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Abstract: Ceramic waste forms are designed to immobilize radionuclides for permanent disposal in
geological repositories. One of the principal criteria for the effective incorporation of waste elements is
their compatibility with the host material. In terms of performance under environmental conditions,
the resistance of the waste forms to degradation over long periods of time is a critical concern
when they are exposed to natural environments. Due to their unique crystallographic features and
behavior in nature environment as exemplified by their natural analogues, ceramic waste forms are
capable of incorporating problematic nuclear waste elements while showing promising chemical
durability in aqueous environments. Recent studies of apatite- and hollandite-structured waste
forms demonstrated an approach that can predict the compositions of ceramic waste forms and
their long-term dissolution rate by a combination of computational techniques including machine
learning, first-principles thermodynamics calculations, and modeling using kinetic rate equations
based on critical laboratory experiments. By integrating the predictions of elemental incorporation
and degradation kinetics in a holistic framework, the approach could be promising for the design of
advanced ceramic waste forms with optimized incorporation capacity and environmental degradation
performance. Such an approach could provide a path for accelerated ceramic waste form development
and performance prediction for problematic nuclear waste elements.

Keywords: ceramic waste forms; apatite; hollandite; machine learning; first-principles calculations;
rate theory; fission products

1. Introduction

The sustained development of nuclear energy requires the safe disposal of radionu-
clides produced from nuclear fission. Depending on nuclear fuel cycle options, which may
involve several processes such as enrichment, off-gas capture, separation, and reprocess-
ing, different waste streams with quite different compositions and levels of toxicity may
result. Nuclear waste forms, including borosilicate glass and ceramics, are developed to
immobilize these radioactive elements. However, due to factors such as the processing
temperature of the glass, incorporation capacity, and long-term chemical durability in aque-
ous environments, borosilicate glass cannot efficiently immobilize certain radionuclides
such as I-129, Cs-137, Cs-135, Tc-99, and Cl-36. If these radionuclides are released into the
environment, they most likely form relatively large ionic species such as I−, Cs+, TcO4

−,
and Cl− in most natural aqueous environmental conditions, due to their large stability field
in Eh-pH phase space. Because of their low ionic potential (formal charge to radius ratio),
they are less likely to form insoluble compounds through interactions with rocks and other
dissolved species in the environment. Thus, they are mobile with a very limited amount of
adsorption on the surfaces of rocks in the disposal environment. Furthermore, the surfaces
of many silicate minerals, common in the disposal environment, are negatively charged
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because their pH values for the surface point of zero charge (PZC) are usually lower than
the pH values of the groundwater expected to occur in the nearby field and geological
formations [1–3]. For instance, for felsic (acidic, more silica content) igneous rocks (granite
and rhyolite) consisting of minerals including quartz, albite, orthoclase, muscovite, and
their weathered minerals such as kaolinite, their PZCs are from 1.5 to 4.8 [4]. For mafic rocks
such as gabbro and basalt (basic, less silica content), the PZCs of the constituent minerals
such as pyroxene and forsterite become higher, at 7.5 and 9.0, respectively [4,5]. However,
these basic rocks often consist of a substantial amount of altered minerals with high surface
area such as serpentine, montmorillonite, and chlorite (also common in sedimentary rock)
with a PZC less than 5 [5]. As a result, these negatively charged surfaces cause negligible
surface adsorption of the negatively charged aqueous ions, such as I−, Cl−, and TcO4

−, on
the silicate materials because the species and the surfaces are both negatively charged. As
such, these ionic aqueous species are highly mobile in the environment. Therefore, these
abovementioned elements are considered to be the most problematic radionuclides, which
have the greatest potential of long-term adverse impact on the environment. It is there-
fore essential that appropriate waste forms are developed to efficiently incorporate these
elements with sufficiently high loading and high chemical durability in the environment.

