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Abstract: Through our present study, three novel Gemini-fluorinated cationic surfactants bearing
different spacers (FSG6-2, FSG6-4, and FSG6-6) were synthesized, and their structures were explained
via different spectroscopic instruments such as 1H, 13C, and 19F NMR spectra. The surface activity
of the as-prepared surfactants was examined. The inhibiting influence of FSG6 molecules on the
X60 steel corrosion in the pickling solution (HCl) was examined by diverse methods comprising
electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and X-ray
photoelectron spectroscopy (XPS) experimentations, and computational calculations. The inhibition
effectiveness of FSG6 surfactants followed the order of 93.37% (FSG6-2) < 96.74% (FSG6-4) < 98.37%
(FSG6-6) at 2.0 × 10−4 M. The FSG6 surfactants function as mixed-type inhibitors, according to
PDP investigations. The H2O molecules that adsorbed on the steel interface were substituted with
surfactant molecules, and the surfactant’s inhibitory activity is likely caused by the improvement in
an adsorptive layer on the steel substrate, as specified by the EIS results. The Langmuir isotherm
describes the absorption of FSG6 molecules on the metal surface. The XPS investigations validate the
steel interface’s extremely protective nature. The mechanism of interaction between FSG6 molecules
with an X60-steel employing the DFT calculations and MC simulations methods was also examined
and discussed.

Keywords: fluorinated gemini surfactants; inhibition route; adsorption process; surface analysis;
computational calculations

1. Introduction

Owing to its superior mechanical qualities and affordable price, X60-steel is a signif-
icant material that is used in a diversity of industrial applications. It is widely utilized
as a building material for chemical reactors, boilers and storage tanks, heat exchanger
systems, and oil and gas transport pipelines in a variety of sectors [1]. In the treatment of
salt solutions, acids, and alkalis, it is also utilized in chemical and related industries.

In the industrialized sector, acid solutions are frequently employed for procedures
including chemical cleaning, the acid pickling of steel, and oil-well acidification. Because
it is more affordable and trouble-free than other inorganic acids, hydrochloric acid is
commonly used [2,3]. The capacity of this acid to generate metal chloride, which is far
more soluble in an aqueous media than sulfate, phosphate, and nitrate, gives it a significant

Materials 2023, 16, 5192. https://doi.org/10.3390/ma16145192 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16145192
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-5478-6369
https://orcid.org/0000-0002-6610-393X
https://doi.org/10.3390/ma16145192
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16145192?type=check_update&version=1


Materials 2023, 16, 5192 2 of 30

advantage over other acids in the cleaning and pickling processes. This increase in the
solubility of chloride salt leads to an increase in the corrosion rate [4,5].

The most efficient approach for defending many alloys and metals against such
acid attacks is thought to be the application of corrosion inhibitors. Consequently, the
investigation of steel corrosion in acid environments is of both industrial and academic
interest and has attracted a lot of attention from researchers [6]. Most acid corrosion
inhibitors are organic molecules comprising unsaturated bonds, electronegative atoms, for
instance, nitrogen, oxygen, phosphorus, sulfur, etc., and/or aromatic rings [7,8]. It has been
found that chemicals with the C-N group, polar groups, π-electrons, and electron-donating
groups perform as potent inhibitors of steel in acidic media [9,10].

Fluorinated surfactants have attracted outstanding attention due to their superior sur-
face tension-reducing activity compared to conventional surfactants [11]. The magnitude of
fluorinated surfactants is greater than that of conventional ones, as wholly hydrogen atoms
are replaced by fluorine atoms of significant size [12,13]. Replacing the hydrogen atoms
with fluorine on the carbon backbone makes these compounds more solid and increases
their hydrophobicity more than the alkyl chain [14,15]. Fluorinated surfactants diminish
the surface tension more than others with the same length of hydrocarbon chain [16–18].
They also have a lower critical micellar concentration than their hydrocarbon counterparts,
and this value decreases as the fluorocarbon chain length increases [19,20]. The superior
electronegativity and reduced polarity of the fluorine atoms along the carbon chain of
fluorinated surfactants impart better surface activity and increased chemical and thermal
stability [21–24]. In addition, these compounds have excellent foaming, emulsification,
wetting, and dispersing properties, which are present in many industrial applications, such
as cosmetics, pharmaceuticals, firefighting foam, pigment additives, anti-corrosion, and
food [25–29]. Despite these substances being widely used industrially, they are environ-
mental hazards because they are bioaccumulating and highly toxic [30,31]. By studying the
risks that fluorinated surfactants pose to the environment, it was determined that the use
of compounds containing six fluorinated carbon atoms is not harmful to the environment
and less toxic [32–34]. Consequently, fluoroalkyl chain surfactants were synthesized with a
short chain even though their surface activity decreased [35–37]. The methods to synthesize
non-toxic and environmentally safe fluorinated surfactants include decreasing the chain
length, inserting a hetero atom, or using a branched-chain instead of a linear fluorinated
chain [26,32,38]. Recently, an unprecedented type of surfactant called a Gemini surfactant,
with two or more carbon chains with two or more head groups associated with a spacer,
has been synthesized [39]. This demonstrated a superior performance and more effective
surface activity compared with conventional surfactants, which gives them great impor-
tance, and they are used as models for various fields such as corrosion inhibitors, petroleum
dispensing and collecting, oil recovery, nanotechnology, drug delivery, and antimicrobial
agents [40–44]. Gemini-fluorinated surfactants were examined for their bioactivity, anti-
fungal, and antibacterial properties. They also have strong antibacterial activity [45,46].
This article reports on the synthesis of Gemini-fluorinated surfactants with six fluorinated
carbon atoms, introducing sulfur and nitrogen as hetero atoms, and as corrosion inhibitors.

Accordingly, in our study, three novel Gemini-fluorinated cationic surfactants bearing
different spacers (FSG6-2, FSG6-4, and FSG6-6) were prepared and eluted via various spec-
troscopic techniques as 1H, 13C, and 19F NMR spectra. The surface activity of the prepared
Gemini-fluorinated cationic surfactants was also investigated. The corrosion inhibition
of the prepared fluorinated surfactants (FSG6-2, FSG6-4, and FSG6-6) was determined in
an X60-steel/surfactant/pickling solution system through PDP and EIS methods. The
high quality of these surfactant inhibitors depends upon their molecular construction, i.e.,
the number of active sites and kind of spacer existing in these surfactants. Using XPS
measurements, the steel surface morphology was investigated. To ascertain the relationship
between the examined fluorinated surfactants’ corrosion prevention characteristics and
their molecular structures, quantum chemical calculations (i.e., DFT calculations and MC
simulations) were carried out.
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2. Materials and Methods
2.1. Solutions and Materials

X60-steel samples were applied to investigate the necessitated measurements, in which
the metal composition in wt.% was found as follows: C, 0.23; Si, 0.38; Mn, 1.41; V, 0.06; Nb,
0.05; Ti, 0.04; P, 0.025; S, 0.015, and remainder Fe. The X60-steel samples were scratched with
various SiC sheets (grades 400–1800), and acetone was used for metal rinsing, cleaned by
bidistilled water, and then slightly dehydrated before soaking. Hydrochloric acid (Analar
grade: 1.0 M, 37%) served as the corrosive medium.

