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Marković, E. Estimation of Cyclic

Stress–Strain Curves of Steels Based

on Monotonic Properties Using

Artificial Neural Networks. Materials

2023, 16, 5010. https://doi.org/

10.3390/ma16145010

Academic Editors: Panagiotis

G. Asteris and Ahmed

Salih Mohammed

Received: 13 June 2023

Revised: 12 July 2023

Accepted: 13 July 2023

Published: 15 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Estimation of Cyclic Stress–Strain Curves of Steels Based on
Monotonic Properties Using Artificial Neural Networks
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Abstract: This paper introduces a novel method for estimating the cyclic stress–strain curves of steels
based on their monotonic properties and plastic strain amplitudes, utilizing artificial neural networks
(ANNs). ANNs were trained on a substantial number of experimental data for steels, collected from
relevant literature, and divided into subgroups according to alloying elements content (unalloyed,
low-alloy, and high-alloy steels). Only monotonic properties that were proven to be relevant for
the estimation of points on the stress–strain curve were used. The performance of the developed
ANNs was assessed using an independent set of data, and the results were compared to experimental
values, values obtained by existing empirical estimation methods, and by previously developed
ANNs. The results showed that the new approach which combines relevant monotonic properties
and plastic strain amplitudes as inputs to ANNs for cyclic stress–strain curve estimation is better
than the previously used approach where ANNs estimate the parameters of the Ramberg–Osgood
material model separately. This shows that a more favorable approach to the estimation of cyclic
stress–strain behavior would be to directly estimate corresponding material curves using monotonic
properties. Additionally, this may also reduce inaccuracies resulting from simplified representations
of the actual material behavior inherent in the material model.

Keywords: artificial neural networks; estimation; steels; cyclic stress–strain curves; cyclic stress–
strain parameters

1. Introduction

In various industries such as aerospace, automotive, and civil engineering, the reli-
ability and safety of structures are of the highest importance. With the development of
computer-aided engineering simulations, it is now possible to simulate the behavior and
durability of engineering structures under real-world conditions. However, to obtain pre-
dictions on the behavior of structures under various loadings, a good understanding of the
mechanical behavior of the materials used in these structures, which requires experimental
determination, is essential. Monotonic testing of materials can provide valuable insight into
material behavior, but since most structures in real-world applications experience cyclic
loadings, knowledge of the materials’ behavior under cyclic loadings is also necessary.

Through cyclic experiments, parameters of the cyclic Ramberg–Osgood (R–O) equa-
tion [1], a widely used representation of the cyclic stress–strain response of the majority of
metallic materials, can be determined:
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where ∆ε, ∆εe, and ∆εp are true total, elastic, and plastic strain ranges, respectively; ∆σ is
the true stress range, E is the Young’s modulus, K′ is the cyclic strength coefficient, and n′

is the cyclic strain hardening exponent.
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As opposed to monotonic tensile or compression tests, cyclic tests are more time-
consuming, expensive, and not feasible for multiple candidate materials. Consequently,
since the 1960′s, there is a constant and even growing interest in the development of estima-
tion methods with which it would be possible to accurately predict fatigue parameters, and,
somewhat later, also cyclic (R–O) parameters from easily obtainable monotonic parameters.
Estimation methods that have been developed since range from empirical methods mostly
based on the simple or multiple, linear or nonlinear regression models, to recent efforts
focused on the development of more advanced, machine learning-based estimation models.

2. Overview and Analysis of Existing Approaches and Estimation Methods
2.1. Analytical and Empirical Methods

Zhang et al. [2] proposed a method for estimation of the cyclic parameters K′ and n′ of
steels, aluminum, and titanium alloys by separating them into three groups depending on
the value of a newly developed parameter called fracture ductility α. Using this method,
it is possible to estimate cyclic parameters through the monotonic values of Ramberg–
Osgood parameters, strength coefficient K and strain hardening exponent n. Basan et al. [3]
developed a method for the correlation of experimentally determined cyclic parameters
from the hardness of quenched and tempered low-alloy steel, 42CrMo4. A simple nonlinear
relationship was proposed between K′ and Brinell hardness HB which showed a good
correlation, whereas no such correlation could be found between n′ and HB. Lopez and
Fatemi [4] performed an estimation of cyclic parameters from monotonic tensile data
consisting of 123 steels of different chemical compositions and mechanical properties. To
better estimate the cyclic strength coefficient K′, steels were grouped into three subgroups
depending on the ratio of ultimate tensile strength Rm to yield strength Re. Expression
for the estimation of n′ was performed on the whole dataset. In comparison to using all
material data to find the relationship between monotonic tensile properties and K′, this
grouping method increased the correlation between mentioned properties.

Li et al. [5] developed a method for estimating cyclic Ramberg–Osgood parameters K′

and n′ as well as cyclic yield strength Re
′ from monotonic tensile properties. Expression for

estimating the cyclic yield strength Re
′ was originally developed in [6] and later modified,

which resulted in a high coefficient of determination R2 of 96.1%. Expressions for estimation
of cyclic strength coefficient K′ were developed on a dataset consisting of 121 steels with
separation of steels in subgroups depending on the ratio of tensile strength to yield strength
Rm/Re. Using the values of K′ obtained from these expressions for estimating K′, it was
possible to determine cyclic strain hardening exponent n′.