Due to their high structural compatibility with certain nuclear waste elements, includ-
ing long-lived fission products, actinides, and activation products, crystalline phases have
been selected to develop ceramic waste forms that immobilize a group of radionuclides,
such as synroc, or a single radionuclide, such as iodoapatite [6–15]. Unlike glass waste
forms, ceramic waste forms have existing technical challenges and are not omnipotent
in the immobilization of all waste components, but they are effective in targeting certain
problematic radionuclides. For instance, the iodoapatite (Pb5(VO4)3I) waste form was
developed to incorporate iodine-129 (~16 million years of half-life), which has very low
solubility in nuclear glass, because apatite’s crystallographic channel site can accommodate
large anions such as iodide [16–22]. Apatite-structured materials (materials with apatite
structure but with a composition different from natural apatite) are also capable of incorpo-
rating cesium, strontium, chlorine, rare earth elements, and some actinides [21]. Similarly,
sodalite-structured materials can incorporate iodide in the β-cage site of the crystal struc-
ture [23,24]. Hollandite and pollucite waste forms have been developed to incorporate
Cs+ in its large channel site and 12-coordinated crystallographic sites, respectively [25–34].
In addition, other crystalline ceramic waste forms such as perovskite, pyrochlore, mu-
rataite, monazite, and crichtonite have been developed for the incorporation of various
radionuclides, including Cs, Sr, rare earth, and actinides [11,35]. A great advantage of these
selected crystalline phases is that each of them has a flexible composition and is capable of
incorporating multiple elements by chemical substitution. These synthetic ceramic phases
also have natural analogues and are chemically durable in the environment [11,35–37].
While their compositional flexibility is intriguing in pursuing correlation and coupling
relationships between composition, structure, and properties, and provides a great oppor-
tunity to explore the compositional space to improve radionuclide immobilization, it also
presents an enormous challenge for optimizing the composition of a given waste form with
respect to waste element loading capacity and waste form environmental performance.
This is because, as these phases have multiple substitution sites, the possible number of
combinatorial substitutions at different sites and the number of materials to be tested
become enormous when considering potential substituting elements from the periodic
table. Therefore, approaches based on the trial-and-error method of testing the possible
compositions require a substantial amount of work and decades of research and develop-
ment. In this regard, methods such as machine learning and other computational methods
that are capable of processing a large number of compositions for a given crystalline phase
are essential in identifying and narrowing down the potential compositions that are worthy
of further consideration.

In addition, ceramic waste forms need to be chemically durable in aqueous environ-
ments to ensure their long-term performance in a repository. It would be ideal if waste
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forms could be designed by concurrently considering both radionuclide incorporation and
long-term chemical durability in aqueous environments. While it is not feasible to test the
chemical durability of the waste forms under all conditions that may occur in a repository
over a time period of hundreds of thousands of years, test protocols such as the Product
Consistency Test [38], which was designed to evaluate and screen nuclear waste forms,
may not be able to account for chemical durability under different conditions and over
a long period of time, as degradation mechanisms may change with the degree of degra-
dation and time [37,39]. Therefore, a systematic test of the chemical durability, aiming to
understand the dissolution mechanism, is necessary for the reliable prediction of long-term
performance under various environmental conditions. Based on an understanding of the
dissolution mechanisms, modeling methods such as those based on thermodynamic kinetic
theories that relate the dissolution rate to environmental conditions are necessary for the
prediction of the chemical durability over time. Only experiments or computations that
are critical to parameterizing the kinetic rate equations are needed. Once the kinetic rate
equations are properly parameterized, they can be used to predict dissolution rates under
various environmental conditions.

As described above, the rapid development of crystalline ceramic nuclear waste forms
requires handling a large number of compositions for a given ceramic phase, and the waste
element loading and dissolution rates of these waste forms in the compositional space
need to be characterized. These needs call for an efficient computational approach, which
is the focus of this review. However, due to the large scope of computational material
design and nuclear waste development in the broad literature, a comprehensive review of
computational material design for nuclear waste forms is not intended. Instead, the purpose
of this review is rather narrow and only focuses on some of our most recent progress in the
design of ceramic waste forms using machine learning, first-principles calculations, and
the modeling of dissolution kinetics of crystalline ceramics using thermodynamic kinetic
rate theory. Apatite-structured and (to a lesser extent) hollandite-structured materials
will be used as examples and model systems to highlight this progress. Waste forms for
specific waste, or waste streams such as long-lived and highly radio toxic actinides, are
not emphasized, but they are very important to nuclear waste management. Together,
these advances provide examples to demonstrate that these methods can be employed
to accelerate the development of ceramic waste forms that specifically target some of the
aforementioned problematic radionuclides. Note that there are significant developments
in ceramic waste forms that will not be discussed in this review, but if interested, please
refer to some of sources in the broader literature [6–13,35–37,39–41]. With advances in
computational material design from the scientific community [42–51] and progress in the
computation and mechanistic understanding of elemental incorporation and dissolution
kinetics, predictive modeling is expected to transform our ability to design new waste forms
and therefore enable rational discovery strategies for nuclear waste management [36,37,39].

2. Incorporation of Waste Elements in Crystalline Ceramic Phases

Crystalline ceramic waste forms are developed with the unique capability of efficiently
incorporating certain targeted radioactive waste elements, in contrast to glass waste forms,
which incorporate a broad collection of radionuclides but less efficient for problematic
radionuclides. Because the distinctive features of their crystal structures are compatible
with those targeted radionuclides, they are capable of incorporating a sufficient amount
of these waste elements. Such compatibility is largely due to chemical substitutions at
crystallographic sites and the flexibility of their crystal structure to accommodate substi-
tutions. For instance, iodide is incorporated into the apatite structure by a substitution
in the channel sites, which does not and cannot occur in glass waste forms. It is not sur-
prising that these ceramic waste forms have natural mineral analogues that incorporate
waste elements and have endured natural processes for many millions of years [6,11,35].
These crystalline phases are often complex solid solutions with various elements occupy-
ing multiple crystallographic sites with variable fractions of occupancies. For instance,
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apatite-structured materials can have hundreds of end-member compositions as a result
of multiple site substitutions [21]: A5(XO4)3Z, where A = Na+, K+, Cs+, Mg2+, Ca2+, Ba2+,
Sr2+, Cd 2+, Pb2+, Fe2+, Fe3+, REE3+, and Ac4+,3+ (REE = rare earth elements, Ac = ac-
tinides), X = P5+, Si4+, S6+, V5+, Cr5+, As5+, Mn5+, Ge4+, and Z = OH−, F−, Cl−, Br, I−, O2−,
CO3

