cannot be tested using a
Vicat apparatus. Therefore, a test method for high-water-content materials was used: the
prepared slurry was allowed to stand in a beaker for a period of time and then the beaker
was inclined to 45◦; if the slurry was consolidated and did not flow, it was regarded as
initially set and the corresponding time was noted as the initial setting time.

Table 2 shows that the initial setting time, diffusivity, compressive strength, and shear
strength of the loess-based backfill material are, 13~33 min, 0.92~3.61 MPa, 0.92~3.61 MPa,
and 0.36~0.72 MPa (all wide ranges), respectively. After the range analysis of the experi-
mental data is detailed in Table 3, by comparing the extreme values R of the four factors,
the following conclusions can be drawn. For the initial setting time, the four factors were
listed in descending order as D > A > B > C according to their influences; for the diffusivity,
the four factors were ranked such that A > D > B > C; for the compressive strength, the four
factors were ranked such that A > D > C > B; for the shear strength, the four factors were
ranked such that C > D > B > A. As for the comprehensive index, the four factors were
ranked such that A > B > D > C. That is to say, the mass concentration of loess water, the
content of high-water-content materials, the content of fly ash, and cement content were
listed in descending order according to their significance in their influencing characteristics
of the loess-based backfill material.

Table 2. The orthogonal test ratio design and experimental results.

Number of
Experimental

Groups

Influencing Factors Test Results

A B C D Initial Coagulation
Time/min

Diffusion
/mm

Compressive
Strength/MPa

Shear
Strength/MPa

Overall
Rating

1 0.35 12 28 20 28.00 58.00 2.13 0.41 22.135
2 0.35 16 34 25 28.00 56.70 1.39 0.43 21.630
3 0.35 20 40 30 16.00 56.30 1.93 0.40 18.658
4 0.35 24 46 35 17.00 47.80 1.85 0.48 16.783
5 0.40 12 34 30 13.00 51.00 1.29 0.51 16.450
6 0.40 16 28 35 23.00 53.70 1.07 0.41 19.545
7 0.40 20 46 20 17.00 49.30 1.71 0.62 17.158
8 0.40 24 40 25 17.00 47.70 1.25 0.46 16.603
9 0.45 12 40 35 33.00 45.70 1.73 0.50 20.233

10 0.45 16 46 30 18.00 48.70 2.42 0.50 17.405
11 0.45 20 28 25 20.00 46.70 0.92 0.36 16.995
12 0.45 24 34 20 20.00 43.30 2.40 0.47 16.543
13 0.50 12 46 25 15.00 41.20 2.65 0.72 14.893
14 0.50 16 40 20 17.00 42.30 3.03 0.66 15.748
15 0.50 20 34 35 18.00 40.20 3.61 0.64 15.613
16 0.50 24 28 30 13.00 40.70 1.62 0.59 13.978
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Table 3. Range analysis of experimental data.

Factor
Initial Coagulation Time/min Diffusion/mm

A B C D A B C D

k1 22.250 22.2500 21 20.5 54.70 48.976 49.77 48.23
k2 17.500 21.5000 19.75 20 50.42 50.35 47.80 48.08
k3 22.750 17.7500 20.75 15 46.10 48.13 48.00 49.18
k4 15.750 16.7500 16.75 22.75 41.10 44.86 46.75 46.85
R 7 5.5 4.25 7.75 13.60 5.48 3.02 2.33

Factor
Compressive Strength/MPa Shear Strength/MPa Overall Rating

A B C D A B C D A B C D

k1 1.8235 1.9492 1.4332 2.3140 0.4303 0.5355 0.4405 0.5385 19.801 18.428 18.161 17.896
k2 1.330 1.980 2.1710 1.5532 0.5005 0.4980 0.5142 0.4938 17.438 18.582 17.559 17.532
k3 1.8660 2.0390 1.9855 1.8142 0.4572 0.5048 0.5053 0.4990 17.793 17.106 17.810 16.623
k4 2.7260 1.7773 2.1557 2.0640 0.6515 0.5013 0.5795 0.5082 15.057 15.972 16.559 18.043
R 1.3960 0.2617 0.7378 0.7607 0.2212 0.0375 0.139 0.0448 5.554 2.820 2.037 2.721