In a more recent study, Zonfrillo [7] proposed a new method for estimating the cyclic
strength coefficient K′ and cyclic strain hardening exponent n′ exclusively from properties
obtained from monotonic tensile tests and their nonlinear combinations. The study focused
on three types of materials: iron alloys (primarily steel), titanium alloys, and aluminum
alloys. Expressions were developed separately for each group. In this publication, a novel
grouping method to improve the correlation of n′ for each material type was introduced
using true fracture ductility εf and reduction of area at fracture RA. The results showed
that Zonfrillo’s method demonstrates higher accuracy in predicting both K′ and n′ when
compared with other expressions from the literature.

These analytical estimation methods are still not abandoned due to their practicality,
simplicity, and quickly obtainable results, which can be seen in a recent paper by Derrick
and Fatemi [8], where correlations of fatigue strength of additively manufactured metals
with hardness and defect size were established.

There are several challenges in estimating the cyclic Ramberg–Osgood parameters.
Empirical methods that rely only on monotonic parameters such as Rm, Re, or HB often
provide insufficient results [7], which supports the claim that no useful correlation has been
found between n′ and the hardness value HB [3]. Assigning average or median values
to these parameters due to the difficulty in determining functional relationships between
monotonic and cyclic parameters is inadequate, as different groups of metallic materials
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have significant differences in their cyclic behavior and corresponding parameters, as
shown by Marohnić et al. [9].

2.2. Machine Learning-Based Approaches and Estimation Methods

Following the discussion on empirical methods for the estimation of cyclic parameters
and presented difficulties, recent trends in the application of machine learning in material
science in general and also in the development of more advanced estimation methods
have shown some promising results. Machine learning methods, more precisely, Artificial
Neural Networks (ANNs), are particularly gaining popularity and increased application
due to their ability to identify complex relationships between inputs (predictor variables)
and outputs (dependent variables), providing a more accurate and reliable estimation
of material parameters applied to various fields of material science. Kalla et al. [10]
developed an ANN model for the estimation of machining process outcomes of composite
materials that showed significant improvements in the predictive power as opposed to
multiple regression methods. Asiltürk and Çunkaş [11] employed ANN to determine the
surface roughness of AISI 1040 steel after the turning process and reported a coefficient of
determination R2 of 98.9%. Recently, Zhang et al. [12] developed a model for estimating
the high cycle fatigue life of laser powder bed fusion stainless steel 316L using the neuro-
fuzzy-based machine learning technique. Similarly, Bao et al. [13] adopted a machine
learning method to explore the influence of defect parameters on the fatigue life of selective
laser-melted Ti-6Al-4 V alloy, achieving high coefficients of determination. Most recently,
Jia et al. [14] examined the fatigue behavior of titanium alloys fabricated by laser powder
bed fusion, particularly in very-high-cycle fatigue regimes. They developed a deep-belief
neural network for predicting the fatigue life of such alloys. These studies demonstrate
the increasing use of machine learning methods in predicting fatigue material behavior,
especially in the emerging field of additive materials. Furthermore, it is worth noting
the recent study conducted by Mosleh et al. [15], where they developed an ANN model
for predicting the mechanical properties of anti-friction aluminum-based alloys. The
mechanical properties considered were ultimate tensile strength, elongation to failure,
and hardness, with the chemical compositions of the alloys serving as inputs. The model
exhibited high quality compared with unseen experimental data.

The utilization of ANNs has also been demonstrated in several research papers re-
garding the estimation of cyclic and fatigue parameters specifically related to steel based
on its monotonic parameters. For example, Genel [16] developed four separate artificial
neural networks for predicting each of the individual Basquin–Coffin–Manson (B–C–M)
parameters. The material dataset included 73 steels and the reported accuracy was around
99% for fatigue strength and ductility coefficients. Troshchenko et al. [17] also employed
four ANNs to estimate B–C–M parameters and their approach resulted in lower maximum
relative errors compared to conventional methods. Networks were trained on data con-
sisting of 140 various steels including carbon, low- and high-alloy steel. In a more recent
study, Soyer et al. [18] predicted the fatigue parameters of high-alloy steel at low cycles
using one artificial neural network with four outputs and achieved an accuracy of 99% on
test data. Their whole dataset included 38 high-strength steels from which only 10% was
used for testing with five inputs representing common monotonic tensile parameters and
four outputs being B–C–M parameters.

Apart from predicting Basquin–Coffin–Manson parameters, several authors have
demonstrated the successful development of ANN models for the estimation of Ramberg–
Osgood parameters. Ghajar et al. [19] constructed two separate neural networks to predict
cyclic Ramberg–Osgood parameters K′ and n′ from monotonic tensile properties. Their
dataset included 48 various steels for the first neural network used for predicting K′ and
82 steels for the second neural network used for predicting n′ of which around 25% was
used for testing the networks. The reported testing accuracy for predicting K′ and n′ was
95.3% and 86.5%, respectively. Tomasella et al. [20] developed an artificial neural network
for simulating virtual experimental tests instead of directly predicting cyclic material
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properties K′ and n′. From the selected strain amplitudes εa, the number of cycles to failure
Nf and stress amplitude σa was calculated, which was then used as an output of ANN.
They reported better accuracy of their approach when compared to the chosen empirical
method. More recently, Marohnić [21] developed a new approach to the estimation of cyclic
and fatigue parameters of unalloyed, low-alloyed, and high-alloyed steels that includes
the identification of monotonic properties relevant for the estimation of each particular
cyclic and fatigue parameter and each steel subgroup and incorporating that knowledge
to modeling of artificial neural networks for the considered problem. Separate ANNs
were developed for each cyclic Ramberg–Osgood parameter as well as strain-life Basquin–
Coffin–Manson parameter. For the testing dataset, ANNs proved to be more successful
than empirical methods for estimating most of the cyclic and fatigue parameters.