2−, and IO3
−. In some cases, as a result of different compositions, the apatite crystal

structure can even adapt different symmetries (e.g., P63, P3) through lattice distortion
and cation ordering, derived from the hexagonal symmetry (P63/m) that natural apatite
has [52,53]. Additionally, the usual tetrahedron anion group (XO4) can even be replaced by
non-tetrahedron anions such as ReO5 [54] and BO3 [18]. Such structural flexibility and the
associated compositional complexity not only allow the apatite structure to incorporate
radioactive elements, but also may permit them to tolerate thermodynamic instability
caused by a change in the composition resulting from radioactive decay (i.e., β decay). For
instance, apatite-structured materials are predicted to be able to mitigate the instability
caused by the chemical composition change as a result of β decay from fission products [55].
This mitigation relies on the material’s ability to reduce variable valence metal cations via
receiving the electrons emitted from β decay and on the structural accommodation of the
changes in the valence and chemical identity of the radionuclides. Overall, these studies
suggest that structural flexibility and compositional complexity can greatly benefit the
immobilization of radionuclides.

To fully appreciate the flexibility and complexity of those complex oxides for waste
form development, the chemical composition of a given waste form can be further op-
timized for its performance. Improving the loading capacity of radionuclides and the
chemical durability of waste forms is one of the active research areas in nuclear waste
form development. Thermodynamic principles, along with computational techniques and
calorimetry measurements, have been used to guide ceramic waste form development.
Searching for better-performing waste forms typically involves varying chemical substi-
tutions in the host phase [56–62]. However, the compositional space is often large for
complex ceramics. The trial-and-error method using experiments can only be performed
for a limited number of compositions. With the help of computational techniques, it is
possible to overcome this challenge. For instance, machine learning and first-principles
modeling have been employed to screen and evaluate a large number of potential new
compositions [21,63–67]. The computational techniques can thus be helpful to complement
the experiment, and, in particular, to possibly identify promising candidates from a vast col-
lection of compositional possibilities for further costly experimental investigations. Apatite-
and hollandite-structured materials are highlighted here in this contribution as examples
and model systems to demonstrate the application of machine learning for nuclear waste
form development and apatite-structured materials for the application of first-principles
calculations and the modeling of dissolution kinetics.

3. Machine Learning for Ceramic Waste Form Design
3.1. Artificial Neural Network Simulation

Machine learning techniques have recently become widely used for material discov-
ery [44,45,47,68–72]. Among them, the artificial neural network (ANN) is a supervised
machine learning technique based on statistical principles. The approach is inspired by
biological neuron assemblies, their way of encoding and solving problems, and how neu-
rons function in the human brain. The perceptron learning algorithm used in ANN accepts
input, performs a computation on the input, and then produces an output [73,74]. As
shown in Figure 1, the input data with weight and bias are first passed to the neurons
in the hidden layers and processed by a training function, and the data are then passed
to the output neuron. The weights and biases are continually adjusted during the ANN
simulation to match the predicted results to the actually observed ones [75]. To deduce the
relationship between the input and output, a neural network is first trained using a given
set of input-output datasets through supervised learning. After the training (supervised
learning), the network needs to be validated before it can be used for prediction with an
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input–output characteristic approximately equal to the relationship of the training problems.
Because of the modular and nonlinear activation functions, the network is in principle able
to approximate any arbitrary relationship to an arbitrary degree of accuracy [75–77]. For
the application of ceramic waste forms with a given crystal structure, the composition and
composition-derived properties are used as input parameters. The output parameters are
selected to have prediction powers such as crystal structure features and thermodynamic
properties that can be used to predict potential new compositions. This approach has been
used to predict the compositions of iodoapatite and cesium hollandite and the chemical
durability of pyrochlore [21,67,78] and is expected, to the first order of approximation, to
be able to aid the development of other nuclear waste forms for the prediction of potential
new waste form compositions.
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Figure 1. A schematic diagram of an artificial neural network. W and b are weights and biases for
activation function and output. In this diagram, there are 6 input parameters and 1 output parameter,
1 output layer, and one hidden layer with 4 neurons used in the hidden layer. Adapted from [21].