2.3. Experimental Procedure

The main testing tools include: a 1000-mL beaker, a thermometer, a hand-held electric
mixer, a 70.7 mm × 70.7 mm × 70.7 mm standard three-gang mold, an electronic scale (0.1-g
gradations), a YH-60B curing box, and a MTS electro-hydraulic servo-motor-driven machine.

The specific testing steps are as follows:

(1) Brush the inner surface of the three-gang mold with lubricating oil before the experi-
ment to ensure that the test piece is relatively intact after demolding;

(2) Weigh the corresponding mass of raw materials according to Table 2, and mix them
with water in the mixing bucket;

(3) Pour out some mixed materials and perform initial setting time testing in the beaker.
When the beaker is tilted at 45◦, there is no obvious flow trace of the material in the
cup, which is considered the initial setting of the material (Figure 2a);

(4) Conduct the flow spread test on a smooth glass plate. Apply butter to the bottom of
the flow spread cylinder and place it on the glass plate. Pour the mixed filling material
into the cylinder to two-thirds of the total height, lift the cylinder and measure the
material spread using a tape measure (Figure 2b);

(5) After the material is mixed, it is poured into the standard mold, appropriately vibrated
to eliminate air bubbles in the slurry, and stands for three days. Using an air gun to
demold the test piece, the demolded specimen is placed in a constant temperature
and humidity curing box for curing (Figure 2c,d);

(6) After curing, the specimen is placed on the MTS electro-hydraulic servo-motor ma-
chine for the direct shear and uniaxial compressive tests (Figure 2f,g).
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3. Significance Analysis of Fluidity
3.1. Factors Influencing the Initial Setting Time

According to the orthogonal test results, the influences of multiple factors on the
initial setting time are illustrated in Figure 3. Various factors are shown to have different
influences on the initial setting time. According to the analysis of the test results, the
content of fly ash is listed in the error column to carry out significance tests at each level (at
significance levels α of 0.01, 0.05, 0.10, and 0.25). The analysis of variance is summarized in
Table 4.
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Figure 3. Relationships of the initial setting time with multiple factors—A is the mass concentration
of yellow mud; B is for high-water content; C is the cement content; D is fly ash content.

Table 4. Analysis of variance of initial setting time data.

Source of
Variation

Sum of Squared
Deviations

Degree of
Freedom Variance F-Value Fα

Significance
Level

A 144.688 3 48.229

F0.01(3,15) = 5.417
F0.05(3,15) = 3.287
F0.10(3,15) = 2.490
F0.25(3,15) = 1.520

---
B 88.688 3 29.563 ---
C 45.688 3 15.229 ---
D 128.188 3 42.729 ---

Error e 78.688 3 26.229
Correct errors e 485.938 15 32.396

Sum 485.938

As the initial setting time of the experimental materials is sensitive to various factors,
the measurement data in Figure 3 appear to be scattered. To mitigate this variability and
improve the accuracy of the results, we conducted multiple rounds of testing for the initial
setting time. The data presented represents the average of three separate tests.

An analysis of the results of variance reveals that A and D have some influences, while
B and C exert insignificant influences on the initial setting time. The results indicate that
the contents of loess and fly ash are the main factors that affect the initial setting rate, while
influences of the contents of high-water-content materials and the content of cement are
insignificant. In the analysis of variance of the initial setting time, because the variance
value of the four factors is too small, i.e., less than twice the error, it is treated as an error
term, and the F value is not calculated.