From the literature review and analysis of existing approaches and methods, two
main drawbacks can be identified. First, most of the existing studies developed mod-
els on the datasets consisting of the variety of steel without considering differences in
individual subgroups of steel. To counter this, in the presented study, the estimations
were performed separately for steels grouped according to alloying element content since
in [9,21] it was shown that the cyclic stress–strain behavior of these groups is statistically
significantly different.

Secondly, most of the previous approaches for estimating cyclic or fatigue material
behavior included separate estimation of parameters of various models, particularly the
cyclic Ramberg–Osgood parameters, and subsequent calculation of stress amplitudes ∆σ/2
using those parameters [21,22]. Estimating model parameters inherently introduces errors,
as these models are not perfect representations of the actual material behavior. A more
favorable approach would be to directly estimate material response in the form of values
of stress amplitudes correspondent to a selected set of strain amplitudes using monotonic
data. By doing so, points on the cyclic stress–strain curve could be directly estimated using
experimental data points. Consequently, the parameters of any model could be determined
based on the cyclic stress–strain curve obtained through this approach.

Additionally, the aforementioned approaches do not include detailed statistical analy-
sis of monotonic parameters relevant to the estimation of cyclic and/or fatigue parameters
and material behavior.

Such direct prediction of stress–strain curves using a neural network approach has
already proven successful in various fields. One such example is the work of Gangi Setti and
Rao [23], who developed an ANN model for predicting the monotonic stress–strain curve
of a titanium alloy. In their study, the input features consisted of strain values and different
microstructures of the titanium alloy, specifically represented as the volume fraction of
the α phase and the stress values served as the target values for the ANN. Similarly,
Yang et al. [24] used a machine learning approach and combined principal component
analysis with a convolutional neural network (CNN) to predict the stress–strain curves of
binary composites. The input feature to CNN included a binary matrix representing the
composite design, generated through finite element analysis, whereas the target variable
was a stress vector. Lavech du Bos et al. [25] developed a methodology for the modeling
of stress–strain curves of one fully reversed loading cycle using the ANN approach, thus
avoiding the determination of model parameters necessary for defining a constitutive
model. The model was trained on data generated using a simulation algorithm.

In the performed literature review, no references were found dealing primarily with the
estimation of parameters of more advanced constitutive material models from monotonic
properties and related material information. A study indicating such a possibility was
performed by Basan et al. [26], in which parameters of a rate-independent Chaboche model
were calculated based on cyclic stress–strain curves which were determined using a simple
Ramberg–Osgood model. Satisfactory approximations were obtained for a set of differently
heat-treated low-alloy steel, 42CrMo4.

The main aim of this paper was to explore the possibility of developing and utilizing
artificial neural networks to estimate materials’ response, i.e., stress amplitudes ∆σ/2,
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using relevant monotonic properties and selected plastic strain amplitudes ∆εp/2 as inputs
to artificial neural networks. Combining the findings from [26] and the approach to the
estimation of cyclic stress–strain curves and Ramberg–Osgood parameters from monotonic
properties of materials developed by Marohnić [21,22] might also result in the possibility
of reasonable estimations of parameters of other, more advanced constitutive models
describing materials’ stabilized stress–strain responses using machine learning, specifically
ANNs. Additionally, the direct estimation of materials’ responses, instead of estimating
their parameters, in this case, the Ramberg–Osgood model for cyclic stress–strain behavior,
can enable better estimations. The results will be compared to those obtained using
empirical methods available in the literature and using previously developed ANNs [21,22].

3. Materials and Methods
3.1. General Methodology

As proposed earlier, estimations will be performed separately for steels grouped
according to alloying element content since it was shown in [9,21] that the cyclic stress–
strain behavior of these groups statistically significantly differed.

In the framework of this study, for estimation of cyclic stress–strain behavior, i.e.,
curves, monotonic properties are used, which were proved to be statistically significant
for the estimation of cyclic yield stress Re

′ for each steel group (Table 1) as published in
an earlier study [27]. Since it was proved there that Re

′, as a point on the cyclic stress–
strain curve, can be successfully estimated using monotonic properties, it is assumed that
by adding plastic strain amplitudes ∆εp/2 to monotonic properties already proven as
statistically significant for estimation of Re

′, the whole cyclic stress–strain curve can be
successfully estimated. The motivation for determination and using only significant, i.e.,
relevant monotonic properties for estimation of cyclic stress–strain parameters and curves
is obtaining a favorable ratio between the number of input variables and the number of
available datasets for ANN training, as explained in more detail in Section 3.3.

Table 1. Overview of monotonic properties that proved to be relevant for estimation of cyclic yield
stress Re

′ of unalloyed, low-alloy, and high-alloy steels.
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Details on the forward stepwise regression procedure used for the identification
of relevant monotonic properties for estimation of cyclic yield stress Re

′ are provided
in [21,27].

The procedure of estimation of cyclic stress–strain behavior is given in the flow chart
in Figure 1. Even though most steps are easily understandable, the term “chosen values
of ∆εp/2” must be addressed. The investigation and results presented here are the first
steps towards the development of the method for estimation of materials’ cyclic stress–
strain behavior using experimental data points instead of (cyclic) stress–strain curve points
calculated using a certain model and the corresponding material parameters. As a result, the
parameters of any appropriate material model could then be determined. This investigation,
however, is based on the calculation of those data points (∆σ/2–∆εp/2) determined using
the cyclic Ramberg–Osgood material behavior model. Since the plastic part of the cyclic
stress–strain curve (∆σ/2–∆εp/2) calculated using the R–O model is a straight line in the
double logarithmic diagram, theoretically only two points—any two points on the curve—
are needed for the determination of the line. However, since the aim of this research is to set
foundations for comprehensive estimation of cyclic stress–strain curves using experimental
data points, i.e., actual plastic strain amplitudes and monotonic properties as independent
variables (inputs), in this investigation, two variations in the number of data points for
each material were used:

1. ∆σ/2 for ∆εp/2 = 0.2% and 2%;
2. ∆σ/2 for ∆εp/2 = 0.2%; 0.5%, 1%, 1.5% and 2%.
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The second option with multiple (5) values of plastic strain amplitudes serves to
evaluate the performance of ANNs for a larger number of data points.

