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Abstract: Wood-based composites are increasingly used in the industry not only because of the
shortage of solid wood, but above all because of the better properties, such as high strength and
aesthetic appearance compared to wood. Medium-density fiberboard (MDF) is a wood-based com-
posite that is widely used in the furniture industry. In this work, an attempt was made to predict the
surface roughness of the machined MDF in the milling process based on acceleration signals from
an industrial piezoelectric sensor installed in the cutting zone. The surface roughness parameter
Sq was adopted for the evaluation and measurement of surface roughness. The surface roughness
prediction was performed using a radial basis function (RBF) artificial neural network (ANN) and a
Takagi–Sugeno—-Kang (TSK) fuzzy model with subtractive clustering. In the research, as inputs to
the ANNs and fuzzy model, the kinematic parameters of the cutting process and selected measures of
the acceleration signal were adopted. At the output, the values of the surface roughness parameter Sq
were obtained. The results of the experiments show that the surface roughness is influenced not only
by the kinematic parameters of the cutting, but also by the vibrations generated during the milling
process. Therefore, by combining information on the cutting kinematics parameters and vibration, the
accuracy of the surface roughness prediction in the milling process of MDF can be improved. The use
of TSK fuzzy modelling based on the subtractive clustering method for integrating the information
from many acceleration signal measurements in the examined range of cutting conditions meant the
surface roughness was predicted with high accuracy and high reliability. With the help of two tested
artificial intelligence tools, it is possible to estimate the surface roughness of the workpiece with only
a small error. When using a radial neural network, the root mean square error for estimating the value
of the Sq parameter was 0.379 µm, while the estimation error based on fuzzy logic was 0.198 µm. The
surface of the sample made with the cutting parameters vc = 76 m/min and vf = 1200 mm/min is
characterized by a less concentrated distribution of ordinate densities, compared to the surface of the
sample cut with lower feed rates but at the same cutting speed. The most concentrated distribution
of ordinate density (for the cutting speed vc = 76 m/min) is characterized by the surface, where the
feed rate value was vf = 200 mm/min, with 90% of the material concentrated in the profile height of
28.2 µm. When using an RBF neural network, the RMSE of estimating the value of the Sq parameter
was 0.379 µm, while the estimation error based on fuzzy logic was 0.198 µm.

Keywords: MDF; medium-density fiberboard; milling; surface roughness

1. Introduction

Medium-density fiberboard (MDF) is widely used for displays, signs, shop fronts,
facades, and fittings [1]. MDF is produced from lignified fibers with or without the addition
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of a binder, and also with the addition of fillers [2]. Most fiberboard is produced as
multilayered, with the layers differing in chemical composition, additives and degree of
fragmentation [3].

The use of MDF in the industry is associated with machining when producing furniture.
The milling process is one of the most commonly used operations in the production of
MDF-based furniture. The machinability of MDF is determined by the quality of the
machined surface. Penman et al. [4] developed a prototype inspection system for wood
panels to detect the defects at production rates. The prototype uses a combination of
pipelined processing modules and general purpose processor detect textural variation and
color of MDF panels. Lin et al. [5] analyzed the appearance of MDF machines surface
by passing a cutting tool through it at a relatively low speed. A digital camera was used
that travels synchronously with the tool and the machinability characteristics of the MDF
were detected.

A number of studies report about the effect of cutting speed and feed rate on the
surface roughness after milling MDF. Aquilera [6], Deus et al. [7] and Gaitonde et al. [8]
observed a tendency of decreasing mean roughness (Ra parameter) with increasing cutting
speed or decreasing feed rates. On the other hand, it was observed that the Ra-value
increased with the reduction in the cutting speed. Davim et al. [9] studied the effect of
various cutting parameters on the MDF surface roughness in the milling process using
uncoated carbide cutting tools. They found that the surface roughness increased with feed
rate and decreases with an increase in the tool rotational speed. Bal et al. [10] found that the
surface roughness of milled MDF increased with the stepover and feed rate. As the feed
rate increased, the resulting surface quality of the MDF declined [11]. Gaitonde et al. [8]
used the Taguchi approach for optimization of the surface roughness in the milling of MDF.
It was found that the surface roughness can be optimized with a higher cutting speed and
lower feed rate values. Based on the analysis of variance, Ayyildiz [12] found the most
effective parameter affecting the surface roughness is the depth of cut while the factor
ranked second is cutting the speed. Li et al. [13] investigated the effects of input parameters
on specific cutting energy during the MDF helical up-milling process. It was found that,
although the surface roughness parameters Ra and Rz increased approximately 58.3% and
46.2%, respectively, under the optimal milling parameters, the optimization was feasible at
the initial rough machining stage.

Smart machining is an area of research where researchers are exploring various sensing
methods and data processing to monitor machining processes online. Machining processes
are affected by various factors related to the workpiece, tool and cutting parameters. Since
it is difficult to assess the complex relationships between input and output factors using
conventional quality control, developing an online system using advanced detection tech-
nologies seems to be a major goal for intelligent machining. Among the many commercially
available sensors for monitoring machining processes, the most commonly used are force,
vibration, acceleration and acoustic emission sensors. These sensors are often used to
monitor processes such as turning [14], drilling [15], milling [16] or grinding [17]. However,
taking into account the extreme conditions in the cutting zone during the processing of
wood-based materials, there is a high probability of sensor damage due to the prevalence
of very high amounts of dust. For this reason, cheaper sensors are used there, that is,
acceleration sensors.

