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Abstract: The paper deals with research focused on the use of fillers in the field of polymeric materials
produced by additive technology SLA (stereolithography). The aim of the research is to evaluate 3D
printing parameters, the mechanical properties (tensile strength, hardness), and the interaction of
individual phases (polymer matrix and filler) in composite materials using SEM analysis. The tested
fillers were cotton flakes and ground carbon fibres in different proportions. For the photosensitive
resins, the use of cotton flakes as filler was found to have a positive effect on the mechanical properties
not only under static but also under cyclic loading, which is a common cause of material failure in
practice. The cyclic stress reference value was set at an amplitude of 5–50% of the maximum force
required to break the pure resin in a static tensile test. A positive effect of fillers on the cyclic stress
life of materials was demonstrated. The service life of pure resin was only 168 ± 29 cycles. The
service life of materials with fillers increased to approximately 400 to 540 cycles for carbon fibre-based
fillers and nearly 1000 cycles for cotton flake-based fillers, respectively. In this paper, new composite
materials suitable for the use of SLA additive manufacturing techniques are presented. Research
demonstrated the possibilities of adding cotton-based fillers in low-cost, commercially available
resins. Furthermore, the importance of material research under cyclic loading was demonstrated.

Keywords: 3D printing; polymer composite; carbon filler; cotton filler; cyclic loading; low cycle test

1. Introduction

Stereolithography (SLA) is becoming an increasingly popular low-cost 3D printing
technology among various users as it offers superior dimensional accuracy and overall
better quality as compared to its closest and more widespread competitor, Fused Deposition
Modelling (FDM)/Fused Filament Fabrication (FFF) [1,2].

Fused Deposition Modeling (FDM)/Fused Filament Fabrication (FFF) is currently
a promising 3D printing technology that has received considerable research attention,
particularly in the area of adding different fillers to filaments and recycling them [2,3].

There are concerns that the opaque nature of fillers added to photosensitive resins
would reduce their photosensitivity. This could prevent perfect photocuring by preventing
the fillers from absorbing UV radiation applied during the process [4]. Romero Ocana
and Molina refuted this limiting factor of using filler in SLA technology. In addition, they
demonstrated a significant effect of particle size on the final mechanical properties [4].
It is to be expected that as the amount of filler increases, there will also be problems
during printing [5].
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SLA (stereolithography) technology is a type of 3D printing that uses UV (ultravi-
olet) light to solidify liquid resin layer by layer, creating precise and highly detailed 3D
printed objects [6–8]. The mechanical properties of UV resin, a material commonly used
in SLA printing, play a critical role in determining the strength, stiffness, and overall
performance of printed components [9]. A significant advantage over other 3D printing
techniques is the absence of interfaces between layers. In addition to improving surface
finishes, it has important implications for the mechanical properties of the individual
layers. Further, it eliminates the micro-scale gaps and the associated overall reduction in
crack-inducing inequalities [1].

Photosensitive resins (referred to as SLA resins) belong to the group of reactive resins
(reactive plastics). The characteristic of a reactive resin is an irreversible chemical reac-
tion while the material enters a cross-linked state [9]. The basic composition of resins is
monomers, photoinitiators, and additives. The chemical mechanism used to cure photo-
sensitive resins in SLA printers is called radical photopolymerization. When illuminated
with UV light of the appropriate wavelength, light is absorbed by the photoinitiators. The
photo-initiating agents initiate the curing reaction [9].

It should be emphasized that very few studies have used the SLA technique together
with bio filler specifically to create new composite materials [10]. The mechanical properties
of materials printed with SLA 3D printing are difficult to obtain from technical data
sheets and, even when available, are often unreliable because they depend heavily on the
specific printing parameters used [1]. Therefore, it is often necessary to perform the actual
mechanical analysis.

While the inherent mechanical properties of UV resin can provide sufficient strength
for many applications, further enhancement can be achieved with post-processing tech-
niques or the introduction of reinforcing materials [11]. Subsequent curing, a process that
involves exposing printed parts to additional UV light to further cure and harden the
resin, can improve overall mechanical properties [12]. In addition, reinforcing the UV
resin with additives or fillers such as carbon fibres, glass fibres, or metal particles can
significantly increase its strength, stiffness, impact resistance, and other properties [12].
This process produces composite materials that exhibit increased mechanical strength and
specific functional properties tailored to the requirements of the application [13].