3.2. Artificial Neural Network Simulation for Ceramic Waste Forms: Cases for Apatite-Structured
and Hollandite-Structured Materials

Apatite-structured materials: ANN was used to predict new apatite-structured compo-
sitions, including iodoapatite [21,66,79]. To apply ANN to predict new apatite compositions
that incorporate iodide, a dataset of the compositions and fully characterized crystal struc-
tures of 86 apatite compositions was compiled and used for training and validation [21].
Six parameters, i.e., the average ionic radius and electronegativity of the elements at the
A, X, and Z sites of apatite structure A5(XO4)3Z were used as inputs. For a large anion,
iodide (I−), with a radius of 2.2 Å, to be incorporated in apatite structure, the channel site
of the apatite needs to have the right size so that there is no mismatch between iodide and
the channel. It was hypothesized that apatite compositions whose channels accommodate
the iodide ions (as a spherical particle) without mismatch are the most likely chemical
compositions for incorporating iodide. This is a reasonable assumption due to the highly
ionic nature of iodide bonding in the channel site. Therefore, channel size is likely a good
indicator of possible iodine incorporation and was used as the output of the neural net-
work. As shown in Figure 2, the channel size was predicted from the trained network.
Using 3.5% as the flexibility of the structure to accommodate iodide, the compositions for
which the channel sizes are located between the purple lines are predicted to be potential
apatite-structured materials incorporating iodide. The result suggests that combinations of
A-site cations of Ag+, K+, Sr2+, Pb2+, Ba2+, and Cs+, and X site cations of Mn5+, As5+, Cr5+,
V5+, Mo5+, Si4+, Ge4+, and Re7+, are possible apatite compositions that can incorporate
iodide at the Z site. This prediction is consistent with existing data from the literature
based on experimental synthesis and first-principles calculations. As shown, iodoapatite
Pb5(VO4)3I has been synthesized [16] and the predicted channel size is within the values
of possible iodoapatite compositions and is ~0.1% from the experimentally determined
channel size (Figure 2). Additionally, iodoapatite Ba5(VO4)3I and Sr5(As4)3I were predicted
to be potential apatite compositions, which is in agreement with first-principles calculations
(discussed in Section 4.1). Recent experiments have also confirmed some of these predic-
tions [80,81]. For instance, arsenate–lead iodoapatites Pb5(AsO4)3X (X = OH, Cl, Br, I) have
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been synthesized from the precipitates of solution at acidic pH and ambient temperature
conditions. Their structure and compositions were well characterized and thermodynamic
properties such as enthalpy were measured using melt drop solution calorimetry [80]. In
addition, iodoapatite (Ba5(VO4)3I) has been synthesized using a high-energy ball milling
machine and spark plasma sintering technique [81].
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Figure 2. Prediction of iodoapatite compositions with iodide ions in the structural channel site. The
region between the pink lines defines the average radii of possible A and X cation combinations.
The channel size is calculated based on the ionic radius of iodide (2.20 Å) and coordination cations
and a 3.5% prediction error. The region is also both projected onto the radius-A and radius-X planes
and onto the surface of predicted channel size. The stars indicate the locations of Pb5(VO4)3I (blue),
Ba5(VO4)3I (green), and Sr5(As4)3I (red) apatite compositions. Modified and adapted from [21].

Hollandite-structured materials: A similar strategy and method were used to predict
compositions of hollandite for the incorporation of cesium-137 [67]. Chemical substitutions
in hollandite (A2B8O16) can occur at both A and B sites, where the A site can be occupied
by alkali and alkaline earth elements such as Na+, Cs+, Rb+, and Ba2+, and the B site can be
occupied by various di-, tri-, and tetravalent cations such as Mg2+, Fe2+, Fe3+, Al3+, Cr3+,
Ti3+, Ti4+, and Si4+. Both sites can have substantial substitutions to form solid solutions.
The A site in the tunnel can accommodate large cations such as cesium and barium. An
interesting characteristic of the hollandite structure is that its tunnel size is largely controlled
by the B site cations. A site is often partially occupied with vacancies, but both the O and B
sites are usually fully occupied. The normal charge is balanced by coupled substitutions
at both the A and B sites. For ANN simulations, only four parameters, i.e., the average
ionic radius and electronegativity of the A and B sites of hollandite, A2B8O16, were used
as inputs (because the oxygen sites always remain fully occupied, the inputs for oxygen
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sites do not vary with A and B site compositional variance). The number of vacancies was
not used as an input and including it did not improve the prediction. Since the objective is
to find the appropriate channel size that can accommodate large cations such as Cs, the
channel size is used as the output for the structural property, similar to the channel size
used for iodide incorporation in iodoapatite [21]. A structural stability criterion, called
the tolerance factor, was also used to further narrow the ANN-predicted compositions in
addition to the channel size. The tolerance factor criterion is often used in experimental
studies to rule out candidate structures that are potentially less plausible [60,82]. Figure 3
shows ANN-predicted possible compositions defined by the tolerance factor and channel
size of hollandite-structured materials. The data encompass a combination of Ba and Cs
with varying A-site occupancy and B-site compositions. Given the tolerance factor between
0.90 and 1.10 and channel size between 2.80 and 3.15 Å, which are reasonable ranges
based on the experimental observations in our dataset, the compositions located within
the rectangular box (Figure 3) can be considered possible hollandite compositions. A wide
range of previously unexplored Cs–hollandite compositions were evaluated as possible,
including M4+ = Zr4+ and Sn4+ at the B site. These compositions are likely to be potential
candidates for immobilizing Cs based on the ANN predictions of their channel size [67]. In
particular, a combination of some of the aforementioned variable-valence M3+,2+ and M4+,3+