Wojciechowski et al. [18] investigated the ploughing phenomena in the tool flank
face–workpiece interface during ball-end milling of AISI L6 alloy steel The authors de-
veloped original model of ploughing forces involved the effect of ploughing volume and
minimum uncut chip thickness. It was concluded that progressing tool wear and surface
inclination angle strongly effect on the edge forces which monotonic increase with growth
of tool wear. Jarosz et al. [19] analyzed the effect of variable radial depth of cut on cutting
force values in face milling processes of AW-6061-T6 aluminum alloy. With the proposed
optimization strategy reduced the machining time for the analyzed face milling operation
approximately 37% without exceeding imposed process parameter constraints. Chuchała
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et al. [20] investigated the surface roughness of AW-6086-T6 aluminum alloy thin plates
manufactured with the cold rolling (CR) process after face milling process. The Authors
proposed the milling strategy which take into account the depth of the material with in-
cluded residual stresses after cold rolling. It was found that the CR direction of milled
AW-6086-T6 plates does not affect the roughness of face-milled surfaces. Furthermore, the
thickness of the workpiece did not significantly affect the surface roughness of machined
surfaces. Pimenow et al. [21] reviewed the direct and indirect methods of tool condition
monitoring in milling operations of metallic materials. The advantages, disadvantages,
and prospects of using such sensors for milling operations are discussed in this review
article. Artificial intelligence and conventional sensory systems were considered. The
advantages and disadvantages of using sensory systems for milling are also discussed. Wo-
jciechowski et al. [22] proposed an original analytic–experimental approach for predicting
cutting forces during micro-end milling of AISI 1045 carbon steel considering the geometric
errors of the machine tool–cutting tool system kinematics of micro-end milling and elastic-
plastic deformations of the workpiece correlated with the chip thickness accumulation.
It was found that the instantaneous force oscillations as a function of feed per tooth is
related to the multiple cutting mechanism transitions observed during micro-milling in the
burnishing-dominant regime.

In recent years, there has been a strong development of research related to the use of
fuzzy systems and artificial intelligence in decision-making processes. One of the possible
applications of fuzzy systems to support decision making is the use in the production
control process. Artificial intelligence methods, that is, fuzzy logic [23], approximate
clustering via the mountain method [24], fuzzy-net based modelling [25], artificial neural
networks (ANNs) [26], have been used more and more often, and intelligent machining
monitoring is currently developing dynamically. Fuzzy systems are characterized by the
method of knowledge representation, which is presented in a symbolic way by means
of fuzzy rules and processing. Takagi and Sugeno [27] and Sugeno and Kang [28] have
proposed an alternative reasoning system based on the rules of a special format, which is
characterized by function-type consequents. In the conclusions of the rules, function-type
consequents appear not as fuzzy sets, but as functions of input variables, and these are
usually linear functions, so each rule of the model describes one flat (linear) segment of the
model surface. In the rule base, functional dependence is used in the conclusions. It means
that in the Takagi–Sugeno model there are no explicit output membership functions and
sharpening functions.

The optimal determination of the parameters of CNC machining of MDF is extremely
important, especially in finishing processes such as painting, varnishing or wrapping,
where a specific surface roughness is required [29]. Many rejected parts occurring in the
final stage of finishing MDF have their causes already at the initial stage of machining
wood-based boards (cutting, milling, drilling). This is mainly due to improperly selected
cutting parameters. Properly selected parameters are the most important factors increasing
the quality of the machined surface [30]. Determining the optimal values of CNC param-
eters, which contribute to improving the quality of the machined surface, is necessary
for a properly carried out process of milling materials for the furniture industry. Many
scientific works are focused on the determination of the influence of cutting parameters
on the surface roughness of MDF in the machining process. However, the optimal pa-
rameters in these studies were generally found using the Taguchi method and statistical
methods [31]. Artificial neural networks have found wide application in wood science,
e.g., in recognizing wood species [32], wood-drying process [33], predicting some me-
chanical properties of wood [34], optimizing process parameters in the manufacturing
process of wood products [35], classification of wood and veneer defects [36], calculation
of thermal conductivity of wood [37], analysis of moisture in wood [38] and prediction of
wood cracking resistance [39]. Although there are many studies on the impact of machining
parameters on wood surface roughness, there is a lack of research on modeling the impact
of these parameters.
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Advanced signal processing techniques and artificial intelligence play a key role in
the development of modern tool condition monitoring systems. The most frequently
chosen methods are neural networks [40], Mamdani fuzzy logic [41], a combination of a
neural network with Mamdani fuzzy logic [42] or a genetic algorithm [43]. Fuzzy logic [44]
provides a simple way to arrive at a final conclusion based on unclear, ambiguous, imprecise
or missing input information. However, most of the published research works on this
topic concern only metalworking. In the field of processing wood materials, there are no
such works or there are very few of them, and they concern the use of neural networks.
The aim of this article was to propose a fuzzy logic-based approach to surface roughness
modeling based on the acceleration signal in the milling process of wood-based materials.
For this purpose, subtractive clustering was additionally applied to the learning process.
Subtractive clustering was used to partition the input space and extract a set of fuzzy rules.
The least squares algorithm was used to determine the optimal membership functions
together with the resulting rule base parameters. The obtained results were compared with
the results obtained using radial neural networks.