Although the integration of fillers with SLA resins presents a number of opportunities,
certain aspects must be kept in mind. First, the choice of filler and its concentration can
significantly affect printability and other process parameters. Careful experimentation and
optimization are required to achieve the desired properties without compromising print
quality [12]. Nanofiller-containing resins offer the potential to improve properties such as
thermal and mechanical, conductivity, magnetism, biocompatibility, and processing [14].
Many factors can complicate the introduction of composite resins into 3D printing systems.
An important parameter for a printable resin is its viscosity. Small amounts of additives
can have a large effect on the viscosity of the resin. If the viscosity is too high, the resin
can be difficult to work with and may require longer curing times (the viscosity of unfilled
resin is usually in the range of 150–200 mPa·s). Another common problem is dispersion.
Many nanomaterials can prove incompatible with resins [12]. It can also be noted that
components produced with SLA 3D printing are isotropic, but the addition of filler makes
them partially anisotropic.

On the other hand, the advantage of adding filler to SLA resins is a potential improve-
ment of the mechanical properties of the printed components [15].

In practice, polymeric materials are exposed to many complicated loading conditions,
such as polymer matrix failure during deformation. Cracking is a phenomenon of the
gradual accumulation of plastic deformation when materials and structures are exposed to
cyclic loading with non-zero medium stress [16]. The accumulation of plastic deformation
is an important aspect of fatigue damage [17,18]. The strength and service life of polymeric
materials are reduced even at relatively low stress levels in cyclic fatigue [19–21]. This
type of cyclic fatigue in a material is the most destructive form of mechanical failure,
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and it is the most common cause of degradation of these materials in practice [22]. The
strength of composite materials is affected not only by the reinforcing component but also
by the transfer of stress between the individual components of reinforcements and the
matrix. That means the reinforcement should be properly impregnated by the matrix. The
transfer of stress between the matrix and the reinforcement should be efficient since it has a
significant effect on the service life of the material [19]. Cyclic tests are necessary for the
practical use of such components [19,20,22].

This research is focused on the use of fillers in polymeric composite materials pro-
duced by additive SLA (stereolithography) technology. Composite materials based on
reinforcement are among the promising materials for the future. There is considerable
variability in the possibilities of using fillers in combination with polymeric materials
and production technology. A great deal of research has been conducted in the field of
FDM/FFF on printing parameters and filler options, but also on factors affecting material
fatigue [23–26]. However, in the field of SLA 3D printing technology and the associated
modification of resins with filler, there is still limited knowledge and a significant number of
limiting factors related mainly to the functionality of printing with this modified material.

This paper focuses on SLA 3D printing technology and the modification of a low-
cost, widely available photosensitive resin, Coloured UV Resin, using a filler based on
cotton flakes and ground carbon fibres in varying proportions. This work is focused
on the development of a new photocurable polymer composite applicable in SLA 3D
printing technology using a photosensitive resin as the polymer matrix. In this work, the
mechanical properties (tensile strength, hardness) and the interaction of individual phases
were investigated with SEM analysis. The resulting photocurable polymer composite
should be useful for SLA 3D printing technology with promising results.

2. Materials and Methods
2.1. 3D Printer and Printing Parameters

An MSLA Photon Mono X 6K (ANYCUBIC Technology Co., Ltd., Shenzhen, China)
printer with a display resolution of 5760 × 3600 pixels was used to produce the samples
(Figure 1). CHITUBOX software (version 1.9.4., CBD-Tech Co., Ltd., Shenzhen, China) was
used for data preparation. The printing parameters are shown in Table 1. A longer exposure
time of the initial layers is a common practice in SLA printing, increasing adhesion to the
printing platform.
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Table 1. 3D printing parameters and settings.