All required chemicals and solvents, such as tetrahydrofuran, ethyl acetate, and diethyl
ether, may be utilized with no need for purification and were obtained from Sinopharm
Chemical Reagent Co., Ltd., Beijing, China. N1,N1-dimethylpropane-1,3-diamine (≥99.0%)
and Perfluoro-1-hexane sulfonyl fluoride (≥98.0%) were obtained from “Aladdin Industrial
corporation” company, Shanghai, China. 1,2-Diiodoethane (≥95.0%), 1,4-diiodobutane
(≥97.0%), and 1,6-diiodohexane (≥99.0%) were obtained from Alfa Aesar China Co., Ltd.,
Shanghai, China. 1H (600 MHz), 13C (151 MHz), and 19F NMR (565 MHz) NMR spectra
were obtained in CD3OD, DMSO-d6, or CDCl3 on a “Bruker AVANCE instrument” by
using the inner standard as tetramethylsilane, ≥99.0%.

2.2. Synthetic Procedure and Characterizations

The Gemini-fluorinated cationic surfactants were synthesized in a two-step reaction.

2.2.1. First Step: Preparation of
N-(3-(dimethylamino)propyl)-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexane-1-sulfonamide

N1,N1-dimethylpropane-1,3-diamine (1.53 g, 15 mM) and (25 mM) trimethylamine in
(500 mL) petroleum ether was prepared, then (6.03 g, 15 mM) perfluoro-1-hexanesulfonyl fluo-
ride was gradually supplemented with stirring. The reaction was executed in an ice bath and
stirred for 4 h at room temperature. After evaporating, the solvent C6F13SO2NHC3H6N(CH3)2
was obtained as a white solid with 95% yield after recrystallization in acetone. The purifica-
tion of prepared compounds was achieved via washing the products with Diethyl ether to
remove all unreacted materials.

N-(3-(dimethylamino)propyl)-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexane-1-sulfonamide
(Figure S1)

1H NMR (600 MHz, DMSO-d6) (δ, ppm): 7.25 (s, 1H), 3.13 (s, 2H), 2.21 (s, 2H), 2.11 (s,
6H), 1.56 (s, 2H). 13C NMR (151 MHz, CDCl3) (δ, ppm): 159.00, 118.33, 117.42, 114.55, 114.35,
113.03, 76.21, 75.99, 75.78, 59.37, 58.97, 46.11, 45.34, 43.77, 43.19, 23.57, 23.09. 19F NMR
(565 MHz, DMSO-d6) (δ, ppm): −88.43, −108.98, −119.98, −121.58, −122.58, −126.08.

2.2.2. Second Step: Preparation of N1,N1,N2,N2-tetramethyl-N1,N2-bis(3-((perfluoro-alkyl)-
sulfonamido)propyl)ethane-1,2-diaminium Iodide (3a–c)

A total of 100 mg, 0.17 mmol from the white powders produced in the first step
was dissolved in (50 mL) tetrahydrofuran and placed in a nitrogen atmosphere. 1,2-
diiodoethane, 1,4-diiodobutane, and 1,6-diiodohexane (30.01 mg, 0.081 mmol) were added
to the solution. The fluorinated Gemini surfactants were attained after stirring the mixture
for (8 h for 24), evaporating the reaction solvent, washing with Et2O, and recrystallizing
in ethanol.

N1,N1,N2,N2-tetramethyl-N1,N2-bis(3-((perfluorohexyl)sulfonamido)propyl)ethane-1,2-
diaminium Iodide (3a, FSG6-2) (Figure S2)

Pale brown solid, Yield: 75.1%, m.p. = 76–88 ◦C: 1H NMR (600 MHz, DMSO-d6)
(δ, ppm): 6.87 (s, 2H), 3.59 (s, 4H), 3.46 (s, 12H), 3.11 (d, J = 13.6 Hz, 4H), 3.06 (s, 2H), 2.81 (s,
2H), 1.96 (t, J = 47.3 Hz, 2H), 1.86–1.12 (m, 2H). 13C NMR (151 MHz, DMSO-d6) (δ, ppm):
164.84, 119.44, 118.55, 118.34, 117.08, 115.99, 113.65, 65.26, 61.15, 51.62, 42.62, 23.78. 19F
NMR (565 MHz, DMSO-d6) (δ, ppm): −80.28, −109.20, −119.89, −121.38, −122.85, −126.29.



Materials 2023, 16, 5192 4 of 30

N1,N1,N4,N4-tetramethyl-N1,N4-bis(3-((perfluorohexyl)sulfonamido)propyl)butane-1,4-
diaminium Iodide (3b, FSG6-4) (Figure S3)

Pale yellow solid, Yield: 72.4%, m.p. = 83–86 ◦C: 1H NMR (400 MHz, DMSO-d6)
(δ, ppm): 6.86 (s, 2H), 3.02 (s, 12H), 2.86–2.62 (m, 8H), 2.62–2.47 (m, 4H), 1.71 (s, 4H),
1.34 (d, J = 6.2 Hz, 4H). 13C NMR (151 MHz, DMSO-d6) (δ, ppm): 158.73, 119.44, 117.92,
115.19, 113.73, 111.21, 63.47, 60.96, 50.28, 42.89, 22.52, 17.66. 19F NMR (565 MHz, DMSO-d6)
(δ, ppm): −80.37, −109.15, −119.90, −121.58, −122.58, −125.86.

N1,N1,N6,N6-tetramethyl-N1,N6-bis(3-((perfluorohexyl)sulfonamido)propyl)hexane-1,6-
diaminium Iodide (3c, FSG6-6) (Figure S4)

Yellow solid, Yield: 73.8%, m.p. = 88–91 ◦C: 1H NMR (400 MHz, DMSO-d6) (δ, ppm):
6.86 (s, 2H), 3.32 (s, 4H), 2.82 (s, 4H), 2.62–2.45 (m, 12H), 1.90 (d, J = 147.1 Hz, 4H), 1.71
(t, 4H) 1.35 (d, J = 6.1 Hz, 4H). 13C NMR (151 MHz, DMSO-d6) (δ, ppm): 160.82, 120.38,
118.12, 115.35, 114.05, 111.27, 109.69, 63.91, 61.05, 50.36, 41.92, 31.24, 29.37, 22.50. 19F NMR
(565 MHz, DMSO-d6) (δ, ppm): −80.24, −108.82, −119.89, −121.32, −122.50, −125.86.

2.3. Measurements of Surface Tension

Surface tension measurements were performed at 25 ◦C using a K6-Tensiometer
(KRÜSS Co., Hamburg, Germany) with the platinum ring in distilled water. To achieve
a balance, a solution of Gemini-fluorinated cationic surfactants was kept for 24 h. The
platinum ring was washed more than once with distilled water and ethanol to remove any
particles attached to its surface. Each reading was repeated three times before taking the
final value, which was the average of these readings. Likewise, the electrical conductivity
values were recorded via a conductivity analyzer (EC/TDS; type AD3000 and temperature
meter). The solutions of Gemini-fluorinated cationic surfactants were prepared by water
(ultrapure H2O) and kept for at least 24 h, and each value of electrical conductivity was the
average of three measurements to minimize data errors [47].

2.4. Electrochemical Examinations

Electrochemical examinations were carried out using the Gamry Potentiostat/Galvanostat/
ZRA device with an orthodox three-electrode organization. The counter-electrode was a
platinum sheet, the working electrode was X60-steel, and the reference electrode was a
silver–silver chloride (Ag/AgCl) furnished with a vitreous Luggin-capillary to diminish the
impedance of the solution. All electrochemical test results were used to calculate potentials
using Ag/AgCl. The X60-steel electrode was initially submerged in the test fluid for 45 min
to achieve a constant open circuit voltage (EOCP). Subsequently, the EIS examination was
restrained within the 100 kHz to 0. 1 Hz frequency range by means of a 10 mV irregular
current signal at EOCP. ZsimpWin (v3.6) software was applied to evaluate the collected
impedance data. Then, PDP tests were operated by sweeping the potential at a rate of
0.2 mV s−1 from +250 mV to −250 mV vs. EOCP. To minimize errors, three trials of each
experiment were performed, and the temperature was thermostatically set at 50 ◦C.