In this article, the surface roughness of the machined MDF in milling process is
predicted based on acceleration signals from an industrial piezoelectric sensor installed
in the cutting zone. Prediction of the surface roughness parameter Sq was performed
using a radial basis function (RBF) ANN and a Takagi–Sugeno–Kang (TSK) fuzzy model
with subtractive clustering. The kinematic parameters of the cutting process and selected
measures of the acceleration signal were selected as input parameters. At the output, the
value of the surface roughness parameter Sq was predicted.

2. Experimental Procedure
2.1. The Workpiece and the Cutting Tool

In the tests, a commercial MDF board with a thickness of 18 mm was used as the
workpiece. The mechanical and physical properties of the processed material are shown
in Table 1.

Table 1. Selected mechanical and physical properties of the MDF.

Density
(kg/m3)

Moisture
Content

(%)

Bending
Strength

(MPa)

Elasticity
Modulus

(Mpa)

Thermal
Conductivity

(W/m·K)

Thermal
Expansion
(µm/m·K)

742 7.2 38 2530 0.3 12

A commercial cutting tool designed for machining MDF, a 12 mm diameter double-
edged shank cutter HM 12 × 51 with sintered carbide tips (Figure 1a) produced by Dimar
(Warsaw, Poland), was used in the research. The geometry and dimensions of the cutting
tool are specified in Figure 2 and Table 2, respectively. Before starting the tests, a milling
cutter (as used in the tests) was cut on an electrical discharge machining (machine. A
metallographic specimen was prepared, which was used for spectral analysis and for
measuring the basic geometry of the cutting tool blade. A spectral analysis of the chemical
elements in the sintered carbide (Figure 1c) and analysis of its microstructure (Figure 1d)
were carried out using an MIRA3 scanning electron microscope (TESCAN, Brno, Czech
Republic). The blade angle and the radius of the rounding of the cutting edge of the blade
(Figure 1b) were also measured.

Table 2. Geometric parameters of the cutting toll (α—clearance angle, γ—rake angle).

D (mm) B (mm) L (mm) d (mm) α (×) γ (◦)

12 51 108 12 20 7
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Figure 2. Geometry of the cutting tool.

2.2. Equipment and Machining Conditions

The milling process was carried out on an EMCO® CNC vertical milling machine
(EMCO GmbH, Hallein, Austria). A schematic diagram of the configuration of the mea-
surement track and the measurement data archiving system is shown in Figure 3. As part
of the tests, acceleration signals in the directions ax, ay and az coming from the cutting zone
during the machining of the MDF were recorded on the CNC milling machine.

Materials 2023, 16, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 1. (a) The cutting tool, (b) the blade geometry, (c) the results of the spectral analysis, and (d) the 
microstructure of the blade material. 

 
Figure 2. Geometry of the cutting tool. 

Table 2. Geometric parameters of the cutting toll (α—clearance angle, γ—rake angle). 

D (mm) B (mm) L (mm) d (mm) α (×) γ (°) 
12 51 108 12 20 7 

2.2. Equipment and Machining Conditions 
The milling process was carried out on an EMCO® CNC vertical milling machine 

(EMCO GmbH, Hallein, Austria). A schematic diagram of the configuration of the 
measurement track and the measurement data archiving system is shown in Figure 3. As 
part of the tests, acceleration signals in the directions ax, ay and az coming from the cutting 
zone during the machining of the MDF were recorded on the CNC milling machine. 

 
Figure 3. Experimental set-up and schematic of the data acquisition system. Figure 3. Experimental set-up and schematic of the data acquisition system.

As part of the tests, a surface with dimensions of 130 × 30 × 18 mm was milled
using an end mill. The value of the acceleration signal in three mutually perpendicular
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directions was measured using a piezoelectric acceleration sensor PCB® 356A16 (PCB
PIEZOTRONICS, Depew, NY, USA) mounted on the workpiece (Figure 4a). The dynamics
of the milling process are shown in Figure 4b.
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Signals from the sensor were recorded on a personal computer disc in digital form
via a National Instruments® 6034E (Austin, TX, USA) analogue-to-digital card. The sam-
pling frequency of the signals during the experiments was 50 kHz, and the measurement
resolution of the card was 16 bits. For each milling pass, the surface topography was
measured using a CNC profilometer Hommel-Etamic T8000RC (Jenoptik, Jena, Germany).
The surface topography was measured in three places on sections 15 mm long and 5 mm
wide of the machined surface (at the milling depth ap) (Figure 5).
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The Sq is a statistical parameter with relatively low sensitivity to measurement errors
and is therefore often used in surface measurements. Therefore, this parameter was used to
characterize the surface roughness of machined surfaces. Sq parameter is the root mean
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square height of the surface. This parameter is defined as the root mean square value of the
surface departures z(x,y), within the sampling area:

Sq =

√
1
A

x

A

z2(x, y)dxdy (1)

where A is the sampling area, z is the surface height position, and x, y are lengths in
perpendicular directions.