3.2. Factors Influencing the Diffusivity

The influence of multiple factors on diffusivity was estimated according to the orthog-
onal test results, as displayed in Figure 4. As shown in the figure, various factors exert
different influences on the diffusivity. In accordance with the analysis of the test results,
the cement content was listed in the error column to conduct significance tests at various
levels. Table 5 summarizes the analysis of variance.
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Table 5. Analysis of variance of diffusivity.

Source of
Variation

Sum of Squared
Deviations

Degree of
Freedom Variance F-Value Fα

Significance
Level

A 93.847 3 31.282 3.324
F0.01(3,3) = 29.457
F0.05(3,3) = 9.277
F0.10(3,3) = 5.391
F0.25(3,3) = 2.356

o
B 205.445 3 68.482 7.278 *
C 96.573 3 32.191 3.421 o
D 82.922 3 27.641 2.937 o

Error e 28.229 3 9.410
Sum 507.017

* in the table indicates that this factor has some effect.

An analysis of the results of variance suggests that A exerts extremely significant
influences, B exerts highly significant influences, while C has certain influences, and D
does not exert obvious influences on diffusivity. According to the F value (FD > FB), the
mass concentration of loess water exerts more remarkable influences on the content of
high-water-content materials when changed at the designed levels. The result indicates
that the mass concentration of loess water and the content of high-water-content materials
are the main factors influencing diffusivity.

4. Significance Analysis of Strength
4.1. Factors Influencing the Compressive Strength

The MTS electro-hydraulic servo-motor machine was used to perform compressive
testing on specimens. Two specimens were taken from each group, and the curing period
was 28 days. The test procedure adopted displacement control, and the stress loading
rate was set to 0.5 mm/min. The MTS electro-hydraulic servo system measures the real-
time changes in stress and strain by connecting to an external computer and utilizing
corresponding computer software. The test procedure is shown in Figure 5.
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The data collected from the experiment are processed using Equations (1) and (2).

σ =
F
l2 (1)

ε =
∆l
l

(2)

σ—Surface stress on the specimen, MPa.

l—The side length of the standard specimen is 70.7 mm.

∆l—The compression amount of the specimen during the testing process is
given in millimeters (mm).

ε—The strain in the specimen.

The data collected from the experiment are plotted as a stress-strain curve (Figure 6).
Based on the orthogonal test results, the influences of multiple factors on the uniaxial

compressive strength are shown in Figure 7; various factors differ in terms of their influ-
ences on the compressive strength. According to the analysis of the test results, significance
tests were conducted by listing the cement content in the error column. The analysis of
variance is summarized in Table 6.
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Table 6. Analysis of variance of compressive strength.

Source of
Variation

Sum of Squared
Deviations

Degree of
Freedom Variance F-Value Fα

Significance
Level

A 4.036 3 1.3452 3.932

F0.01(3,12) = 5.953
F0.05(3,12) = 3.490
F0.10(3,12) = 2.606
F0.25(3,12) = 1.561

**
B 0.152 3 0.0505 ---
C 1.434 3 0.4778 ---
D 1.281 3 0.4270 ---

Error e 1.240 3 0.4133
Correct errors e 4.106 12 0.3422

Sum 8.141

** in the table indicates that the influence of this factor is more significant.

An analysis of the results of variance show that A exerts highly significant influences
on the compressive strength. Factors C and D exert weaker influences, and D does not
exert obvious influences. The results indicate that the gravimetric moisture content of the
loess water is the main factor affecting the uniaxial compressive strength.

4.2. Factors Influencing the Shear Strength

Influences of multiple factors on the uniaxial shear strength were obtained according
to the orthogonal test results (Figure 8). Figure 8 shows that the influences of various factors
on the shear strength differ. According to the analysis of the test results, the amount of
high-water-content materials was listed in the error column when conducting significance
tests at various levels. Table 7 summarizes the analysis of variance.
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Figure 8. Relationships of the shear strength with multiple factors—A is the mass concentration of
yellow mud; B is the high-water content; C is the cement content; D is the fly ash content.