2.5. Surface Characterization

The high-resolution X-ray photoelectron spectroscopy (XPS) analysis was conducted
using Thermo Fisher Scientific (K-ALPHA, Waltham, MA, USA) with homochromatic X-ray
Al K-alpha radiation for X60-steel samples before and after adding 2.0 × 10−4 M of FSG6-6
in pickling solution at 50 ◦C.

2.6. Computational Details

The Dmol3 module of the BIOVIA Materials Studio 2017 v17.1 software carried out
DFT calculations with the B3LYP-functional and DNP 4.4 basis set to optimize the energy
of the FSG6-3, FSG6-4 and FSG6-6 molecules in aqueous media [8]. Furthermore, the
findings from DFT calculations, such as HOMO, LUMO, the energy gap (∆E), electronega-
tivity (χ), hardness (η), global softness (σ), and the number of electrons transferred (∆N),
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∆Eback-donation and dipole moment (µ), were studied and calculated using the following
equations [48]:

χ =
−EHOMO − ELUMO

2
(1)

η =
1
σ
=

ELUMO − EHOMO
2

(2)

∆N =
ϕ− χinh

2(ηFe − ηinh)
(3)

∆N =
ϕ− χinh

2(ηFe − ηinh)
(4)

where ϕ is the function work of iron (110), χinh implies the inhibitor electronegativity, ηFe,
and ηinh are the chemical hardness of iron (0 eV) and the inhibitor, respectively.

In addition, the optimal adsorption configurations of the FSG6-2, FSG6-4, and FSG6-6
molecules on the Fe (110) surface were discovered by executing MC simulations via the
adsorption locator module in BIOVIA Materials Studio 2017 program [49]. The adsorbate
molecules were optimized by operating the COMPASS force field [50]. Then, the adsorption
of the examined inhibitors, hydronium ions, Cl- ions, and water molecules with the interface
of iron (110) was completed in a model box (37.24 Å × 37.24 Å × 59.81 Å) [51].

3. Results and Discussion
3.1. Chemistry

As epitomized in Scheme 1, the Gemini-fluorinated cationic surfactants were merely
prepared by a two-step reaction. The reaction sequence started by reacting N1,N1-
dimethylpropane-1,3-diamine with perfluoro-1-hexanesulfonyl fluoride in the presence
of triethylamine in petroleum ether. N-(3-(Dimethylamino)propyl)-1,1,2,2,3,3,4,4,5,5,6,6,6-
tridecafluorohexane-1-sulfonamide was obtained. The second step is the quaternization of
the product acquired from the first step with 1,2-diiodoethane, 1,4-diiodobutane, and 1,6-
diiodohexane in THF to generate the three Gemini-fluorinated cationic surfactants 3a-c. The
yields of the products ranged from 72.4 to 75.1%, in which the structures of these products
were ascertained by 1H-, 13C-, and 19F-NMR analyses (Figures S1–S4, Supporting Data).

3.2. Surface-Active Properties

As a special type of organic metal corrosion inhibitor, the enactment of surface-active
materials is diverse compared to that of the main organic corrosion additives because this
not only provides mineral protection against the corrosion process, but plays corresponding
roles such as resistance corrosion, deposit resistance, and grease removal. [52].

In the current work, the surface activity in an aqueous solution of the FSG6-2, FSG6-4,
and FSG6-6 was utilized to examine their behavior in the air/water interface and the
probability of producing micelles within the solution. The adaptation in the relationship
between surface tension (γ) and the concentration of as-prepared surfactant for FSG6-2,
FSG6-4, and FSG6-6 are described and drawn in Figure 1. It was found that the early
increase in the concentration of the as-prepared surfactants was investigated, causing the
surface tension to quickly reduce. At a stated point, the surface tension value starts to
decrease slightly, meaning that the surfactant molecules will aggregate in the solution bulk.
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Figure 1. Variation in (A) surface tension and (B) specific conductivity vs. the concentration of
Gemini-fluorinated cationic surfactants at 25 ◦C.

Based on previous studies, electrical conductivity values were used as a suitable
substitute technique to measure the value of CMC. As reported in Figure 1, a study of the
relationship between the surfactant’s electrical conductivity and the concentration was
carried out. The figure shows two linear portions in each plot, and the critical modification
of the slope refers to the CMC value of as-prepared surfactants. Subsequently, the values of
CMC, defined by electrical conductivity, are more dependable, as the findings result from
the surface tension, and the values are almost matching. Therefore, the following equation
measures the counter-ion binding (β) degree [52]:

β = 1− Smicellar
Spremicellar

(5)

where Smicellar is the slope of the linear line that is higher than the breakpoint, Spremicellar
is articulated as the slope of the linear line that is lower the CMC at the k–c curve. The
β values of as-prepared Gemini-fluorinated cationic surfactants specify the iodide ability
of anti-ions to face the electrostatic force; the electrostatic force of the iodide ions in the
Stern layer of the micelles may inhibit the formation of micelles [52]. Therefore, the
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frequent thermodynamic indices of the synthesized surfactants were calculated from the
β values acquired from the ratio of the above slopes. As revealed in Table 1, as the
hydrophobic spacer length increases, the β values reduce; this implies that the number of
surfactant micelle aggregations decreases and the charge density over the micelle’s surface
decreases [53].

Table 1. Surface-active characteristics of the as-prepared Gemini-fluorinated cationic surfactants.

Compounds CMC a/
mM

CMC b/
mM

γCMC/
mN m−1

ΠCMC/
mN m−1 β α

Γmax × 1011/
mol/cm−2

Amin/
nm2

∆Go
mic/

KJ mol−1
∆G0

ads/
KJ mol−1

FSG6-2 1.11 1.05 46.63 25.4 0.51 0.49 5.40 3.07 −25.48 −30.15

FSG6-4 0.83 0.89 44.54 27.46 0.58 0.42 5.02 3.30 −27.54 −32.97

FSG6-6 0.72 0.76 42.55 29.45 0.63 0.37 3.78 4.39 −29.22 −36.97
a CMC value acquired from surface tension measurements. b CMC value acquired from conductivity measurements.

Through the following calculations, other parameters, such as maximum surface effec-
tiveness (ΠCMC) and minimum surface-area per molecule (Amin), maximum surface-excess
concentration (Γmax), and the free energy of micellization/adsorption, will be calculated.

The effectiveness and efficiency of the synthesized surfactants are judged by their
ability to reduce the water surface tension, ΠCMC, defined as the efficiency (identified as
the variation concerning the surface tension of distilled water (γ0) (72 mN/m at 25 ◦C) and
surface tension at CMC (γCMC)) of surface tension reduction, which is identified as follows:

ΠCMC = γ0 − γCMC (6)

Table 1 shows that the γCMC values of FSG6-2, FSG6-4, and FSG6-6 are 46.63, 44.54, and
42.55 mN/m, individually, which shows that the Gemini-fluorinated cationic surfactants
with a long-spacer chain can better minimize the surface tensions than the shorter spacers.
The ΠCMC values are found in Table 1, which shows that the lengthening of the spacer
carbon chain caused an increase in the values of ΠCMC. Besides, the as-prepared FSG6-6
has a highly effective prepared surfactant and reduces the surface tension at CMC more
than other surfactants, making it close to 29.45 mN m−1 [53].