The surface topography measurement methodology is described in detail in [2].
Table 3 summarizes the cutting parameters used during the milling experiments.

Three repetitions were made for each set of cutting parameters. Each operation consisted
of 18 treatments, the parameters of which are presented in Table 3. The tests were carried
out in parallel using two identical milling cutters. The operations carried out with the first
tool and the second tool are denoted as Net_1 and Net_2, respectively.

Table 3. The machining parameters.

Cutting Speed
vc (m/min)

Feed per
Tooth fz (mm)

Feed Rate vf
(mm/min)

Tool Rotational
Speed vc

(rpm)

Depth of Cut
(mm)

Width of Cut
(mm)

38

0.30 100

1000 6 5

0.25 200
0.20 300
0.15 400
0.10 500
0.05 600

76

0.30 200

2000 6 5

0.25 400
0.20 600
0.15 800
0.10 1000
0.05 1200

114

0.30 300

3000 6 5

0.25 600
0.20 900
0.15 1200
0.10 1500
0.05 1800

2.3. System Dynamic Characteristics

An important issue in the analysis of the acceleration (vibration) signal in the frequency
domain is to determine the dynamic characteristics of the mass-dissipation-elastic (MDE)
system (Figure 4b). This can be obtained by mathematical modelling or experiments. A
real MDE system has many degrees of freedom (shapes and modal values of vibration) in
many directions. For most problems, it is sufficient to assume two perpendicular directions
for the MDE system susceptibility (Figure 4b). To determine the dynamic characteristics of
the MDE system, an input function was applied to the input of the system. Such an input
function is the Dirac impulse:

δ(t) =

{
0 t 6= 0
+∞ t = 0

(2)

Technically, the Dirac impulse is replaced here by a short-term excitation, a blow with a
hammer equipped with a force sensor. A KISTLER 9724A (Kistler, Winterthur, Switzerland)
modal hammer (Figure 6a) was used in the tests. As part of the analysis, a modal analysis
was made from the measured signal, containing signals of excitation force and acceleration
of the object, enabling determination of the dynamic characteristics of the MDE system.
An important advantage of impulse excitation is that the impact energy distribution is
visible in the continuous spectrum with regard to the frequency which is approximately
the inverse of the impulse duration.
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Using the LabVIEW environment, a program was developed to analyze the dynamic
characteristics of the system. It allows for automatic analysis of the recorded signals in
terms of their usefulness to determine the dynamic characteristics of the MDE system.
Manually reviewing the entire signal, evaluating every hit and response and rejecting
incorrect ones requires a lot of work and time, as well as experience and attention. The
automatic fragmentation used in the program is based on the detection of the beginning
of a single hit. It is recognized based on the force signal—crossing a threshold that is
five times the maximum force value from the first 100 signal samples. Then, 750 samples
were extracted. For the sampling frequency used of 50 kHz, the single hit window is
15 ms. A longer window may cause successive hits to overlap, which the program would
recognize as an invalid hit. Figure 6b shows an example of the acceleration (Acc) and
Fast Fourier Transform (FFT) variations, extracted from the entire signal using the above
mentioned criteria.

The analyses allowed determination of the natural frequencies of the MDE system in
three analyzed directions: ωox = 2343 Hz;ωoy = 1757 Hz andωoz = 1953 Hz. It is known
that the frequency of cutting the successive cutter blades is [4]:

ωfz =
n ∗ z

60
(3)

where n—tool rotational speed (rpm); z—number of milling cutter teeth.
This means that multiplicity of the crossing frequency of the blades should be different

from the natural frequency in order to avoid the resonant frequency. This leads directly to
forcing vibrations at the resonance frequency, which is very close to the natural frequency:

ωrez = ωo
√

1− 2d2 (4)

For most machine tools, the damping factor d is very small (0.001–0.05), so
√

1− 2d2 ≈ 1.

2.4. Data Collection and Analysis

For the analysis of the recorded acceleration signals, a computer program (in the
LabVIEW environment) was created, enabling the determination of selected measurement
values of the recorded signals in selected time intervals (Figure 7). The operation of the
program consists of the automatic determination of the values of the registered signals in
strictly defined time intervals.
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Figure 7. Methodology for determining the signal measurements.

A detailed description of the program is given in [1]. Figure 8 shows the changes in
acceleration signals for the directions ax, ay and az, depending on the value of the feed rate
(vf) and the cutting speed (vc).

To determine the measures of the recorded acceleration signals in the directions ax,
ay and az in the time and frequency domain, it was decided to adopt commonly known
features (Figure 9) used in the analysis of surface roughness evaluation. Mathematical
expressions for their determination are described in [45].
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3. Results and Discussion
3.1. Surface Topography

Nowadays, three-dimensional (3D) topographic surface analysis is gradually gaining
more and more popularity in the industry, and it seems that its role in design and production
will become more and more important in the future. Surface topography is understood
as a set of detailed three-dimensional features of a certain limited area of surface. The
3D roughness measurements are used to better understand the nature of the surface
topography. All issues related to the cooperation of two surfaces are three-dimensional
phenomena, therefore descriptions cannot be limited to two-dimensional analysis. The
3D measurements refer to the surface and are referred to as topography measurements,
stereometry or stereometric measurements, while 2D measurements refer to the profile
and are referred to as profile roughness measurements. Both 2D and 3D measurements are
referred to as roughness measurements, which is a simplification, because roughness is
further defined as a set of the smallest surface irregularities with relatively small spacing,
usually including irregularities that are the result of the specificity of the production process,
excluding waviness and shape error [46].