3.2. Materials Data

Statistical analysis for the determination of the relevance of particular monotonic
properties for the estimation of cyclic stress–strain parameters [21,27] was performed on
data for three representative groups of steels: unalloyed (UA), low-alloy (LA), and high-
alloy (HA) steels collected from the relevant literature. For the analysis, only data from
strain-controlled, fully reversed (R = −1) axial cyclic tests conducted in the air at room
temperature, performed on at least four different strain amplitudes with a range of total
strain amplitudes greater than 0.4%, were taken into account. There were a total of 34
UA, 47 LA, and 35 HA steels that could be analyzed. Steels were subjected to different
processing and heat treatment so datasets covered a wide variety of conditions.

Detailed material data used for performing the forward selection of relevant mono-
tonic properties for the estimation of each cyclic parameter of each group of steels were
collected from [28,29] through [30]. Summarized tables can be found in [21,27]. In Table 2,
minimum/maximum/mean values of the key monotonic properties and cyclic parameters
can be found, along with alloying element content range (wt.%) for unalloyed, low-alloy,
and high-alloy steels, respectively.

Table 2. Maximum, minimum, and mean values of monotonic properties and cyclic parameters of
datasets used for forward selection [21,27] and alloying element content range (wt.%) for unalloyed,
low-alloy, and high-alloy steels [28,30,31].

St
ee

l
Su

bg
ro

up

V
al

ue

Monotonic Properties Cyclic Parameters

HB
(HB)

E
(MPa)

Re or
Rp0.2
(MPa)

Rm
(MPa)

Rm/Re
(-)

Rm/E
(10−3)

RA
(%)

K
(MPa)

n
(-)

σf
(MPa)

εf
(-)

R’p0.2
(MPa)

K′

(MPa)
n′

(-)

UA

Min 130 190,000 207 359 1.159 1.710 0 330 0.015 653 0.000 239 813 0.085
Max 385 217,510 760 1018 1.848 4.966 74 1606 0.285 1784 1.204 722 2407 0.254

Mean 216 206,594 474 665 1.437 3.222 59 1033 0.165 1228 0.864 408 1263 0.184
Alloying element content range (wt%): C 0.02–0.50; Si 0.02–0.55; Mn 0.03–1.50; P 0.01–0.05; S 0.01–0.05; Cr 0.02–0.19; Mo 0.00–0.01; Ni
0.01–0.13; Cu 0.01–0.21; Al 0.04–0.07; N 0.00–0.01

LA

Min 23 187,500 330 540 1.038 2.700 3 717 0.007 926 0.026 322 894 0.067
Max 357 221,000 1927 2016 1.855 9.739 76 2586 0.236 2230 1.450 1341 3328 0.225

Mean 225 201,658 857 987 1.184 4.910 56 1298 0.084 1522 0.847 647 1419 0.125
Alloying element content range (wt%): C 0.04–1.02; Si 0.06–0.68; Mn 0.01–1.43; P 0.01–0.04; S 0.00–0.06; Cr 0.03–1.89; Mo 0.01–1.13; Ni
0.02–1.90; Cu 0.01–0.57; Al 0.00–0.17; Co 0.00–0.21; Ti 0.00–0.04; V 0.06–0.24; Nb 0.00–0.03

HA

Min 35 172,625 177 516 1.231 2.457 46 349 0.062 1360 1.010 197 987 0.093
Max 337 210,000 795 1158 3.670 5.521 83 1416 0.362 2407 1.715 882 8384 0.469

Mean 168 205,811 331 685 2.428 3.342 71 791 0.157 1837 1.402 377 2567 0.305
Alloying element content range (wt%): C 0.02–0.25; Si 0.27–1.50; Mn 0.41–2.00; P 0.02–0.04; S 0.00–0.02; Cr 11.40–25.00; Mo 0.02–2.62; Ni
0.21–24.65; Cu 0.06–0.31; Al 0.00–0.26; Co 0.11–0.22; Ti 0.00–2.50; W 0.00–0.99; V 0.00–0.28; N 0.05–0.25

Note: Shaded cells mean that information was not available for all datasets.

Since the number of datasets used for statistical analysis is small in the context of
ANNs, so additional data were collected for the development and evaluation of ANNs. Data
were acquired [28,30–42] using the same criteria and respecting the same distribution as
those used for statistical analysis [21,27], ensuring that the findings reached are applicable to
the new data as well. A portion of the newly acquired datasets was used for an independent
evaluation of the ANN methodology (comparison with experimental results, estimations
obtained using selected empirical methods and previously developed ANNs), but not for
training ANNs. In total, 59 experimental datasets for unalloyed steels, 70 for low-alloyed
steels, and 35 for high-alloyed steels were used for training ANNs for the estimation of
stress amplitudes ∆σ/2. A total of 52 datasets were available for unbiased evaluation of
ANNs, including 17 unalloyed, 25 low-alloy, and 10 high-alloy steels.



Materials 2023, 16, 5010 8 of 18

The datasets used for the development and evaluation of ANN results in this research
are the same as in [21,22] in order to obtain comparable results. Detailed materials data
and a list of data sources used are provided in [21,22].