The superfluous surface (Γmax) is an applicable measurement of the process of ad-
sorption to the air/water interface; it is known that compounds with surface activity are
permanently concentrated on the surface at a higher rate than those inside the solution
bulk. The main method that shows their surface activity involves the packing densities
of the Gemini-fluorinated cationic surfactants at the air/aqueous solution interface. The
reduced area of a single surfactant molecule (Amin in nm2) reproduces packing densities
and is established by Equation (7) [54]:

Γmax =
−1

2.303nRT

(
dγ

d log C

)
T

(7)

where dγ/dlogC is the slope of the linear portion of the γ-log C curve; T = 298 K; R equals
8.314 J.mol−1·K−1; Γmax is mol/cm2, and n is a constant (equal to 2, which correlates with
the number of dissolved species) [54].

Amin =
1014

NA × Γmax
(8)

where NA equals 6.022 × 1023 mol−1; Γmax and Amin values are listed in Table 1. The
documented data show that the increase in the hydrophobicity in the spacer of the as-
prepared Gemini-fluorinated cationic surfactants has a greater ability to adsorb at the
interface of air/water, whereas the lengthening of the spacer leads to increases in the value
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of Amin; the surfactants with a shorter hydrophobic length have a high packing density at
the interface, which agrees with previous research on cationic surfactants [55].

The documented data describe that the elongation of the hydrophobic spacer leads
to minimization of the Γmax value; this refers to the as-prepared surfactants solutions
with reduced hydrophobic spacers, which tend to adsorb at the water/air interface. The
reduction in the values of Γmax are based on particular factors, such as the change in the
structure of the hydrophilic part, the existence of surfactants at the air/water interface, and
hydrogen bonding with H2O to break down long-range orders of the hydrogen bonding of
water molecules [56]. When the hydrophobic spacer group increases, the value of Amin also
increases. This is due to Gemini-fluorinated cationic surfactants with lower hydrophobic
groups that possess a greater packing density at the air/water interface. This outcome is in
line with previously described surfactants [53–55].

To study the values of the thermodynamic restrictions of adsorption (∆G0
ads) and

micellization (∆Go
mic) of as-prepared Gemini-fluorinated cationic surfactants, the following

equations will be utilized [55]:

∆G0
mic = (β + 1)RT ln CMC (9)

∆G0
ads = (β + 1)RT ln CMC− 6ΠCMC Amin

100
(10)

Because the micellization of the as-prepared Gemini-fluorinated cationic surfactants is
a class of impulsive performance and the recoded ∆Go

mic value must be negative. Depending
on the contemporary findings, it is not challenging to notice the slight difference between
∆Go

mic and ∆G0
ads in each cationic surfactant. The results showed that ∆G0

ads has a negative
value higher than ∆Go

mic and a fiercer interface adsorption favorite, as a consequence of
the hydrocarbon chain spacer that possesses more freedom of passage at the planar of the
air/water surface between the internal fragment of the micelle [53].

3.3. Polarization Measurements

The corrosion of X60-Steel performance in an acidic medium in the absence and
occurrence of Gemini-fluorinated cationic surfactants (FSG6-2, FSG6-4, and FSG6-6) was
studied by employing the polarization diagram method, as revealed in Figure 2. It was
observed that the existing density of both cathodic and anodic domains moved to inferior
values in the studied Gemini surfactants (FSG6-2, FSG6-4, and FSG6-6). The assessed
electrochemical strictures, such as the Tafel constants (βc and βa), the corrosion current
density (icor), corrosion potential (Ecorr), protection capacity (ZPDP/%), and the surface
coverage part (θ), are recorded in Table 2. The potentiodynamic polarization plots were
attained from −250 to +250 mV concerning the EOCP at scan rate, i.e., 1.0 mV/s [57]. The
linear portions of both cathode and anode subdivisions were extrapolated to the Ecor and
acquired icor, which could be used to compute the corrosion protection capacity (ZPDP/%)
of Gemini surfactants:

ZPDP/% =

(
i0cor − ii

cor

i0cor

)
× 100 (11)

where ii
cor and i0cor are the icor of the corrosive test solution containing FSG6-2, FSG6-4,

and FSG6-6 and blank medium, respectively. From Table 2, the findings showed that the
surfactant addition decreases both anodic steel oxidation and cathodic hydrogen evolution.
The outcome of the experiment shows that when the concentrations of FSG6-2, FSG6-4,
and FSG6-6 surfactants rise, the icor values steadily drop. Together with this, the protection
ability increases with the surfactant concentration and reaches maximum values of 93.37,
96.74, and 98.37% for SG6-2, FSG6-4, and FSG6-6, respectively, at 0.2 mM. According to
the approximate constant Tafel slopes of the cathodic branch βc, the surfactant reduced
the surface area for the evolution of hydrogen without altering the reaction mechanism [8].
The literature survey displays that the shift in Ecor compared to blank provides evidence
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about the inhibitor type of the tested inhibitors: cathodic or anodic type when the alteration
in Ecor is greater than 85 mV with the blank system; if not, the inhibitor is measured
as mixed-type [58]. In our study, the occurrence of the surfactant in the test medium
led to the displacement in the Ecor value being less than 85 mV, which was associated
with the uninhibited system. Consequently, the examined surfactant additives might be
categorized as an inhibitor of a comparatively mixed type [59]. Additionally, the electrode
surface developed a protective film as a result of the decrease in corresponding icor and an
increasing degree of surface covering (θ) with an increase inhibitor dose, confirming that
the produced inhibitors operate as corrosion inhibitors. According to findings from the
polarization technique, the three inhibitors’ order of inhibition capacity improves in the
following sequence: FSG6-2, FSG6-4, and FSG6-6.
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Table 2. PDP restrictions and protection proficiency for X60-Steel in pickling solution (HCl) with
different surfactant doses at 50 ◦C.

Inhibitors
Code

Cinh./
mol L−1

icor/
µAcm−2

±SD

Ecor/
mV (Ag/AgCl)

±SD

βa/
mV dec −1

−βc/
mV dec −1 θ ZPDP/%

Blank 0.0 325.7 ± 24.2 −640 95.2 170.2 - -

FSG6-2

5 × 10−6 164.31 ± 14.5 −651 100.8 166.8 0.495 49.55
1.5 × 10−5 138.71 ± 10.1 −660 97.4 178.8 0.574 57.41
3.0 × 10−5 87.09 ± 7.6 −658 98.5 181.4 0.732 73.26
6.0 × 10−5 70.51 ± 5.9 −635 99.6 160.1 0.783 78.35
1.0 × 10−4 46.60 ± 4.2 −648 106.4 152.3 0.856 85.69
2.0 × 10−4 21.59 ± 2.3 −636 103.1 174.7 0.933 93.37

FSG6-4

5 × 10−6 153.86 ± 13.7 −645 99.7 180.3 0.527 52.76
1.5 × 10−5 127.38 ± 11.3 −652 96.3 174.7 0.608 60.89
3.0 × 10−5 67.77 ± 5.8 −638 90.7 169.1 0.791 79.19
6.0 × 10−5 47.19 ± 4.9 −657 92.9 170.2 0.855 85.51
1.0 × 10−4 28.75 ± 2.4 −639 98.8 180.3 0.911 91.17
2.0 × 10−4 10.61 ± 1.5 −633 97.4 174.7 0.967 96.74

FSG6-6

5 × 10−6 141.94 ± 13.6 −642 98.5 162.4 0.564 56.42
1.5 × 10−5 110.86 ± 9.8 −652 95.2 165.7 0.659 65.96
3.0 × 10−5 54.97 ± 4.7 −647 96.3 170.2 0.831 83.12
6.0 × 10−5 36.93 ± 3.1 −627 92.9 182.5 0.886 88.66
1.0 × 10−4 17.81 ± 1.2 −630 100.8 175.8 0.945 94.53
2.0 × 10−4 5.31 ± 1.0 −618 97.6 172.4 0.983 98.37

3.4. EIS Studies

To examine the processes that occur at the electrode/solution interface, the film
production, and their effectiveness in terms of protection, EIS was used in pickling solution
(HCl) with and without the supplement of diverse FSG6-6 concentrations, as well as the
occurrence of 0.2 mM of different surfactants at 50 ◦C. Figure 3 shows the electrode’s
Nyquist plots with and without the occurrence of surfactants.