Figure 10 shows the surface topographies obtained in the milling process at a cutting
speed of 76 m/min for six feed rates. On the basis of the topography map, in selected
measurement sections, the Sq parameter was determined.

In the presented surface topography maps, two areas of different surface topography
can be clearly observed. The first area occurs in the outer layers of the MDF, at a depth of
approximately 3 mm. This differentiation can be explained by the multilayered construction
of the MDF. Szwajka et al. [1] presented the distribution of density and hardness on the
cross-section of the MDF. The resulting surface topography accurately reflects changes in
both the hardness and density of the board material [47].

In the conducted research on the surface roughness of the machined surface, the
relationships generally known from the literature [6,9] and from the authors’ earlier research
were confirmed regarding the impact of both the cutting speed and the feed rate on the
surface roughness of the machined surface. A decreasing trend for the Sq parameter was
observed with increasing cutting speed and/or decreasing feed rate.

Another analyzed feature of the topography was the Abbott–Firestone curve, which
describes the distribution of material in the profile [48]. It should be treated as a percentage
increase in the share of individual topography points for the entire analyzed area. From a
mathematical point of view, this graph can be treated as a distribution of the probability of
finding a point in a given area with a height lower than for the given coordinates. On this
basis, it is possible to find the properties of a given profile in terms of the utility functions
of the geometric structure of the surface. The horizontal axis of the Abbott–Firestone curve
represents the load bearing coefficient in percentage terms, while the vertical axis represents
the depth determined in the measurement units [49].

Figure 11 shows the material ratio curve of the surface obtained in the milling process
for the following cutting parameters: vc = 76 m/min, vf = 1200 mm/min. The surface
of the sample made with the cutting parameters described above is characterized by
a less concentrated distribution of ordinate densities, compared to the surface of the
sample cut with lower feed rates but at the same cutting speed. For the surface shown
in Figure 10f, 90% of the material is concentrated in the 44.8 µm range (Figure 11a). The
most concentrated distribution (for the cutting speed vc = 76 m/min) is characterized by
the surface where the feed rate value was vf = 200 mm/min, with 90% of the material
concentrated in the profile height of 28.2 µm. For surfaces machined with the parameters
of vc = 76 m/min and vf = 1200 mm/min, more than 28% of the material is concentrated at
a profile height of approximately 90 µm, while for the surface machined with a feed rate
value vf = 200 mm/min, more than 31% of the material is concentrated at a profile height
of approximately 73 µm.
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Figure 10. Surface topography of the milled surface for following parameters: (a) cutting speed vc = 76 m/min
and feed rate vf = 200 mm/min; (b) vc = 76 m/min and vf = 400 mm/min; (c) vc = 76 m/min and
vf = 600 mm/min; (d) vc = 76 m/min and vf = 800 mm/min; (e) vc = 76 m/min and vf = 1000 mm/min;
(f) vc = 76 m/min and vf = 1200 mm/min.

The results show that the tool rotational speed and feed rate can affect the surface
roughness and the resulting value of the Sq parameter in the MDF milling process. Finding
the optimal combination of vc and vf can help achieve the desired surface roughness [8,50].
A contour plot (Figure 11b) is a basic tool in the analysis of surface roughness and topogra-
phy according to ISO 25178.

With lower vc values and higher vf values we can get a rougher surface texture with
more peaks and valleys. On the other hand, higher vc and higher vf can lead to a more
significant material removal rate, resulting in a smoother surface texture. However, higher
vc and lower vf can lead to higher cutting temperatures, which have an adverse effect on
the MDF, which can result in a rougher surface texture.
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3.2. Application of the Neural Network to Evaluate the Surface Roughness

Radial basis networks available in the Matlab® Neural Network Toolbox ver. R2018a
(Natick, MA, USA) were used to map the input data to the surface roughness parameter Sq.
During numerous experiments with RBF-type networks [51,52], their limited usefulness
for the evaluation of some specific cases was discovered. The propagation function of the
input neurons of this network is radial, in the MATLAB environment it is the Gaussian
function, and the network divides the input data subspace into areas that are in the zone of
influence of subsequent neurons. Such a network poorly approximates data beyond the
range on which it was trained. This is connected with the basic disadvantage, that is, the
requirement to plan and conduct more extensive studies with more measurements. It is
necessary to sufficiently cover the entire range of variability of the cutting parameters. This
is quite cumbersome and is a major disadvantage of RBF neural networks compared to
feed forward back propagation (FFBP) networks. Dozens of experiments with RBF neural
networks were carried out. First, we checked how the RBF network responds to different
sets of input data. The only way to influence the predicted result of the RBF network is to
set the parameterized shape of the radial function of each input neuron. The higher the
value of the spread parameter, denoted as sp, the more flattened the radial function is. This
required additional attempts to optimize the sp parameter.