Parameter Name Parameter Value

Layer height 0.05 mm
Exposure Time 2 s

Bottom Exposure Time 23 s
Bottom Layer Count 6

Anti-aliasing 1
Lifting Distance 8 mm

Lifting Speed 2 mm/s

2.2. Resin, Fillers, and Their Preparation

Coloured UV resin (ANYCUBIC Technology Co., Ltd., Shenzhen, China) in transparent
colour cured under 405 nm light was used for printing. The ground recycled carbon fibre
used had a mean length of 200 ± 30 µm and a monofilament diameter of 7 ± 2 µm. The
second filler used was cotton flakes with a specific gravity of 1.5 g·cm−3. The fibre length
was 350 ± 150 µm and the fibre width was 17.5 ± 7.5 µm, as declared by the manufacturer.
A summary of the materials produced is given in Table 2.

Table 2. Variants of materials and their marking.

Matrix Filler Proportion of Filler with Matrix
[wt.%] Marking

UV Resin Clear - - RC
UV Resin Clear Carbon fibre 0.5 RC-0.5G
UV Resin Clear Carbon fibre 1 RC-1G
UV Resin Clear Cotton Flakes 0.25 RC-0.25C
UV Resin Clear Cotton Flakes 1 RC-1C

After printing (Figure 2), the samples were cleaned of excess resin in isopropanol
(INCHEMA s.r.o., Prague, Czech Republic). The samples were then cured by exposure to
UV light for 2 min (Figure 3) in the Anycubic Wash & Care facility (ANYCUBIC Technology
Co., Ltd., Shenzhen, China).
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curing process (b).

For the preparation of resin with filler, a certain amount of resin was weighed, and
filler was added to it in a specified ratio (Figure 4a). A magnetic stirrer was used to achieve
the greatest possible homogeneity of the suspension (Figure 4b). The mixing was performed
using a rotating magnetic stirrer inside the suspension (Figure 4c). The stirring was carried
out for 10 min. The air bubbles formed after mixing were removed using a vacuum chamber
(Figure 4d).
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Figure 4. Process of mixing resin with filler: (a) filler in resin before mixing, (b) magnetic stirrer,
(c) mixed mixture, (d) vacuum chamber.

The mixed matrix behaves stably during the printing of the test samples. There was no
clumping/agglomeration of the filler in the resin. This is due to the repeated movement of
the printing platform in the z-axis during printing according to the parameter set in Table 1
(“Lifting Distance”).
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2.3. Test Bodies/Samples

The design of the test bodies/samples was implemented using Fusion 360 software
(version 2.0.15.050, Autodesk, Inc., San Francisco, CA, USA). The test body was designed
according to the standard EN ISO 527-2 (see Figure 5). A sketch of the test specimen with
the required dimensions was drawn and the required thickness was defined using the
“eject” function.
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2.4. Testing of Mechanical Properties

The testing of mechanical properties was carried out on the universal testing machine
LABTest 5.50 ST (LABORTECH s.r.o., Opava, Czech Republic), with the measuring unit
AST KAF 50 kN (LABORTECH s.r.o., Opava, Czech Republic) and the evaluation software
Test & Motion (version 4.5.0.15, LABORTECH s.r.o., Opava, Czech Republic). Figure 6
presents the test rig LabTest 5.50ST (a) and a detail of the test body between the jaws (b).
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The static test speed was set to 10 mm·min−1. The cycling test was set to 1000 cycles
according to the requirement of the research sponsor and at the same time due to the
comparison with already published results on 3D printing using FDM/FFF technology
with PLA-based filament along with synthetic and biological fillers.