3.3. ANNs for Estimation of Cyclic Stress–Strain Behavior

Although regression models are quite accurate approximations for most regression
problems, their capacity to discover more complicated correlations between input variables
(predictors) and output (dependent) variables is restricted. Artificial neural networks, in
contrast to regression models, are nonlinear, adaptable computational models employed
in a variety of fields. They are frequently used for function approximation, which is the
detection of an unknown relationship between input and output variables, among its many
applications. ANNs can therefore be utilized to predict cyclic stress–strain behavior.

ANNs are based on biological neural networks and consist of three layers: input layer
(one neuron for each input variable), hidden layers (one or more neurons in one or more
hidden layers), and output layer (one neuron for each output variable). Figure 2 shows a
schematic representation of one-layered ANNs employed in this study.
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Figure 2. A fully connected multilayer perceptron with one hidden layer was employed in this study.

Six two-layer multilayer perceptrons (MLP) with a hyperbolic tangent transfer function
in the hidden layer and a linear transfer function in the output layer were developed in
order to estimate the cyclic stress–strain behavior of UA, LA, and HA steels. The training
parameters of ANN models are given in Table 3.
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Table 3. Training parameters of the ANN models.

Parameter Value

Training algorithm Levenberg–Marquadt (with early stopping)
Normalization minmax in the range from −1 to 1
Number of hidden layers 1

Number of neurons per hidden layer

1 to H by step 1
UA: 2 data points H = 13; 5 data points H = 33
LA: 2 data points H = 18; 5 data points H = 46
HA: 2 data points H = 6; 5 data points H = 16

Control random number generation rng(‘default’), Mersenne Twister generator
with seed 0

Number of trainings per architecture 10
Training goal 0.0001σtarget

2

Epochs 1000 (if MSE not met)
Cost function MSE
Transfer function tansig; purelin
Number of k-folds 10
Division of data into k-fold random permutation

σtarget
2 variance of the target variable

MSE mean square error
Tansig: hyperbolic tangent sigmoid transfer function
Purelin: linear transfer function

The main objective of ANN development is to adjust weights that connect neurons so
that output variables (estimated values of ∆σ/2) are close to target values (experimental
values of ∆σ/2). This is met when the error function, in this instance mean square error
(MSE), has reached its minimum.

Forward selection defined the input variables (monotonic properties), as explained
previously and given in Table 1, along with the chosen values of ∆εp/2 (two or five
different values) for which the corresponding values of ∆σ/2 were calculated and used as
the multilayer perceptron target. The methodology of ANN development relies on that
given in [21,22].

The maximum number of neurons in hidden layer H is defined by the number of
training samples available, Ntrain, the number of input variables I, and the number of target
variables O:

H ≤ O·(Ntrain − 1)
I + O + 1

(2)

The number of neurons in the hidden layer was determined by combining the growth
method (starting from one neuron in the hidden layer) with a method for improving
generalization—early stopping in order to prevent overlearning (in extreme cases, over-
learning leads to memorizing training data), i.e., improve generalization (performance
of the network on new, “unseen” data). For learning (i.e., minimizing error function),
Levenberg–Marquadt algorithm with early stopping is used, being the most effective as
shown in previous investigations.

A common caveat of ANN modeling is overlearning, which in some extreme cases can
lead to memorizing training data so that ANNs perform poorly on new, unseen data, i.e., are
unable to generalize well. Thus, in this study, a growth method was used for determining
the number of neurons in the hidden layer (starting from one neuron) and combined
with a learning algorithm with early stopping to improve the generalization of ANNs.
Levenberg–Marquadt algorithm with early stopping is used for learning, i.e., minimizing
error function, which is the most effective, as shown in previous investigations. Because the
number of accessible data for creating ANNs is relatively small in terms of ANN modeling,
but quite large in contrast to existing methods of cyclic parameter/behavior estimation,
k-fold cross-validation was utilized, with k set to ten folds. k-fold cross-validation is an
effective approach to make the most of the data available for ANN development. A sample
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is partitioned into ten subsamples at random, and in each training, one subsample is used
for ANN validation (or testing). Finally, k networks are modeled, and an average of all of
them is used for evaluation. Ensembles of networks, also known as committees of networks,
combine the findings of two or more ANNs to produce a better level of generalization on
unseen data. For each ANN architecture (number of neurons in hidden layer), 10 ensembles
were trained with 10 different initial values of weights per one architecture (hidden layer
size H) to reduce the possibility of the error function of the selected network converging
to local instead of global minimum. In total, 370 ensembles (3700 networks) were trained
for estimations based on two values of ∆εp/2, and 950 ensembles (9500 networks) for
estimations based on five values of ∆εp/2 using MATLAB R2022b [43].

The best ensembles were chosen from all architectures based on the value of the
error function (in this case the mean square error) and evaluated on an independent set
of data that had not been utilized for ANN training. Table 4 shows the root mean square
error RMSEmean,test and coefficient of correlation rtest between targets and outputs (i.e.,
experimental and estimated values) for each considered ensemble.

Table 4. Artificial neural networks chosen for estimation of cyclic stress–strain behavior of unalloyed,
low-alloy, and high-alloy steels.

Steel Group Data Points Used for Estimation H RMSEmean,test rtest

UA
2 12 57 0.943
5 17 75 0.875

LA
2 13 82 0.953
5 19 93 0.932

HA
2 5 151 0.922
5 10 137 0.920

4. Results

After ANNs were developed, selected networks had to be tested on unseen data to
obtain their predictive accuracy. Designation of ANN approaches that differ in inputs
and target is as follows: estimation using two data points (∆εp/2 = 0.2% and 2%) on the
plastic part of the cyclic stress–strain curve—ANN-CSSC-2, estimation using five data
points (∆εp/2 = 0.2%; 0.5%, 1%, 1.5%, and 2%) on the plastic part of the cyclic stress–strain
curve—ANN-CSSC-5.