cations, such as Fe3+,2+ and Ti4+,3+, has also been predicted to be highly possible. These
hollandite compositions can also be candidates for accommodating the chemical changes
as a result of the β decay of Cs-137 due to radioparagenesis [55,83]. Although Ti-based
hollandite compositions are the most extensively investigated, encompassing most recent
studies [56–61,84], several new Ti-based hollandite compositions were also predicted to
have potential for the immobilization of Cs-137 [67].
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As summarized above, the progress made on apatite and hollandite compositions
suggests that the compositional space of these phases remains highly underexplored and
could be a fruitful area of research in ceramic nuclear waste development. In addition, there
are many different complex oxides with structural and compositional complexities similar
to apatite-structured and hollandite-structured materials, such as murataite, zirconolite,
perovskite, garnet, crichtonite, zeolite, pollucite, sodalite, and monazite, to name a few.
Due to the possible compositional variance of different crystallographic sites by chemical
substitution to form solid solutions, the number of possible unique compositions is very
high, and the compositional space is vast. It is thus practically impossible to experimentally
investigate the entire compositional space for any of those crystal structures. Instead,
it requires synergistic effort from both the computational and experimental methods in
order to accelerate ceramic nuclear waste form development. For instance, from the
computational front, as demonstrated for apatite and hollandite phases, the ANN studies
have predicted several unexplored potential compositions that could be further explored
by experiments.

4. First-Principles Thermodynamics and Electronic Structure Calculations for Ceramic
Waste form Development
4.1. First-Principles Thermodynamics of Ceramic Waste Forms and the Case for Apatite-
Structured Materials

The predictions from the artificial neural network are based on a supervised machine
learning approach, and the results essentially provide a collection of potential composi-
tions that may exhibit favorable characteristics when incorporating certain radionuclides.
Although artificial neural network simulations are able to match compositions to prop-
erties, they do not provide the physical reasons or mechanistic understanding for the
prediction and thermodynamic stability of the predicted compositions. In order to estimate
the stability, first-principles calculations can be employed to compute thermodynamic
properties with respect to alternative phases. Such computational methods have been
used for ceramic nuclear waste from development, such as nuclear waste forms for the
radionuclide Sr-90 [63,85]. In this method, the free energy or enthalpy of formation of
the phases is calculated from the crystal structure and composition using first-principles
methods. Potential energy is calculated from the energy optimization of the structure at
zero kelvin. The zero-point energy and vibrational entropic contribution to the total free
energy at finite temperature are then calculated from the phonon density of states and
quasi-harmonic approximation using the following equation:

F(T, V) = E(V) +
∫ ∞

0
dωg(ω)

(
1
2
}ω + KBTln(1 − e−

}ω
KBT )

)
(1)

where F(T,V) is free energy, E(V) is the potential energy calculated at zero kelvin, KB is
the Boltzmann constant, T is temperature, and g(ω) is the phonon density of state. This
method is well-established and has been applied in materials science in various applica-
tions [63,86,87] and for ceramic nuclear waste development [85,88]. Here, an application of
the method for iodide in apatite-structured materials is highlighted.

Apatite: To illustrate this methodology for iodoapatite application, compositions of
Sr5(AsO4)3I and Ba5(VO4)3I were selected, which are based on their potential candidacy as
predicted by artificial neural network simulations [21], but previously have not been syn-
thesized experimentally. A typical first-principles calculation for thermodynamic stability
is based on density functional theory with plane-wave basis sets using GGA PBE exchange-
correlation. For this example, the program CASTEP was used with a Monkhorst–Pack grid
for k-point sampling and ~1 k-point per ~0.1 Å−1 in each dimension. The cutoff energy
of 650 eV was used in the calculations. The convergence criteria for the force were set to
0.01 eV/Å for the geometry optimization and 0.001 eV/Å for phonon calculations. For
Sr5(AsO4)3I iodoapatite, similar to Pb5(VO4)3I, two possible synthesis routes are possible:
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from oxides and a simple salt (Equation (2)) or from an intermediate phase Sr3(AsO4)2 and
a simple salt (Equation (3)):

9 SrO + 3 As2O5 + SrI2 = Sr10(AsO4)6I2 (2)

3 Sr3(AsO4)2 + SrI2 = Sr10(AsO4)6I2 (3)

The iodoapatite can also decompose (i.e., the reverse reactions of Equations (2) and (3)).
The calculated free energy of reactions is plotted in Figure 4 for each of the reactions. The
result suggests that Sr10(AsO4)6I2 iodoapatite is thermodynamically stable with respect
to both the oxides (or the simple salt) and the intermediate (Sr3(AsO4)2) at temperatures
below ~410 K.
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tions. The red (a) and blue (b) circles are calculated Gibbs Free Energy of reaction (Equation (2)) and
reaction (Equation (3)) respectively.