In order to determine the optimal value of the mentioned parameter sp using the
empirical method, numerous network tests should be carried out on data from all trials.
It can be calculated using the analytical method based on a complicated mathematical
apparatus. However, that was not the purpose of this work. Based on our own experience
and series of attempts, we can assume sp = 30,000. The response of the RBF network for low
values of this parameter (sp = 500) coincides with the real values of the Sq parameter. This
is consistent with the networking algorithm, which is based on the assumption that the
number of radial neurons is equal to the number of training vectors [53]. Since the areas
with a smaller radius in the input data space covered by neurons with a lower sp overlap
only in the immediate vicinity, they do not significantly affect the neurons further away
from them. Thanks to this, it is possible to accurately approximate the training data with
splined radial functions with a smaller sp value. For a large value of sp, approximation errors
are obtained, calculated by the MATLAB program, which are the result of the overlapping
of a larger number of Gaussian surfaces. As in the case of the FFBP networks, the goal is
not to get a perfect result for the training data, but to equalize the errors for all the data sets.
The optimal value of the sp coefficient is obtained as a result of a compromise between the
minimization of errors of the training set and the ability to generalize for the testing set. In
further tests with this type of network, the value sp = 30,000 was assumed.
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A comparison of the response quality of the networks trained on various combinations
of input data was made in order to analyze the usefulness of the measurements and
cutting parameters in terms of their use in predicting the surface roughness value using
the RBF network. A number of sets with different combinations of variables were taken
into account (Table 4). The lack of usefulness of some measurements of the acceleration
signals for assessing the surface roughness of the machined surface was also verified here.
The most favorable result is marked in bold in Table 4. The accuracy of estimation of the
surface roughness parameter Sq is evaluated based on the root mean square error (RMSE):

RMSE =
√

∑ (Sq(r) − Sq(e))
2/N (5)

where Sq(r) and Sq(e) are the measured and predicted Sq-values, respectively; N is number
of measurements.

Table 4. Comparison of network predicted RMSEs depending on the adopted signal measurement.

Signal Feature RMSE (µm)
0.377 0.347 0.242 0.287 0.248 0.334 0.223 0.231 0.289 0.209

Maximum x
Standard deviation x x x
Root mean square x x x x x x x x x

Skewness x x x x x x x x x x
Kurtosis x x x x x x x
Energy x x x x x

Shannon entropy x x x x x x x x x x
Log energy entropy x x x x x x

4th moment x x x x
Impulse x x

Cutting speed x x x x x x x x x x
Feed rate x x x x x x x x x x

The selection of data for training the RBF network was deeply justified and well
thought out. When training the FFBP network, a balance between the training and testing
errors is searched for by influencing the training process through weight disturbances and
the pruning of neurons [53,54]. If relying only on information about training errors, it
would be difficult to adopt the criterion of stopping the network training process. For RBF
networks, training on a selected set of data has a similar meaning. In addition, as mentioned
earlier, RBF networks have a weaker ability to extrapolate and interpolate results than FFBP
networks. This means, and is confirmed in the research, that the training samples must
cover the entire range of input data variability.

Figure 12a presents the responses of the network tested on the Net_2 set and trained
on the Net_1 set based on the cutting speed vc, feed rate vf and selected measurements of
the acceleration signals (Table 4). Figure 12b shows the responses of the network trained
and tested on the Net_1 set.

The graphs shown in Figure 12 confirm the previous conclusions drawn from the
analysis of network training and testing. In the Net_1 set, the initial Sq values were at a
higher level than in the Net_2 set. This is reflected in the assessment of the Sq parameter by
the RBF network. A characteristic decrease or increase in the value of the Sq parameter at
the output of the RBF network proves that the values of input variables have exceeded the
training range and it is a serious disadvantage of this type of network [55]. Changes in the
Sq parameter throughout the milling duration were shown on purpose to indicate large
fluctuations in the network response and poor approximation of the data corresponding to
the value of the Sq parameter (Figure 12a).
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3.3. Subtractive Clustering-Based TSK Fuzzy Modelling

One of the methods of optimizing the fuzzy model parameters are clustering methods.
They use the fact that automatic detection of certain groups of measurement points and
characteristic patterns of system behavior can be represented by one rule or their coherent
set. The mountain clustering method developed by Yager and Filev [24] is one of the best
methods for dividing a given set into a certain number of clusters/subsets. However, in
order to create specific subsets, it is necessary to establish the so-called cluster measures [56].
In general, the center of such a cluster can be any point in the measured space. However,
this approach leads to computationally expensive algorithms with exponential complexity.
The subtractive potential method created by Chiu [57] and described in this article goes
in a slightly different direction. It assumes that the center of the cluster can only be an
element of the set of measurement points. The Chiu method [57] therefore determines
the beginnings of clusters composed of a single point, which is the starting point of the
searched subset. In the case of the subtractive potential method, the searched space is
therefore limited to a separate set of points.

Cluster centers determined using the subtractive potential method can be used to build
fuzzy reasoning rules for various artificial intelligence algorithms [46,58]. In particular,
they can be used to build models that predict the behavior of various types of complex
systems over time—in other words, to create machine learning algorithms.