Table 7. Analysis of variance of shear strength.

Source of
Variation

Sum of Squared
Deviations

Degree of
Freedom Variance F-Value Fα

Significance
Level

A 0.1170 3 0.0390 30.974

F0.01(3,9) = 6.992
F0.05(3,9) = 3.863
F0.10(3,9) = 2.813
F0.25(3,9) = 1.632

***
C 0.0040 3 0.0013 ---
D 0.0388 3 0.0129 10.271 ***

0.0048 3 0.0016 ---
Error e 0.0025 3 0.0008

Correct errors e 0.0113 9 0.0013
Sum 0.1670

*** in the table indicates that the influence of this factor is very significan.
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Analysis results of variance indicate that A and C exert extremely significant influences.
Factors B and D do not exert significant influences on the shear strength within the given
ranges. This shows that the loess content and the cement content are the main factors
affecting the shear strength.

5. Analytical Model for Characteristic Parameters of Fluidity and Strength
5.1. Changes in Characteristic Parameters under Influences of Each Single Factor

By conducting the aforementioned tests at different proportions, the influences of
various factors on the fluidity and strength of the backfill material were obtained (Figure 9).
It can be seen from the figure that the initial setting time decreased first, increased, and then
decreased in A and C, gradually decreasing as B increased, while reducing, then increasing
with the increase in D. The diffusivity gradually reduces when A and C increase, first
increasing and then decreasing with the increases in B and D. The compressive strength
decreased first and then increased later with increases in A and D; it first decreases, then
increases and then decreases as B increases, while first increases, then decreases, and then
increase as C increases. The shear strength tends to increase at first, then decreases, and then
increases as A increases, gradually reducing with the increase in B, gradually increasing
with the increase in C, while decreasing, then increasing as D increases.
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Figure 9. Analysis of material fluidity under the influences of different factors—(A–D) are the effect
curves of yellow mud mass concentration, high-water content, cement content, and fly ash content
on initial setting time and diffusion degree, respectively.
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5.2. Analytical Model of Characteristic Parameters

The different influencing factors seen in Figures 9 and 10 were fitted with parametric
curves pertaining to similar material. In this way, the relationships of the mass concentra-
tions of loess water, content of high-water content materials, cement content, and content
of fly ash with the initial setting time, diffusivity, compressive strength, and shear strength
were determined, as shown in Table 8.

As presented in Table 8, PA, PB, PC, and PD represent the mass concentration of yellow
mud, high-water-content material, cement content, and fly ash content, respectively; t
represents the initial setting time, K is the degree of diffusion, σD denotes the compressive
strength, and σC is the shear strength. R2 represents the goodness of fit of the fitted model
to the data. Figure 11 shows the curve of the fitting formula for the compressive strength of
the material under the influence of four factors.

The table shows that the initial setting time has a triangular-function relationship
with factor A, and has an exponential relationship with factors B and C, while it is in a
cubic polynomial relationship with D. The diffusivity is exponentially related to A, while
it has a cubic polynomial relationship with B, C, and D. The compressive strength has
cubic polynomial relationships with factors A, B, C, and D. The shear strength has cubic
polynomial relationships with factors A, B, C, and D.
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Figure 10. Material strength analysis under the influences of different factors—(A–D) are the influence
curves of yellow mud mass concentration, high-water content, cement content, and fly ash content
on compressive strength and shear strength, respectively.
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Table 8. Fitting relationship.