This result is consistent with experimental observations on the thermal stability analy-
sis of iodoapatite samples synthesized using different methods. Pb5(VO4)3I decomposes
to vanadate (Pb3(VO4)2) at a temperature of ~540 K for a sample synthesized using a
hot press [19]. The thermal stability is enhanced to ~940 K for a dense ceramic synthe-
sized by spark plasma sintering [64]. While the free energy for the reaction based on
Equation (2) decreases with temperature (Figure 4a), the free energy for the reaction based
on Equation (3) increases with temperature (Figure 4b). The results suggest that there
is a subtle temperature effect on the thermodynamic stability of the iodoapatite and the
intermediate phase. An appropriate temperature range based on these calculations can be
realized as a guide for the design of the experimental synthesis.

4.2. Electronic Structure Calculations of Ceramic Waste Forms and Cases for β-Decay-Induced
Instability (Radioparagenesis) in Apatite-Structured Materials

β decay of fission products such as Cs-137 and Sr-90 in ceramic waste forms presents
a great challenge for waste form design. As these elements decay, a change in chemical
identity occurs, which can cause thermodynamic instability of the materials [89–92]. A
hypothesis was proposed, which states that the structural and energetic instability caused
by β decay can be mitigated by introducing variable valence cations as the electron acceptor
in the host material at neighboring crystallographic sites with a flexible crystal lattice, as
shown in Figure 5 [55]. As a demonstration, apatite-structured materials were considered
for Cs-137 and Sr-90 incorporations to test this hypothesis. Ferric iron was used as an
electron acceptor. DFT calculations were performed to calculate the electron density of
states, local defect structure, and energetics. The localization of the β electron captured
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by the ferric ion is robust for all the compositions investigated. The magnitude of the
structural distortions at the sites occupied by iron and transmuted elements (Ba-137, Y-90,
and Zr-90) is small to moderate. The minor structural changes and favorable energetics
indicate the stability of the materials after beta transmutations. The results suggest apatite-
structured materials could be promising nuclear waste forms to mitigate the β-decay-
induced instability by incorporating variable valence cations such as ferric iron into the
structure. This study provides a new insight into the development of nuclear waste forms:
it is possible to incorporate fission products undergoing β decay in a crystalline phase. This
methodology and the strategy for the localization of the β decay effect could be applied to
other nuclear waste forms for incorporating β-emitting fission products. These theoretical
results can be experimentally tested using short-lived radionuclides undergoing β decay.
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Figure 5. The schematic of the electron transfer from the β decay of Cs-137 to the neighboring
ferric ion in apatite. The ferric ion is changed to a ferrous ion. Cs+ (large purple ball), Ba2+ (large
yellow ball), Fe2+ (large blue-purple ball), and Fe3+ (large blue ball) were modeled as the substituted
impurity of Ca in Ca5(PO4)3F apatite. Dark-grey polyhedrons are [PO4], small red balls are O, small
light blue balls are Ca, and green balls are F. Modified and adapted from [55].

As stated earlier, first-principles calculations are a well-established tool in materials
science and engineering. They have been essential in the discovery of new materials
for various applications, which is highlighted in the Materials Genome Initiative [93].
The application of this methodology to nuclear waste form development is expected to
accelerate the optimization of existing nuclear waste forms and the discovery of new waste
forms with improved properties. This can be achieved by guiding the materials’ synthesis
based on machine learning and calculated thermodynamic properties of the materials using
high-performance computers, as demonstrated by these examples.
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5. Modeling of the Dissolution Kinetics of Crystalline Ceramics in Aqueous Solution
5.1. Kinetic Rate Theory for Dissolution of Minerals and Crystalline Ceramics

The prediction of the dissolution rate of nuclear waste forms in the environment
is essential for nuclear waste management. Decades of research have resulted in the
development of a collection of ceramic waste forms for various radionuclides. However,
characterizing their chemical durability and predicting their long-term dissolution rate still
present a great challenge to the scientific community. First of all, the dissolution rate is
not an intrinsic property of a material. Rather, it is a response of the intrinsic properties
associated with dissolution kinetics to the perturbations of the environmental variables
through the associated surface reactions [39]. Thus, determining these intrinsic properties
is essential for the characterization of the chemical durability and the prediction of the
dissolution rate in the environment.