Scatter diagrams in Figures 3–5 represent information on the relation between exper-
imental and predicted values of stress amplitude values ∆σ/2, obtained directly using
selected ANNs (Table 4) on “unseen” data for unalloyed, low-alloy and high-alloy steels,
respectively. Figure 3a, Figure 4a, and Figure 5a are obtained using ANN-CSSC-2, while
Figure 3b, Figure 4b, and Figure 5b are obtained using ANN-CSSC-5 approach.

It can be seen that for ANN-CSSC-2 consistently no significant deviation of data to
either side of the regression line (r = 1) can be observed, while for ANN-CSSC-5 the scatter
is more pronounced, especially for unalloyed and low-alloy steels (Figures 3b and 4b
respectively). Using ANN-CSSC-5 for unalloyed steels results in a significant number
of ∆σ/2 that are either underestimated or overestimated, especially within the region of
experimental values of ∆σ/2 between 350 MPa and 600 MPa. For low-alloy steels, ANN-
CSSC-5 results in a scatter that is more pronounced for experimental values of ∆σ/2 higher
than approximately 700 MPa.



Materials 2023, 16, 5010 11 of 18

Materials 2023, 16, x FOR PEER REVIEW 11 of 19 
 

 

RMSEmean,test and coefficient of correlation rtest between targets and outputs (i.e., experi-
mental and estimated values) for each considered ensemble. 

Table 4. Artificial neural networks chosen for estimation of cyclic stress–strain behavior of unal-
loyed, low-alloy, and high-alloy steels. 

Steel Group Data Points Used for Estimation H RMSEmean,test rtest 

UA 2 12 57 0.943 
5 17 75 0.875 

LA 2 13 82 0.953 
5 19 93 0.932 

HA 2 5 151 0.922 
5 10 137 0.920 

4. Results 
After ANNs were developed, selected networks had to be tested on unseen data to 

obtain their predictive accuracy. Designation of ANN approaches that differ in inputs and 
target is as follows: estimation using two data points (Δεp/2 = 0.2% and 2%) on the plastic 
part of the cyclic stress–strain curve—ANN-CSSC-2, estimation using five data points 
(Δεp/2 = 0.2%; 0.5%, 1%, 1.5%, and 2%) on the plastic part of the cyclic stress–strain curve—
ANN-CSSC-5. 

Scatter diagrams in Figures 3–5 represent information on the relation between exper-
imental and predicted values of stress amplitude values Δσ/2, obtained directly using se-
lected ANNs (Table 4) on “unseen” data for unalloyed, low-alloy and high-alloy steels, 
respectively. Figures 3a, 4a, and 5a are obtained using ANN-CSSC-2, while Figures 3b, 4b, 
and 5b are obtained using ANN-CSSC-5 approach. 

 
Figure 3. Scatter diagrams of stress amplitudes Δσ/2 obtained by selected artificial neural networks 
vs. experimental counterparts for (a) ANN-CSSC-2 approach and (b) ANN-CSSC-5 approach, on 
“unseen” data for unalloyed steels. 

Figure 3. Scatter diagrams of stress amplitudes ∆σ/2 obtained by selected artificial neural networks
vs. experimental counterparts for (a) ANN-CSSC-2 approach and (b) ANN-CSSC-5 approach, on
“unseen” data for unalloyed steels.

Materials 2023, 16, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 4. Scatter diagrams of stress amplitudes Δσ/2 obtained by selected artificial neural networks 
vs. experimental counterparts for (a) the ANN-CSSC-2 approach and (b) the ANN-CSSC-5 ap-
proach, on “unseen” data for low-alloy steels. 

 
Figure 5. Scatter diagrams of stress amplitudes Δσ/2 obtained by selected artificial neural networks 
vs. experimental counterparts for (a) ANN-CSSC-2 approach and (b) ANN-CSSC-5 approach, on 
“unseen” data for high-alloy steels. 

It can be seen that for ANN-CSSC-2 consistently no significant deviation of data to 
either side of the regression line (r = 1) can be observed, while for ANN-CSSC-5 the scatter 
is more pronounced, especially for unalloyed and low-alloy steels (Figures 3b and 4b re-
spectively). Using ANN-CSSC-5 for unalloyed steels results in a significant number of 

Figure 4. Scatter diagrams of stress amplitudes ∆σ/2 obtained by selected artificial neural networks
vs. experimental counterparts for (a) the ANN-CSSC-2 approach and (b) the ANN-CSSC-5 approach,
on “unseen” data for low-alloy steels.



Materials 2023, 16, 5010 12 of 18

Materials 2023, 16, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 4. Scatter diagrams of stress amplitudes Δσ/2 obtained by selected artificial neural networks 
vs. experimental counterparts for (a) the ANN-CSSC-2 approach and (b) the ANN-CSSC-5 ap-
proach, on “unseen” data for low-alloy steels. 

 
Figure 5. Scatter diagrams of stress amplitudes Δσ/2 obtained by selected artificial neural networks 
vs. experimental counterparts for (a) ANN-CSSC-2 approach and (b) ANN-CSSC-5 approach, on 
“unseen” data for high-alloy steels. 