System identification using clustering involves creating clusters in the data space
and translating these clusters into TSK rules so that the model obtained is similar to the
identified system. The purpose of the subtractive clustering identification algorithm is
to estimate both the number and initial location of cluster centers and to extract the TSK
fuzzy rules from the input/output data [56]. Subtractive clustering works by finding an
optimal data point to define a cluster center based on the density of the surrounding data
points [58]. This method is a fast-clustering method for solving large dimension problems
with a moderate number of data points. This is because the calculation requirements in
this method grow linearly with the increase in the dimension of the data and the square of
the number of data points. Classical logic does not provide adequate tools for the analysis
of complex systems, where goals and input-output dependencies are often imprecisely
defined, and thus difficult to quantify. Hence, there has been significant progress in
the application of methods based on fuzzy logic. Its techniques are based on reasoning
similar to human reasoning, and therefore have a wide spectrum of practical applications,
especially in modelling and control issues. The idea of subtractive mountain clustering
consists of determining each point xi and the function P representing the potential of this
point. Let us consider a set of N data points {x1, x2, . . ., xn} defined by m-dimensional xj. In
order not to lose the value of the data, this function should be taken as a normalized space,
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so all data is normalized to the interval [0, 1]. It is therefore assumed that the potential at
the i-th point of the set is expressed by the following formula:

P(i) =
N

∑
j=1

e
−α‖xi−xj‖2

i (6)

for i = 1, . . ., N, and α = 4/(ra)2 for a certain constant ra > 0. It is clear from the form of
the potential function that the potential of a set point is higher the more other points are
in its immediate vicinity. This property makes the subtractive potential method much
more resistant to disturbances caused by random points than clustering algorithms such as
C-means. After assigning the potential P(i) to each point of the set, the first center of the
cluster is selected, which is always the point with the greatest potential. Therefore, c1 = xu,
where u = argi max P(i), and P(u) is denoted by P* and we consider it a reference potential
for the selection procedure of the remaining cluster measurements. In addition, when we
select the center of the next cluster ck = xu (for the correct u) we modify the value of the
potential function assigned to individual points of the set as follows:

P(i) = P(i)− P(u)e−β‖xi−xj‖2
(7)

where β = 4/(rb)2 for some rb > 0 which is a constant defining the range of the potential
function. For practical reasons, it is commonly assumed that rb > ra and the most common
value is rb = 1.25ra. The selection of subsequent cluster centers is made until the potential
of all points exceeds a certain fixed value εdP* for εd selected from the interval (0, 1). The
operation of the subtractive potential method is described by the following algorithm:

1. Select ra, rb, εu and εd.
2. Determine the values of the potential function P(i) for all points of the set (i = 1, . . ., N).
3. Choose the point xu with the highest potential Pu = P* and assume that it is the first

center of the c1 cluster.
4. Take k = 2.
5. Loop through the following steps:

(a) Choose the point xu with the highest Pu potential.
(b) If Pu > εuP* then xu becomes the center of the k-th cluster. If εuP* > Pu >

εdP* then xu becomes the center of the k-th cluster ck if it meets additional
conditions (depending on the algorithm implementation method).

(c) Take k = k + 1.
(d) If Pu > εdP* exit the loop—there are no more cluster centers.

The center of the cluster found in the training data are the points in the feature space
whose neighborhood is mapped to a given class. Each cluster center can be translated into a
fuzzy class identification rule. The generalized type-1 TSK model can be described by fuzzy
IF-THEN rules that represent the input-output relationships of the system. For a first-order
multi-input, single-output (MISO) type-1 TSK model, the k-th rule can be expressed as:

IF x1 is Q1k and x2 is Q2k and . . . and xn is Qnk,
THEN Z is wk = pk

0 + pk
1x1 + pk

2x2 + · · ·+ pk
nxn

(8)

where x1, x2, . . ., xn and Z are linguistic variables; Q1k, Q2k, . . ., Qnk are fuzzy sets; X1, X2,
. . ., Xn, and pk

0 , pk
1 , pk

2 , . . . , pk
n are regression parameters.

In the subtractive grouping method, xj is the j-th input feature of xj (j ∈ [1, n]), and Qjk
is the MF in the k-th rule associated with the j-th input feature. MF Qjk can be obtained as:

Qjk = exp

−1
2

(
xj − x∗jk
σ

)2
 (9)
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where xjk
* is j-th input feature, σ is the Gaussian standard deviation MF given as:

σ =
√

1/2α (10)

Using the TSK fuzzy approach, it is possible to obtain a TSK fuzzy model with rules
describing the Sq and selected measurements of the acceleration signals and kinematic
parameters as input variables. System identification using clustering involves creating
clusters in the data space and translating these clusters into TSK rules so that the model
obtained is similar to the identified system. The cluster radius is limited to the range
[0.15; 1.0] in steps of 0.15. Figure 13 summarizes the Sq prediction results from the Net_1
(training) set and the Net_2 (testing) set. The results of the presented method fit the
experimental data better than the results obtained using the RBF neural network.
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Table 5 compares the error of estimating the value of the Sq parameter obtained using
the RBF network and fuzzy logic. TSK has the lowest root mean square error.

Table 5. Summary of RMSEs obtained by different methods of artificial intelligence.