Thermodynamic rate equations provide the fundamental basic law for modeling and
predicting dissolution kinetics [94–97]. In these equations, environmental conditions are
described by the corresponding variables, and the properties that are intrinsic to the specific
material in consideration are constants in the following rate equations:

r = k+·
(

1 − e(∆Gr/RT)
)

(4)

k+ = k0·
[
H+
]η ·∏i ai

vi ·e−Ea/RT (5)

where R is the gas constant. T, [H+], and ai are temperature, H+ activity, and the activity
of aqueous species i, respectively, which are environmental variables considered in the
rate equation. k+, ∆Gr, k0, η, vi, and Ea are the forward rate, the Gibbs free energy of
the dissolution reaction, the rate constant, the reaction order involving H+, the reaction
order involving species i, and the activation energy, respectively. These factors control
the intrinsic properties of the material for dissolution. If these constants are determined
by either theory, simulation, or experiment, the chemical durability can be characterized,
and the dissolution rate can then be predicted using the rate equations. However, these
constants are not all known for many ceramic waste forms. In the literature, different
leach test protocols have been employed to study the dissolution of nuclear waste forms,
making it difficult to compare the reported results and to use them in the rate equations for
prediction. To characterize the chemical durability of nuclear waste forms, standard test
methods such as the Product Consistency Test [98] have been used to estimate the chemical
durability of various glass and ceramic waste forms. However, these standard methods are
often designed to extract elemental release rates and are used for screening candidate waste
forms under given conditions rather than determining the intrinsic properties that define
the thermodynamic chemical durability of the materials as defined in the rate equations
(Equations (4) and (5)). Several experiments are necessary to provide all the intrinsic
properties relevant to dissolution kinetics, which are required to predict the dissolution
rate under various environmental conditions.

5.2. Application of Kinetics Rate Theory—A Case Study of Iodoapatite Waste Form

Progress has been made in the understanding of iodoapatite dissolution [99–101], com-
plex interactions at microscopic scales [102,103], interactions with other materials [104,105],
and the prediction of the dissolution kinetics of iodoapatite using rate equations [1,106].
These experiments suggest the importance of complex interactions and processes involving
iodoapatite dissolution such as ion exchange, diffusion, and transport through grain bound-
aries, in addition to dissolution. By including a time-dependent diffusion-controlled process
and a parameter related to the solution saturation, the equations (Equations (4) and (5))
were modified to
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r(t, ps, T, pH) = r(t)·k0 ·10−η·pH ·
[
e−Ea/RT

]
·
[
1 − e−φps

]
(6)

where t, ps, T, and pH are time, the ratio of the reacting solution volume to surface area
(volume-to-surface-area ratio), solution temperature, and solution pH respectively. The
constants k0, η, R, Ea, and φ are the rate constant, the order of dissolution reaction with
respect to pH, the gas constant, the activation energy, and a constant related to saturation,
respectively. The r(t) term in Equation (6) describes the time dependence of iodine diffusive
release [1,106–108]. The last term in Equation (6) replaces the second term in Equation
(4), which was based on the simple assumption that the Gibbs free energy of dissolution
is approximately proportional to the solution volume-to-surface-area ratio. A series of
experiments were systematically designed to determine the constants (i.e., the intrinsic
properties that define the chemical durability) in the rate equation (Equation (6)). Once
these constants are determined, the equation (Equation (6)) can be used for predictions [1].
As illustrated in Figure 6, iodine release rates are predicted at various environmental and
test conditions, including time, pH, temperature, and volume-to-surface-area ratio. One of
the significant findings is that the iodine release rate is bounded by diffusion-controlled
kinetics at the lower end of the dissolution and by far-from-equilibrium dissolution kinetics
at the higher end [1]. In addition, the long-term iodine release rate is significantly lower than
the rate measured in short-term laboratory tests. The short-term rate is largely controlled
by a transient diffusion process and the surface effect. The result demonstrates that it
is possible to consider all critical processes that determine dissolution kinetics and to
parameterize the rate equations with the variables relevant to the environmental conditions.
The parameterized rate equations can then be used to predict the performance of a ceramic
waste form under various environmental conditions.
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The above example demonstrates a strategy in which each of these intrinsic properties
(i.e., the constants in the rate equations) are estimated from a series of critical experiments
that are systematically designed for the environmental variables. However, such a method
still needs a substantial number of experiments for the strategy to work. It is desirable
that these intrinsic properties in the rate equations be predicted from the composition
and structure of materials alone. Although great effort has been dedicated to estimating
some of these properties, only a few examples have been reported to predict some of
them, such as the forward dissolution rate of isostructural families of divalent metal
oxides and orthosilicates [109] and the reaction order of the pH dependence of silicates,
aluminosilicates, and quartz [110]. It is imperative that these intrinsic parameters within a
group of materials and across different groups be predicted using the properties defined
by the structure and composition only without costly experiments in order to accelerate
quantitative predictions of the dissolution kinetics of materials.