It can be seen that for ANN-CSSC-2 consistently no significant deviation of data to 
either side of the regression line (r = 1) can be observed, while for ANN-CSSC-5 the scatter 
is more pronounced, especially for unalloyed and low-alloy steels (Figures 3b and 4b re-
spectively). Using ANN-CSSC-5 for unalloyed steels results in a significant number of 

Figure 5. Scatter diagrams of stress amplitudes ∆σ/2 obtained by selected artificial neural networks
vs. experimental counterparts for (a) ANN-CSSC-2 approach and (b) ANN-CSSC-5 approach, on
“unseen” data for high-alloy steels.

5. Performance Evaluation of ANNs and Comparison to Existing Approaches

To further evaluate the predictive accuracy of artificial neural networks for the estima-
tion of stress amplitudes ∆σ/2 and to compare performance to approaches available in the
literature, results were compared to those obtained by existing empirical methods ([2,4,5])
for estimation of K′ and n′ and previously developed ANNs, i.e., ANN-param, that directly
estimate RO parameters [21,22]. Details of selected methods are given in [9,21]. It should
be noted that only three datasets were available for evaluation of the Zhang 1 method for
high-alloy steels.

In order to validate networks, stress amplitudes were first estimated using selected
ANNs (Table 4), and then parameters K′ and n′ were determined from estimated values
of ∆σ/2, and chosen values of ∆εp/2, which were then used to calculate values of stress
amplitudes ∆σ/2 for eight different total strain amplitudes ∆ε/2: 0.25%, 0.3%, 0.35%, 0.4%,
0.45%, 0.5%, 0.9%, and 1.5%. For obtained values, deviations up to ±5, ±10, ±15, and
±20% from ∆σ/2 calculated using experimental values of K′ and n′ were determined.

In Figures 6–8, the percentage of ∆σ/2 values estimated by selected empirical meth-
ods and different models of ANNs that deviate up to ±5, ±10, ±15, and ±20% from
values calculated on experiment-based values of cyclic stress–strain parameters is given for
unalloyed, low-alloy and high-alloy steels.
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For UA steels (Figure 6), ANNs provide better estimations in deviations up to ±10%,
with the approach of direct estimation of stress amplitudes ∆σ/2 (ANN-CSSC-2 and ANN-
CSSC-5) being somewhat more successful than the approach that separately estimates
cyclic stress–strain parameters (ANN-param), around 58% versus 50%. From those two
variations of direct estimation of stress amplitudes ∆σ/2, ANN-CSSC-2 is somewhat more
successful than ANN-CSSC-5 when comparing deviations up to 20% (92% vs. 81%), and is
comparable to ANN-param (94%).

For LA steels (Figure 7), direct estimation of stress amplitudes ∆σ/2 is significantly
better than the ANN-param estimation approach in deviations up to ±5% (ANN-param
29%, ANN-CSSC-2 43%, ANN-CSSC-5 40%), up to ±10% (ANN-param 56%, ANN-CSSC-2
76%, ANN-CSSC-5 69%), and up to ±15% (ANN-param 87%, ANN-CSSC-2 98%, ANN-
CSSC-5 91%). However, ANN-CSSC-2 and ANN-CSSC-5 are comparable to best empirical
methods (Li) only in deviations up to ±20%, which is around 95–100% of data falling into
that deviation range.

The most pronounced improvement is observed for HA steels (Figure 8). It was already
proven with the ANN-param approach for parameter estimation that the estimated behav-
ior is better than empirical methods. Here, ANN-CSSC-5 results in 58% of data deviating
up to ±5% from experimental-based counterparts, compared to 23 and 43% obtained from
Lopez 1 and ANN-param, respectively. For larger deviations, up to ±20%, ANN-CSSC-2
results in 89% of data falling within that range, compared to around 58% and 68% obtained
by the best empirical method (Lopez 1, 2 and Li) and ANN-param respectively.

Two additional statistical indicators of the model’s performance on “unseen” data are
provided in Table 5 for all methods and approaches evaluated, for unalloyed, low-alloy,
and high-alloy steels—mean absolute percentage error, MAPE, and root mean square error,
RMSE, as in [21,22,44–46].

Table 5. Summary of models’ performance indicators.

Steel Group Method/Approach MAPE RMSE

UA

Zhang 1 [2] 26.13 182.78
Zhang 1 [2] 34.08 192.79
Lopez 1 [4] 12.92 68.28
Lopez 1 [4] 11.82 59.02

Li [5] 8.17 44.07
ANN-param [22] 6.83 39.81

ANN-CSSC-2 6.19 38.18
ANN-CSSC-5 9.47 57.61

LA

Zhang 1 [2] 37.96 270.33
Zhang 1 [2] 19.79 157.46
Lopez 1 [4] 6.38 56.28
Lopez 1 [4] 11.54 78.23

Li [5] 5.88 54.06
ANN-param [22] 9.06 61.70

ANN-CSSC-2 6.48 48.92
ANN-CSSC-5 7.70 59.82

HA

Zhang 1 [2] 82.64 332.49
Zhang 1 [2] 28.05 175.82
Lopez 1 [4] 20.11 173.56
Lopez 1 [4] 22.19 183.31

Li [5] 20.91 129.90
ANN-param [22] 14.96 136.43

ANN-CSSC-2 9.62 68.52
ANN-CSSC-5 8.98 68.05

Note: Bold values designate lowest values of MAPE and RMSE for each steel subgroup.
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MAPE value is commonly interpreted as a prediction (forecasting) goodness indicator,
with values under 10% indicating highly accurate forecasting. Sometimes it is considered
to show the generalization capability of the model. It is calculated using Equation (3):

MAPE = 100
1
n

n

∑
i=1

∣∣∣∣∣ xi exp − xiest

xi exp

∣∣∣∣∣ (3)

where xiexp are experimental values and xiest are estimated values of ∆σ/2.
However, the determination of the generalization capability of the model should not

be based solely on one indicator; thus, RMSE is calculated using Equation (4):

RMSE =

√
1
n∑n

i=1

(
xiest − xi exp

)2 (4)

RMSE represents the standard deviation of estimation errors, i.e., the average difference
between values that are estimated by a model, and experimental values.