The Bode and Bode phase modules for X60-Steel in pickling solution (HCl) with
different FSG6-6 concentrations at 50 ◦C are seen in Figure 4A,B, after the EOCP examination
and with the oncoming stable-state potential. The Nyquist plots at low frequencies are best
represented by a single semicircle, signifying that charge transfer monitors the corrosion
process [40]. The depressed semi-circle shape of the Nyquist diagrams is frequently allied
with the inhomogeneity of the X60-Steel surface that was under study in the EIS studies [47].
These depressed semicircles could be described by the X60-Steel surface’s heterogeneity
or by the dispersion of some of the system’s physical property values [60]. Although
the semi-circle shapes were unaffected by the presence of FSG6-2, FSG6-4, and FSG6-6
molecules, the width of the semicircles grew as the surfactant dose rose, suggesting that
the corrosion reaction mechanism had not changed. As a result, the surfactant molecules
must have adhered to the metal surface, and it is obvious that the adsorbed film thickness
gradually increased as the surfactant concentration rose.

To find the best circuit components to match the experimental EIS results, the EIS
results were fitted with a proper comparable circuit by means of the Echem Analyst
software v5.6. The correctness of the simulated data was also evaluated using chi-squared.
All samples obtained small chi-squares of 10−4, indicating that the simulated data and
the real data are significantly correlated [60]. Figure 5A displays the simulated circuit [61]
(Rs(CPE-Rp)) for the uninhibited system, which contains (i) 2-resistances: one due to the
electrolyte (Re) and the other to the polarization (Rp), and (ii) one constant-phase element
(CPE). For an accurate and precise fit, CPE is typically used, rather than a double-layer
capacitance (Cdl). The polarization resistance, Rp, is complemented by several types of
resistance comprising the electrolyte resistance (Re), the charge transfer resistance (Rct), and
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film-resistance (Rf), etc., that is, Rp = Rct + Rf + Rs. In the inhibited system demonstrated in
Figure 5B, it is observed that Rp is in series with the parallel of capacitance (Cads) owing to
the surfactant layer adsorption and the resistance owing to the surfactant adsorption film
(Rads). The EIS strictures attained by fitting the experimental EIS graphs to the selected
equal circuit are recorded in Table 3. Cdl is connected to the constants of CPE (n and Yo) by
the following equation [62]:

Cdl =
[
Y0R1−n

ct

] 1
n (12)
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Figure 4. Bode (A) and Bode phase modules (B) for X60-Steel in pickling solution (HCl) with diverse
FSG6-6 concentrations at 50 ◦C.

Due to a reduced dielectric constant at the interface of the metal/solution, which
enables more FSG6-2, FSG6-4, and FSG6-6 molecules to adsorb on the metallic surface,
surfactant-induced Cdl values are lower than those of the blank HCl solution. It is signif-
icant to observe that lower Cdl values present with a thicker adsorbed protective layer.
Additionally, the decrease in Yo as the concentration of the complex increases supports the
expansion of molecules that were adsorbed onto the metallic surface. An excellent corrosion
resistance is typically related to a low Cdl and high Rp. Additionally, the efficiency gradu-
ally increased in response to the addition of surfactant concentrations. The highest Rp for
FSG6-2, FSG6-4, and FSG6-6 molecules is 487.4, 547.3, and 725.1 cm2, respectively, yielding
a maximum efficiency (ηi) of 95.46, 95.96, and 96.95% at 2.0 × 10−4 M for all surfactants.
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Table 3. EIS restrictions and protection proficiency for X60-Steel in pickling solution (HCl) with
diverse surfactant concentrations at 50 ◦C.

Inhibitor
Code

Cinh/
mol L−1

Rs/
Ω cm2

RP/
Ω cm2

±SD
Rp = Rd +Rf + Ra + Rct

Cdl/
µF cm−2

QCPE

θ ηi/%Y0/
µΩ−1 sn cm−2 n

Blank 0.0 0.22 22.1 ± 2.1 232.97 3.802 0.793 -- --

FSG6-2

5 × 10−6 0.51 31.3 ± 3.1 143.42 1.570 0.870 0.293 29.39

1.5 × 10−5 1.15 53.2 ± 3.9 103.15 0.956 0.880 0.584 58.45

3.0 × 10−5 1.21 87.9 ± 7.8 78.55 0.658 0.870 0.748 74.85

6.0 × 10−5 2.49 134.2 ± 11.8 67.29 0.309 0.889 0.835 83.53

1.0 × 10−4 2.64 257.7 ± 21.3 37.48 0.189 0.890 0.914 91.42

2.0 × 10−4 2.84 487.4 ± 41.2 28.38 0.118 0.883 0.954 95.46

FSG6-4

5 × 10−6 0.42 39.2 ± 2.4 122.88 1.206 0.851 0.436 43.62

1.5 × 10−5 0.47 62.9 ± 4.5 98.64 0.728 0.841 0.648 64.86

3.0 × 10−5 0.53 103.4 ± 8.8 75.94 0.502 0.869 0.786 78.62

6.0 × 10−5 1.11 157.4 ± 12.5 66.21 0.248 0.879 0.859 85.95

1.0 × 10−4 1.83 289.4 ± 18.9 32.16 0.134 0.838 0.923 92.36

2.0 × 10−4 2.11 547.3 ± 43.2 24.05 0.897 0.852 0.959 95.96

FSG6-6

5 × 10−6 0.75 43.6 ± 3.6 113.15 0.931 0.842 0.493 49.31

1.5 × 10−5 0.64 71.5 ± 7.7 93.42 0.568 0.851 0.690 69.09

3.0 × 10−5 0.94 124.9 ± 11.4 72.16 0.385 0.861 0.823 82.30

6.0 × 10−5 1.89 199.2 ± 15.8 59.36 0.202 0.874 0.889 88.90

1.0 × 10−4 2.91 351.4 ± 21.2 27.47 0.111 0.880 0.937 93.71

2.0 × 10−4 3.11 725.1 ± 56.1 17.02 0.088 0.868 0.969 96.95

The Bode and phase angle diagrams (Figure 4B) display a distinct peak, representing
the occurrence of a single time constant; as a result, the corrosion process occurs in a single
phase under charge transfer controller. The phase angle also increases (toward higher
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negative values) and extends with the addition of the surfactant compounds, signifying
good adsorption to the metallic surface, while the impedance modulus (Zmod) builds up
at low frequencies [49]. A higher inhibitory capacity and a lower rate of corrosion are
related to Zmod strengthening in the low-frequency region. Additionally, the addition of
the surfactant molecules shifts the Z slopes at the middle-frequency area towards −1 and
90, respectively, as a sign of increasing capacitive effectiveness [6]. The terms (θ) and (ηi)
were also estimated using Equation [55]:

ηi/% = θ × 100 =

[
1−

R0
p

Ri
p

]
× 100 (13)

where R0
p and Ri

p are the polarization resistances both devoid of and during the occur-
rence of diverse doses of FSG6-2, FSG6-4, and FSG6-6 molecules, respectively. In agree-
ment with earlier methods, the ηi/% of the assessed surfactant compounds is as follows:
(FSG6-6) > (FSG6-4) > (FSG6-2), with optimal protection values of 95.46, 95.96, and 96.95%.
The polarization measurements are consistent with this EIS-detected attitude.