Factor Index Fitted Relationship General Formula
Degree

of Fit R2

Yellow mud
quality

Concentration
(PA)

Initial
coagulation time t1 = 19.56 + 3.5 sin(20πPA − 0.5π) t1 = t0 + A sin

(
π PA−xc

ω

)
0.92

Diffusion K1 = 24.477PA
−0.775 K1 = aPA

b 0.98
Compressive strength σD1 = −940.67PA

3 + 1334.7PA
2 − 613.46PA + 93.36 σD1 = aPA

3 + bPA
2 + cPA + d 0.99

Tensile strength σC1 = 468PA
3 − 584.3PA

2 + 241.9PA − 32.724 σC1 = aPA
3 + bPA

2 + cPA + d 0.99

High-water
content (PB)

Initial
coagulation time t2 = 84.949PB

−0.511 t2 = aPB
b 0.96

Diffusion k2 = 0.0067PB
3 − 0.434PB

2 + 8.536PB − 2.5 k2 = aPB
3 + bPB

2 + cPB + d 0.99
Compressive strength σD2 = −0.0026PB

3 + 0.138PB
2 − 2.381PB + 15.121 σD2 = aPB

3 + bPB
2 + cPB + d 0.99

Tensile strength σC2 = 1.96PB
3 − 0.11PB

2 + 0.186PB − 0.488 σC2 = aPB
3 + bPB

2 + cPB + d 0.99

Cement content
(PC)

Initial
coagulation time t3 = −0.0056PC

3 + 0.602PC
2 − 21.345PC + 269.61 t3 = aPC

3 + bPC
2 + cPC + d 0.99

Diffusion k3 = −0.0028PC
3 + 0.316PC

2 − 11.802PC + 194.262 k3 = aPC
3 + bPC

2 + cPC + d 0.99
Compressive strength σD3 = 9.871PC

3 − 0.114PC
2 + 4.306PC − 51.81 σD3 = aPC

3 + bPC
2 + cPC + d 0.99

Tensile strength σC3 = 1.281PC
3 − 0.014PC

2 + 0.523PC − 5.875 σC3 = aPC
3 + bPC

2 + cPC + d 0.99

Fly ash content
(PD)

Initial
coagulation time t4 = 0.023PD

3 − 1.815PD
2 + 46.5PD − 367.5 t4 = aPD

3 + bPD
2 + cPD + d 0.99

Diffusion k4 = −0.0062PD
3 + 0.493PD

2 − 12.69PD + 154.825 k4 = aPD
3 + bPD

2 + cPD + d 0.99
Compressive strength σD4 = −0.0014PD

3 + 0.124PD
2 − 3.62PD + 36.23 σD4 = aPD

3 + bPD
2 + cPD + d 0.99

Tensile strength σC4 = −6.13PD
3 + 0.0056PD

2 − 0.167PD + 2.14 σC4 = aPD
3 + bPD

2 + cPD + d 0.99
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Figure 11. For the compression fitting curves of different factors—(A–D) are the fitting formula curves
of yellow mud mass concentration, high-water content, cement content, and fly ash content, respectively.
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6. Conclusions

(i). By conducting orthogonal tests, taking the mass concentration of loess water, the
content of high-water-content materials, the cement content, and the content of fly
ash as four factors, for each of which four levels were set, sixteen groups of mix
designs were tested. After testing the fluidity and strength characteristics, the analysis
revealed that the initial setting time, diffusivity, compressive strength, and shear
strength of the loess material were distributed in ranges of 13~33 min, 400~580 mm,
0.917~3.605 MPa, and 0.360~0.722 MPa, respectively;

(ii). For the initial setting time, the four factors were listed in descending order as A
> D > B > C, wherein all four factors showed lower significance. The four factors
were ranked such that A > B > C > D according to their influences on the diffusivity,
indicative of the mass concentration of loess water being the main factor influencing
the diffusivity. With regard to the compressive strength, the four factors were ranked
such that A > C > D > B, implying that the mass concentration of loess water and the
cement content were the main factors influencing the uniaxial compressive strength.
The four factors were ranked such that A > C > D > B according to their influences on
the shear strength, which means that the mass concentration of loess water and the
content of cement were the main factors influencing the shear strength;

(iii). Mathematical relationships of factors A, B, C, and D with the fluidity and strength
indices were fitted.
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