6. Computational Materials Design and Performance Prediction of Ceramic Nuclear
Waste Forms

Understanding the mechanisms of the incorporation of the waste elements in ceramic
waste forms and their dissolution kinetics in the environment plays an important role
in nuclear waste management. Such an understanding is essential for the performance
evaluation of nuclear waste forms in the environment. Examples of ceramic waste forms
based on apatite-structured and hollandite-structured materials demonstrate a methodol-
ogy with which new iodoapatite and Cs–hollandite compositions were predicted using a
combination of artificial neural network simulations and first-principles calculations. The
dissolution rates were predicted under various environmental conditions using thermody-
namic rate equations. By integrating the predictions of the compositions of waste forms and
their performance in aqueous solutions in a holistic framework, this strategy could be used
to design ceramic waste forms with optimal incorporation capacity and environmental
performance by varying the chemical compositions.

Figure 7 summarizes this approach, which can provide a path for accelerated ceramic
waste form development and performance prediction for ceramic nuclear waste forms. In
this approach, material design and performance modeling are considered simultaneously.
The design of ceramic waste forms considers the loading capacity of waste elements
and focuses on problematic radionuclides. Certain crystalline ceramics can be targeted
using thermodynamic principles in combination with machine learning and first-principles
calculations. Performance modeling considers the dissolution kinetics associated with
rate-determining critical processes using rate equations. The intrinsic properties in the
rate equations are parametrized using a series of experiments or predicted based on
relationships between structure, composition, and properties. Critical experimental tests
are carried out to understand the dissolution reactions and benchmark intrinsic properties
predicted by theories. The verification of modeling results outside the range of available
data can be performed to validate the predictions of the modeling. Models and model
parameters are open for revision as new data emerge. The verified predictive models will
be able to predict new waste forms, their incorporation capacity, and long-term dissolution
performance. The composition of a given waste form can then be optimized in terms of
immobilization efficiency and chemical durability.

The methodology outlined above for apatite-structured and hollandite-structured
materials is also suitable for other complex materials with chemical substitutions on mul-
tiple structural sites. Materials such as perovskite, pyrochlore, murataite, monazite, and
crichtonite, although dissimilar to apatite-structured and hollandite-structured materials
in structure and composition, also have multiple crystallographic site substitutions, flexi-
ble crystal structures, and complex chemical compositions. These materials are suitable
for the immobilization of various waste streams and waste elements, including fission
products, actinides, and activation products. While the structural flexibility and composi-
tional complexity offer plenty of room for the optimization of these nuclear waste forms,
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the composition space becomes too populated to be handled by experiments alone. It
is hoped that the approach proposed here of combining computational approaches with
predictive modeling will provide a robust strategy to accelerate the development of ceramic
waste forms.
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7. Summary and Conclusions

Ceramic waste forms are developed to immobilize radionuclides by considering the
effectiveness of the incorporation of radionuclides, mechanical and chemical stability in the
environment for a long period of time, and cost and technical readiness in practical applica-
tion. Due to their unique crystallographic features and behavior in nature environment
as demonstrated by their natural analogues, ceramic waste forms are suitable to target a
group of or a single radionuclide due to their compatibility with the host structure. Recent
progress is highlighted in this review, focusing on using computational and modeling
approaches to accelerate the development of ceramic waste forms. To overcome challenges
of the enormous compositional space in complex ceramic waste forms because of multiple
substitutions at their crystallographic sites, machine learning is employed to narrow the
scope of potential compositions and to search for new compositions that are consistent
with their crystallochemistry. Such an approach has been applied to apatite, hollandite,
and pyrochlore. Some predictions were recently verified in the experimental synthesis of
arsenate–lead iodoapatite and barium–vanadium iodoapatite compositions. In addition,
first-principles thermodynamics computations are employed to calculate the thermodynam-
ics stability of the compositions predicted from machine learning, a further reduction in the
compositional space for a given waste form. Calculations on an iodoapatite form illustrate
a computational approach that predicts the stability of Sr10(AsO4)6I2 apatite with respect
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to its intermediate phase Sr3(AsO4)2. Electronic structure calculations of apatite-structured
materials demonstrate that the structural and energetic instability caused by β decay can be
mitigated by introducing variable valence cations as the electron acceptor at neighboring
crystallographic sites in a complex host phase with a flexible crystal lattice such as apatite
structure. The chemical durability and dissolution kinetics are modeled using kinetic
rate theory with parameters extracted from critical experiments, as demonstrated for a
Pb10(VO4)6I2 apatite sample. By integrating the predictions of elemental incorporation
and thermodynamic stability and the modeling of dissolution kinetics in a holistic frame-
work, this approach as highlighted in this review could be promising to accelerate ceramic
waste form development based on complex crystalline phases, as well as the performance
prediction for problematic nuclear waste elements.
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