3.5. Thermodynamic Parameters and Adsorption Isotherms

The surfactant adsorption on the interface of X60-steel in the pickling solution (HCl)
could be a replacement process of the absorbed H2O molecules on the steel substrate due
to the addition of surfactant compounds. For this investigation, the corrosion mitigation
Equation is [63]:

FSG(sol) +nH2O(ads) → FSG(ads) + nH2O(sol) (14)

where FSG(sol) is the FSG (surfactant) in the medium, FSG(ads) is the FSG adsorbate on
the steel surface, and n is the number of preliminary H2O molecules attached to the steel,
replace by FSG molecule [64]. To clarify the FSG surfactants’ adsorption performance on
the steel surface, diverse isotherms, for instance, Langmuir, Frumkin, Freundlich, and
Temkin models, were considered, and the Langmuir isotherm model displayed the greatest
fit, as given by the following equation [40]:

Cinh
θ

=
1

Kads
+ Cinh (15)

where θ, Cinh, and Kads are part of the surface coverage, the surfactant dose, and the
equilibrium constant of the adsorption/desorption route, respectively. The linear relation
concerning Cinh/θ and Cinh is exemplified in Figure 6. The regression coefficient (R2) values
are detailed as 0.9988, 0.9995, and 0.9997 for FSG6-2, FSG6-4, and FSG6-6, respectively.
Moreover, the slopes of the linear line were found to be 1.03, 1.01, and 0.98 for FSG6-2,
FSG6-4, and FSG6-6, respectively, signifying that the surfactant additive molecules are
adsorbed in a monolayer on the metal interface [47].

Furthermore, the Kads values were 10.1 × 104, 12.5 × 104, and 15.2 × 104 L/mol for
FSG6-2, FSG6-4, and FSG6-6, respectively. The comparatively high value of Kads inferred
that FSG6-2, FSG6-4, and FSG6-6 might adsorb on the metal surface. From constant Kads,
the adsorption-free energy ∆G0

ads can be calculated as follows [8]:

∆G0
ads = −RT ln(55.5Kads) (16)

where T is the absolute temperature, R = 8.314 J/mol K, and 55.5 is the molar concentration
of H2O. The calculated ∆G0

ads values of FSG6-2, FSG6-4, and FSG6-6 in 323 K solution are
−41.7, −42.3, and −42.8 kJ mol−1, respectively. Compared to FSG6-2 and FSG6-4, the
adsorption energy of FSG6-6 is more negative. This might demonstrate that its adsorption
is more powerful. The values of ∆G0

ads provide an indication of the attraction between
the adsorbent and adsorbate, i.e., the X60-steel interface and FSG surfactant. Generally,
adsorbent and adsorbate make physical contact at −20 kJ mol−1 or less, but a chemical
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interaction occurs at −40 kJ mol−1 or higher [49]. The values of ∆G0
ads in our study are

−41.7, −42.3, and −42.8 kJ mol−1 for FSG6-2, FSG6-4, and FSG6-6, respectively, indicating
that the FSG surfactants interacted with the X60-steel substrate through chemisorption,
which involved the interaction of FSG surfactants with the metal interface. The high
inhibitory efficiency of FSG surfactants is justified by the high value of Kads and ∆G0

ads,
which demonstrated the robust interaction of FSG surfactants with the X60-steel interface.
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Figure 6. Langmuir isotherm for X60-steel interface in the pickling solution (HCl) at 50 ◦C in the
present (A) FSG6-2, (B) FSG6-4, (C) FSG6-6.

3.6. Surface Morphology by XPS Studies

The binding of the FSG6-6 molecule with the X60-steel surface was identified using
XPS analysis, proving the adsorption of FSG6-6 molecules on the X60-steel surface. The
XPS spectra were found for the X60-Steel surface corroded in pickling solution without and
with FSG6-6 inhibitor, and are shown in Figures 7 and 8. The common peaks in C 1s, Cl 2p,
Fe 2p, and O 1s were discovered for uninhibited and inhibited specimens. In addition, the
adsorption of the FSG6-6 molecule on the X60-Steel surface was shown by the presence of
peaks for N 1s, F 1s, I 3d, and S 2p in the inhibited specimen. The binding energies (BE, eV)
and the respective assignment of each peak component are listed in Table 4 [65–77].
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Table 4. Binding energies (eV) and their assignments for XPS spectra observed for the X60-steel
surface in the pickling solution without and with 2 × 10−4 M FSG6-6.

X60-Steel in the Pickling Solution X60-Steel in the Pickling Solution with 2.0 × 10−4 M FSG6-6

Core Element BE, eV Assignments Core Element BE/eV Assignments

C 1s

285.11 −C−C−

C 1s

285.06 −C−H, −C−C−
286.86 −C−Cl 286.80 −C−N, −C−Cl

288.55 −C−N+

Cl 2p
198.89 Cl 2p3/2

Cl 2p
198.87 Cl 2p3/2

200.48 Cl 2p1/2 201.98 Cl 2p1/2

Fe 2p

711.08 Fe 2p3/2 of Fe2+

Fe 2p

711.00 Fe 2p3/2 of Fe2+

714.36 Fe 2p3/2 of Fe3+ 713.20 Fe 2p3/2 of Fe3+

718.79 Satellite Fe 2p3/2 of Fe2+ 716.84 Satellite Fe 2p3/2 of Fe2+

724.37 Fe 2p1/2 of Fe2+ 720.00 Satellite Fe 2p3/2 of Fe3+

727.78 Fe 2p1/2 of Fe3+ 724.64 Fe 2p1/2 of Fe2+

727.72 Fe 2p1/2 of Fe3+

732.90 Satellite Fe 2p1/2 of Fe3+

O 1s
530.21 FeO, Fe2O3

O 1s
530.04 FeO, Fe2O3

531.10 FeOOH 531.18 FeOOH

N 1s 400.13 -NR2

F 1s 689.24 −C−F

I 3d 619.63 I3
−

S 2p 167.28 −SO2−

The de-convoluted C 1s spectra (Figures 7 and 8) for the uninhibited specimen show
two peaks at 285.11 and 286.86 eV, which might be assigned to−C−C− and −C−Cl bonds.
Although the inhibited sample exhibits three peaks at 285.06 eV that may be ascribed to the
C−C− and C−H bonds, peaks at 286.80 eV can be credited to the C−N and C−Cl bonds,
and the last peak at 288.55 eV can be designated to the C−N+ bond [65,66]. The chlorine
peak in the X60-Steel specimens treated without and with FSG6-6 in the pickling solution
can be attributed to the binding of chloride ions to the positively charged Fe surface [67].
The Cl 2p spectrum exposes two approximately similar peaks (Figures 7 and 8) for the
specimens treated without and with FSG6-6, which are appointed to Cl 2p3/2 at 198.89 and
198.87 eV, and the other peaks seen for the specimens treated without and with FSG6-6
at 200.48 and 201.98 eV are attributed to Cl 2p1/2 [68]. The XPS spectra of Fe 2p exhibit
five approximately similar peaks (Figures 7 and 8) for the specimens treated without and
with FSG6-6 at 711.08, 711.00 eV, designated as Fe 2p3/2 of Fe2+, 714.36, 713.20 eV and
ascribed to Fe 2p3/2 of Fe3+; 718.79, 716.84 eV is attributed to Fe 2p3/2 satellites of Fe2+,
724.37, 724.64 eV are designated for Fe 2p1/2 of Fe2+, and 727.78, 72,772 eV are attributed to
Fe 2p1/2 of Fe3+. Additional peaks in inhibited specimens include one at 720.00 eV, which
was identified for Fe 2p3/2 satellites of Fe3+, and another at 732.90 eV, which is attibuted
to Fe 2p1/2 satellites of Fe3+ [69,70]. As can be seen in Figures 7 and 8, the high-resolution
O 1s spectra have two peaks for the specimens treated without and with FSG6-6: the first
at 530.21, 530.04 eV, referring to O2− that may be bound to Fe2+ and Fe3+ in the FeO and
Fe2O3 oxides [71], and the second at 531.10, 531.18 eV, which is attributed to OH- that may
be bound to Fe3+ in FeOOH [72,73].