The lowest values of MAPE and RMSE are underlined in Table 5 for each steel group,
indicating models with the best generalization capability. For unalloyed steels, the lowest
values of both MAPE and RMSE were observed for the ANN-CSSC-2 approach, closely
followed by ANN-param [22]. For low-alloy steels, the lowest MAPE value is observed
for the method by Li et al. [5] (Li 1), closely followed by Lopez 1 [4] and ANN-CSSC-2.
However, ANN-CSSC-2 shows lower value of RMSE than both of these methods. For high-
alloy steels, ANN-CSSC-2 and ANN-CSSC-5 showed significantly better results, i.e., the
lowest values of both MAPE and RMSE compared to all other methods, with ANN-CSSC-5
being slightly better than ANN-CSSC-2.

6. Discussion and Conclusions

Figures 6–8 show that the approach to the estimation of cyclic stress–strain curves
proposed in this paper, as a preliminary investigation of direct estimation of cyclic stress–
strain curves from monotonic properties and experimental data points, and a foundation for
estimation of parameters of selected advanced constitutive models, provides comparable
results as best empirical methods and previously developed ANN approach where cyclic
stress–strain parameters are estimated separately.

To get more insight into the performance of the proposed approach where monotonic
properties and data points (∆σ/2–∆ε/2) were used to train an artificial neural network,
in Figure 9, estimated points of cyclic stress–strain curves for DIN Ck 45, AISI 4142 and
AISI 304 (2 datasets each) are given in comparison to their experimental counterparts
for the three artificial neural network approaches: ANN-param [22], ANN-CSSC-2, and
ANN-CSSC-5.

It can be seen that for Ck 45 (dataset 1), the results for ANN-CSSC-2 and ANN-CSSC-5
are comparable to the ANN-param approach, where monotonic properties are used to
estimate K′ and n′ separately. Data points obtained by ANN-CSSC-2 are almost overlapping
those obtained by ANN-param. For Ck 45 (dataset 2), it can be seen that all three approaches
resulted in good, but slightly non-conservative estimations, with ANN-CSSC-2 being the
closest to experimental data points. For AISI 4142 (dataset 2) and AISI 304 (dataset 2), the
results were somewhat similar as for Ck 45 (dataset 1), although estimated data points
deviated more from experimental curves for the region of ∆ε/2 > 0.4%. For these datasets,
results obtained by ANN-CSSC-2 and ANN-CSSC-5 are better than using ANN-param,
although AISI 4142 (dataset 2) were still somewhat nonconservative. Results for DIN Ck
45 (dataset 2) and AISI 4142 (dataset 1) showed significant differences between the three
approaches. In both of these cases, estimations using ANN-CSSC-2 are better than the
other two (especially ANN). For AISI 4142 (dataset 1), ANN-CSSC-2 provides conservative
estimates, while ANN-param and ANN-CSSC-5 are nonconservative.
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The most pronounced difference is seen for AISI 304 (dataset 1) where the ANN-
param approach significantly underestimates the stress amplitudes. For the same dataset,
data points obtained by ANN-CSSC-2 and ANN-CSSC-5 are almost overlapping within
the region up until ∆ε/2 = 0.5%, while the portion above ∆ε/2 = 0.5% is much closer to
experimental data than for ANN, and still in a conservative region.

When comparing ANN-CSSC-2 and ANN-CSSC-5 it is seen that the ANN-CSSC-2
approach, where only two points on the plastic portion of cyclic stress–strain curves (∆σ/2
for ∆εp/2 = 0.2% and 2%) are used for artificial neural network training, is, in general,
better than ANN-CSSC-5, where five points on the plastic portion of cyclic stress–strain
curves (∆σ/2 for ∆εp/2 = 0.2%; 0.5%, 1%, 1.5%, and 2%.) are used. This is probably
due to some noise caused by more data points (∆σ/2–∆εp/2) per one combination of
monotonic properties used as inputs for artificial neural network training. One important
thing to address is that the smoothness of the curves obtained by both ANN-CSSC-2 and
ANN-CSSC-5 showed that overfitting, as a common risk accompanying ANN modeling, is
adequately addressed.

The obtained results and performance evaluation show potential for the estimation of
cyclic stress–strain curves and parameters of other constitutive models using monotonic
properties and experimental data points in an artificial neural network approach. However,
further investigations must be made regarding the relevance of monotonic properties, the
number of data points used, the ANN algorithm, different ML algorithms, etc.



Materials 2023, 16, 5010 17 of 18

Author Contributions: Conceptualization, T.M. and R.B.; methodology, T.M.; software, T.M.; valida-
tion, T.M. and R.B.; formal analysis, T.M., R.B. and E.M.; investigation, T.M., E.M. and R.B.; writing,
T.M., E.M. and R.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by Croatian Science Foundation under the project IP-2020-
02-5764 and by the University of Rijeka under the project number uniritehnic-18-116.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are available in [9,22].

Acknowledgments: Authors wish to gratefully acknowledge support by Croatian Science Founda-
tion under the project IP-2020-02-5764 and by the University of Rijeka under the project number
uniri-tehnic-18-116. The work of doctoral student Ela Marković has been fully supported by the
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