Artificial Intelligence Methods Training Set: Net_1 Test Set: Net_2

RMSE (µm) RMSE (µm)

RBF neural network 0.273 0.379
TSK 0.066 0.198

4. Conclusions

From the analysis of the presented results, the RBF neural network used in the re-
search as well as the TSK fuzzy logic are very well suited for the automatic assessment of
surface roughness based on the used measurements of acceleration signals and kinematic
parameters of the MDF milling process. In terms of implementation, these methods are
the easiest tools for mapping measurements and cutting parameters in multidimensional
space. A neural network does not require special attention to input data. It is enough to
determine the signal measurements and the structure of the network and then train the
network to get the expected mapping.

When creating a base of inference rules for a fuzzy system, it is necessary to carefully
analyze the waveforms of signal measurements. The rules of a fuzzy system are simple,
and their construction consists in transferring, almost ‘directly’, the observation of the
changes in measurements to the language of fuzzy logic. Both RBF networks and fuzzy
system respond well to input variables. With the help of two tested artificial intelligence
tools, it is possible to estimate the surface roughness of the workpiece with a small error.
When using an RBF neural network, the RMSE of estimating the value of the Sq parameter
was 0.379 µm, while the estimation error based on fuzzy logic was 0.198 µm. The results of
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the experiments show the effectiveness of fuzzy logic and a satisfactory comparison with
other methods of artificial intelligence.

The error in the evaluation of the Sq parameter results not so much from the imperfec-
tion of the mapping tools, but from the dispersion of the measurements, mainly caused by
errors in measuring the value of the Sq parameter and the non-uniformity of the workpiece
material. The advantage of an RBF network is its training time—much shorter than for
training a multilayered perceptron ANN. In the future, research is planned that will be
extended to other types of networks, that is, a self-learned ANN and a neuro-fuzzy system.
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31. İşleyen, Ü.K.; Karamanoğlu, M. The influence of machining parameters on surface roughness of MDF in milling operation.

BioResources 2019, 14, 3266–3277. [CrossRef]
32. Esteban, L.G.; Garcia Fernandez, F.; de Palacios, P.; Conde, M. Artificial neural networks in variable process control: Application

in particleboard manufacture. For. Syst. 2009, 18, 92–100. [CrossRef]
33. Wu, H.; Avramidis, S. Prediction of timber kiln drying rates by neural networks. Dry. Technol. 2006, 24, 1541–1545. [CrossRef]
34. Mansfield, S.D.; Iliadis, L.; Avramidis, S. Neural network prediction of bending strength and stiffness in western hemlock (Tsuga

heterophylla Raf.). Holzforschung 2007, 61, 707–716. [CrossRef]
35. Cook, D.F.; Whittaker, A.D. Neural-network process modeling of a continuous manufacturing operation. Eng. Appl. Artif. Intell.

1993, 6, 559–564. [CrossRef]
36. Drake, P.R.; Packianather, M.S. A decision tree of neural network for classifying images of wood veneer. Int. J. Adv. Manuf.

Technol. 1998, 14, 280–285. [CrossRef]
37. Avramidis, S.; Iliadis, L. Predicting wood thermal conductivity using artificial neural networks. Wood Fiber Sci. 2005, 37, 682–690.
38. Zhang, J.; Cao, J.; Sun, L. A novel fusion technique based functional link artificial neural network for LMC measuring. In

Proceedings of the Second IEEE Conference on Industrial Electronics and Applications, Harbin, China, 23–25 May 2007; pp.
471–475. [CrossRef]

39. Samarasinghe, S.; Kulasiri, D.; Jamieson, T. Neural networks for predicting fracture toughness of individual wood samples. Silva
Fenn. 2007, 41, 105–122. [CrossRef]

40. Jemielniak, K.; Kwiatkowski, L.; Wrzosek, P. Diagnosis of tool wear based on cutting forces and acoustic emission measures as
inputs to neural network. J. Intell. Manuf. 1998, 9, 447–455. [CrossRef]

41. Balazinski, M.; Jemielniak, K. Tool conditions monitoring using fuzzy decision support system. In Proceedings of the VCIRP,
AC’98 Miedzeszyn, Wroclaw, Poland, 18–20 June 1998; pp. 115–122.

42. Li, X.L.; Li, H.X.; Guan, X.P.; Du, R. Fuzzy estimation of feed-cutting force from current measurement-a case study on intelligent
tool wear condition monitoring. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2004, 34, 506–512. [CrossRef]

43. Achiche, S.; Balazinski, M.; Baron, L.; Jemielniak, K. Tool wear monitoring using genetically-generated fuzzy knowledge bases.
Eng. Appl. Artif. Intell. 2002, 15, 303–314. [CrossRef]

44. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
45. Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. Stress wave evaluation by accelerometer and acoustic emission sensor for thermally

modified wood classification using three types of neural networks. Eur. J. Wood Wood Prod. 2019, 77, 45–55. [CrossRef]
46. Gurau, L.; Ayrilmis, N.; Benthien, J.T.; Chlmeyer, M.; Kuzman, M.K.; Racasan, S. Effect of species and grinding disc distance on

the surface roughness parameters of medium density fiberboard. Eur. J. Wood Wood Prod. 2017, 75, 335–346. [CrossRef]
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