Furthermore, the X60-Steel specimen treated with FSG6-6 in pickling solution reveals
a N 1s spectrum with a single peak (Figure 8) at 400.13, which can be ascribed to the
amine group (−N−H and −N−R2) found in the FSG6-6 molecule [74]. In addition, the
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F 1s spectrum has one distinctive peak (Figure 8) at 689.24 eV, due to the C−F bond
present in the FSG6-6 molecule, demonstrating its adsorption on the X60-Steel surface [75].
Additionally, the I 3d spectrum with a single peak (Figure 8) at 619.63 eV may be due to
the I3

− anion [76], as well as the single peak for S 2p spectrum (Figure 8) at 167.28, which
is attributed to the sulphonyl (−SO2−) found in the FSG6-6 molecule. This demonstrates
its adsorption of the X60-Steel surface [77]. Finally, the XPS analysis verifies that FSG6-6
adsorbed on the X60-Steel surface in a pickling solution.

3.7. Computational Calculations (DFT)

The optimized structures, LUMO, and HOMO distribution for FSG6-3, FSG6-4, and
FSG6-6 molecules are depicted in Figure 9, and the linked computational adaptable is
shown in Table 5. The FMO theory clarified that the LUMO and HOMO energies of
an additive can identify whether donor or acceptor interactions with metal surface can
occur [38]. Thus, the superior corrosion inhibitor molecule is characterized by large EHOMO
and small ELUMO values. According to Table 5, the FSG6-6 molecule has the highest EHOMO
value of−7.09 eV, in contrast with FSG6-2 and FSG6-4 molecules (−7.29,−7.14 eV). Figure 9
shows that the HOMO level for the additive molecules is sited on the dimethylammonium
and sulfonamide motifs, indicating that these positions are suitable for electrophilic assaults
on the X60-Steel surface. These explanations suggest the inhibitor molecule’s proficiency
for adsorption on the steel surface and, by extension, an improvement in the inhibition
efficiency, which was in respectable accordance with the empirical results. However, the
ELUMO value is −2.05 eV for the FSG6-6 molecule (Table 5), less than that of the FSG6-2
and FSG6-4 molecules (−1.81, −1.92 eV). Consistent with earlier findings, the lower ELUMO
value for the FSG6-6 molecule suggests an excessive protection power for the FSG6-6
molecule.

Table 5. The parameters of DFT of the FSG6-2, FSG6-4, and FSG6-6 molecules.

Parameters FSG6-2 FSG6-4 FSG6-6

EHOMO (eV) −7.29 −7.14 −7.09

ELUMO (eV) −1.81 −1.92 −2.05

∆E = ELUMO − EHOMO (eV) 5.48 5.22 5.04

Electronegativity (χ) 4.55 4.53 4.57

Global hardness (η) 2.74 2.61 2.52

Global softness (σ) 0.36 0.38 0.40

The number of electrons transferred (∆N) 0.45 0.47 0.48

∆Eback-donation −0.69 −0.65 −0.63

Dipole moments (µ) Debye 8.31 12.49 15.48

Molecular surface area, Å2 677.41 709.96 757.18

Likewise, the ∆E (energy gap) is an effective factor in improving the corrosion inhibi-
tion capability of the inhibitor molecule, i.e., which enhances as the ∆E value is declined [78].
Table 5 shows that the FSG6-6 molecule is more likely to be adsorbed on the X60-Steel sur-
face because its ∆E value (5.04 eV) is lower than those of the FSG6-2 and FSG6-4 molecules
(5.48 and 5.22 eV, respectively).
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Frequently, inhibitors have relatively low electronegativity (χ) values, suggesting their
ability to contribute electrons to the metal interface [79]. On the other hand, high electroneg-
ativity (χ) values indicate that the inhibitor molecule has a great electron-withdrawing
capacity, allowing for it to accept the electron from the metal surface atoms tracked by back-
donation from the inhibitor molecule and form a stronger bond with the metal surface [80].
Table 5 exhibits that the electronegativity of FSG6-2, FSG6-4, and FSG6-6 molecules is some-
what higher, suggesting that these molecules can back-donate and construct a stronger
bond with the X60-Steel surface.

Similarly, softness (σ) and hardness (η) can be used to evaluate the stability and
reactivity of the molecule, i.e., soft molecules have a greater protection proficiency than
hard molecules due to the easy relocation of electrons to the metal surface via adsorption, so
they function as effective corrosion inhibitors [81]. As depicted in Table 5, FSG6-6 molecules
have bigger σ values and slighter η values than FSG6-2 and FSG6-4 molecules, showing
the smooth relocation of electrons to the X60-Steel substrate and their excellent inhibition
properties.

Furthermore, the inhibitor’s capacity to donate or absorb electrons is determined
by the fraction of electron transfer and Eback-donation. Therefore, if the values of ∆N are
further than zero, electron transfer is likely to occur between the inhibitor molecule and
the metal interface atoms, and if the values of ∆N are less than zero, electron transfer
can occur between the metal atoms and the inhibitor molecule (i.e., back-donation) [82].
Table 5 shows that all the ∆N values of the studied molecules are greater than zero, proving
that the FSG6-3, FSG6-4, and FSG6-6 molecules can contribute electrons to the X60-Steel
surface. When the η > 0, ∆Eback-donation is <0, indicating that back-donation occurs and the
electron is withdrawn from the molecule, which is dynamically favored [83]. The negative
values of Eback-donation for the FSG6-3, FSG6-4, and FSG6-6 molecules found in Table 5
reveal that these molecules prefer to establish strong bonds with the X60-Steel surface by
back-donation [25].

The dipole moment is also a valuable feature, which is favored in the predictive
pathway of corrosion inhibition [84]. The molecule’s adsorption on the metal surface is
boosted, and its distortion energy is raised by the upsurge in dipole moment. Therefore, the
ability to suppress corrosion is enhanced when the dipole moment increases [85]. Table 5
shows that the dipole moment value of FSG6-6 molecules is larger than that of FSG6-2
molecules (8.31 debye) and FSG6-4 molecules (12.49 debye), suggesting a greater propensity
for FSG6-6 molecules to be adsorbed on the X60-Steel interface and enhance the protection.

Moreover, the molecular surface area of FSG6-2, FSG6-4, and FSG6-6 molecules has a
clear correlation with their propensity to shield the X60-Steel interface in corrosive condi-
tions. The contact area between the inhibitor molecule and the metal interface enhances
as the molecular size increases, leading to a higher level of inhibitory effectiveness [86].
According to Table 5, the molecular surface area of the FSG6-6 molecule (757.18 Å2) is the
highest among the FSG6-2 and FSG6-4 molecules, an indication that the highest inhibition
efficiency is obtained for the FSG6-6 molecule.

In addition, the Dmol3 module appraises molecular electrostatic potential mapping
(MEP), which can reveal the active sites of inhibitor molecules. The MEP is a 3D optical
component designed to demonstrate the net electrostatic significance established on a
molecule from the overall charge dispensation [87]. As illustrated in Figure 10, the area
with the highest electron density and, therefore, the most negative area, is represented by
red in MEP maps (nucleophilic reaction); contrarily, the most positive area (electrophilic
reaction) is shown by blue [88]. A visual exploration of Figure 10 confirms that the greatest
negative contributions are mostly found mostly dimethyl ammonium moieties, although
the electron density is lowest above tridecafluorohexane cores. The zones with superior
electron density (i.e., red zones) in inhibitor species may reveal the greatest positions for
interactions with the X60-Steel surface to build sturdy adsorbed protecting layers.
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3.8. MC Simulations

The inhibitor species’ attractions to the X60-steel surface were revealed using MC
simulations, and a clear concept for the adsorption mechanism was proposed. Thus, the
adsorption locator module shows the optimal adsorption arrangements for FSG6-3, FSG6-4,
and FSG6-6 molecules on the X60-steel surface in an acidic solution, as shown in Figure 11.
This suggests an enhancement of the adsorption and the highest surface coverage [89].

More importantly, Table 6 shows the results of the MC simulations that were used to cal-
culate the adsorption energies. It was found that the FSG6-6 molecule (−1971.88 kcal mol−1)
has a greater negative adsorption energy value than the FSG6-2 and FSG6-4 molecules
(−1848.35,−1900.63 kcal mol−1), suggesting that the FSG6-6 molecule energetically adsorbs
on the X60-steel surface, constructing a steady adsorbed film and protecting the X60-steel
from corrosion; these results are in agreement with the experimental outcomes [90]. The
adsorption energy values for the FSG6-6 molecule are more negative than those for the
FSG6-2 and FSG6-4 molecules, both prior to and following geometry optimization (Table 6),
i.e., unrelaxed, −1662.44 kcal mol−1 and after, i.e., relaxed, −309.45 kcal mol−1, confirming
that the FSG6-6 molecule has a greater protective capacity than the FSG6-2 and FSG6-4
molecules.



Materials 2023, 16, 5192 24 of 30
Materials 2023, 16, x FOR PEER REVIEW 27 of 32 
 

 

Figure 11. The potential adsorption configurations for the FSG6-2, FSG6-4, and FSG6-6 molecules 
on Fe (1 1 0) substrate achieved by the adsorption locator module. 

4. Conclusions 
In this work, three novel fluorinated surfactants bearing different spacers (FSG6-2, 

FSG6-4, and FSG6-6) were synthesized and characterized. The results show that all three 
fluorinated surfactants have a great ability to protect X60-steel in molar HCl. Excellent 
corrosion resistance is typically related to a low Cdl and high Rp. Additionally, the 
efficiency gradually rose in response to the addition of surfactant concentrations. Based 
on the attained findings, the protection capacities of FSG6-2, FSG6-4, and FSG6-6 followed 
the order 93.37% (FSG6-2) < 96.74% (FSG6-4) < 98.37% (FSG6-6) at 2.0 × 10−4 M, and the 
adsorption process of the compounds was discovered to obey the Langmuir adsorption 
model. The values of adsorption-free energy are −41.7, −42.3, and −42.8 kJ mol−1 for FSG6-

 FSG6-2 FSG6-4 FSG6-6 

Fi
na

l E
qu

ili
br

iu
m

 C
on
fig

ur
at

io
ns

 

   

Si
de

 V
ie

w
 

   

To
p 

V
ie

w
 

   

Figure 11. The potential adsorption configurations for the FSG6-2, FSG6-4, and FSG6-6 molecules on
Fe (1 1 0) substrate achieved by the adsorption locator module.

The dEads/dNi values clarify the metal/adsorbates’ arrangement energy if the ad-
sorbed inhibitor molecule or other adsorbates molecules are excluded [49,91]. The dEads/dNi
value for FSG6-6 molecules (−317.43 kcal mol−1) is superior to that of FSG6-2 and FSG6-4
molecules (−218.04,−255.39 kcal mol−1), as revealed in Table 6, which proves the outstand-
ing adsorption ability of the FSG6-6 molecule compared to FSG6-2 and FSG6-4 molecules.
Furthermore, the dEads/dNi values for water molecules, hydronium, and chloride ions are
about −15.37, −52.10, and −106.35 kcal mol−1, respectively. These values are low relative
to those of FSG6-2, FSG6-4, and FSG6-6 molecules, indicating that the adsorption inhibitor
molecules are better than water molecules, hydronium ions, and chloride ions, leading to
the greater dominance of inhibitor molecules compared to these other species. The com-
bination of experimental and theoretical evidence suggests that the FSG6-2, FSG6-4, and
FSG6-6 molecules adsorb resolutely on the X60-steel surface, producing a robust adsorbed
defense layer that protects the X60-steel against corrosion in a pickling environment.
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Table 6. Data computed by the MC simulations for the adsorption of the FSG6-2, FSG6-4, and FSG6-6
molecules on Fe (1 1 0).

Corrosion
Systems

Adsorption
Energy/

kcal mol−1

Rigid
Adsorption

Energy/
kcal mol−1

Deformation
Energy/

kcal mol−1

dEads/dNi:
Inhibitor

kcal mol−1

dEads/dNi:
Cl− Ions

kcal mol−1

dEads/dNi:
Hydronium
kcal mol−1

dEads/dNi:
Water

kcal mol−1

Fe (110)

−1848.35 −1630.31 −218.04 −206.14 −105.65 −52.17 −15.05

FSG6-2

Water

Hydronium

Cl− ions

Fe (110)

−1900.63 −1645.24 −255.39 −252.11 −105.60 −52.41 −15.80

FSG6-4

Water

Hydronium

Cl− ions

Fe (110)

−1971.88 −1662.44 −309.43 −317.05 −106.35 −51.73 −15.27

FSG6-6

Water

Hydronium

Cl− ions

4. Conclusions

In this work, three novel fluorinated surfactants bearing different spacers (FSG6-2,
FSG6-4, and FSG6-6) were synthesized and characterized. The results show that all three
fluorinated surfactants have a great ability to protect X60-steel in molar HCl. Excellent
corrosion resistance is typically related to a low Cdl and high Rp. Additionally, the efficiency
gradually rose in response to the addition of surfactant concentrations. Based on the
attained findings, the protection capacities of FSG6-2, FSG6-4, and FSG6-6 followed the
order 93.37% (FSG6-2) < 96.74% (FSG6-4) < 98.37% (FSG6-6) at 2.0 × 10−4 M, and the
adsorption process of the compounds was discovered to obey the Langmuir adsorption
model. The values of adsorption-free energy are −41.7, −42.3, and −42.8 kJ mol−1 for
FSG6-2, FSG6-4, and FSG6-6, respectively, indicating that FSG surfactants interacted with
the X60-steel substrate through chemisorption. Fluorinated surfactants, which are a sort
of mixed-type inhibitor, decrease both the anodic and cathodic progressions according to
PDP measurements. The progression of a protective barrier layer on the substrate of the
steel surface due to the presence of all molecules significantly inhibits active site corrosion,
as was confirmed by XPS surface morphology analysis. The electrochemical examinations
were reinforced by computational studies.
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