Therefore, a low-cycle stress test was selected. The methodology for testing the
mechanical properties under cyclic loading involves determining a reference value obtained
during the static tensile test from the RC test bodies. The reference value corresponds to the
maximum force required for complete failure of the test body during the static tensile test.
Cyclic testing constitutes setting the amplitude obtained as a percentage of the reference
value (% of Fmax). The amplitude was set as 5–50% of the reference value. The test bodies
were stressed for 1000 cycles at a rate of 10 mm·min−1. After the completion of 1000 cycles,
a static tensile test was automatically followed until complete failure of the bonded joint
at a rate of 0.6 mm·min−1. The static test was only performed when the 1000th cycle was
completed. Otherwise, the test was terminated. The time delay at the lower and upper
limits was set to 0.1 s. The ∆Strain value expresses the visco-elastic behaviour of the
material. Figure 7 shows the principle of low cycle loading of the test samples.
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In addition to the tensile test, a hardness test was performed using a DuraJet G5
hardness tester (Struers GmbH, Roztoky u Prahy, Czech Republic), see Figure 8, based
on ČSN EN ISO 2039-1 [26]. A hardened steel ball with a diameter of 5 mm, an initial
load of 9.8 N, and a test load of 132 N was used for the hardness test. This is because the
first 6 layers on the printing platform are subjected to a longer exposure time; see printing
parameters in Table 1.
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2.5. Statistical Evaluation of the Measured Data

Evaluation of the experimental data was performed with analysis of variance, i.e.,
ANOVA F-test in STATISTICA (version 14.0.0.15, StatSoft CR, Prague, Czech Republic). The
statistical dependence at the 0.05 significance level among the RC standard and the other
experimental variants was evaluated. The null hypothesis H0 presenting a statistically
insignificant difference in mechanical properties among the RC and the other experimental
variants was established (p > 0.05). Hypothesis H1 rejects the null hypothesis H0 and
presents a statistically significant difference in mechanical properties among the RC and
the other experimental variants (p < 0.05).

2.6. Scanning Electron Microscopy (SEM) Analysis

SEM analysis was performed using a TESCAN VEGA 3 XMU (TESCAN ORSAY
HOLDING a.s., Brno, Czech Republic). The microscopic samples were coated with gold
using Quorum Q150R ES Plus (Quorum Technologies–Judges House, Laughton, UK).

3. Results and Discussion
3.1. Mechanical Test—Static and Cyclic Tensile Test

This research is concerned with the mechanical properties of polymer-based composite
materials, which were fabricated using SLA 3D printing technology. Affordable SLA 3D
printing materials do not achieve good mechanical properties when compared to FDM/FFF
printing. Using filler materials is one way to overcome this limitation.

Figure 9 presents the tensile strength of the samples. For the static tensile test, a total
of 8 measurements were carried out for each material variant. The RC material exhibited a
tensile strength of 18.91 ± 2.05 MPa in the static tensile test. The addition of carbon fibres
(RC-0.5G) resulted in an average reduction of 22.37% in interfacial tensile stress compared
to RC. RC-1G exhibited a tensile strength of 14.74 ± 1.04 MPa, which is 22.1% less than
the value for RC. At the same time, RC-0.5G and RC-1G showed a significant reduction in
standard deviation, indicating greater homogeneity of the specimens.
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In the case of printing with ground carbon fibre, there were problems with SLA
3D printing. These problems were mainly due to technical restrictions during printing,
including the lack of UV light curing, which was caused by the local deposition of a
large number of carbon fillers that could not be cured with the printing setup used. This
deposition was caused by the lack of homogeneity of the suspension.

In contrast, RC-0.25C did not significantly affect the ultimate tensile strength. In the
case of RC-1C, there was a 6.3% increase in tensile strength compared to RC (20.1 ± 1.2 MPa).
The obtained results confirmed the conclusions of other researchers who found that certain
fillers can lead to an increase in the strength of UV resins [12]. This trend was evident for
cotton-based fillers.

Figure 10 presents the elongation at break for the samples. It can be seen that the
RC material exhibited an elongation at break value of 3.26 ± 1.1%. The RC-0.5G and
RC-1G materials showed a decrease in elongation at break (1.38 ± 0.73% and 1.27 ± 0.58%),
respectively. For RC-0.25C and RC-1C materials, there was a slight increase in elongation
at break (3.61 ± 1.22% and 4.1 ± 0.86%), respectively.

The results of the statistical evaluation of the mechanical properties after static tensile
testing of individual materials are shown in Table 3.
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Table 3. Results of Statistical Evaluation of Static Tensile Testing of Individual Materials.

P-Parameter

Material RC RC-0.5G RC-1G RC-0.25C RC-1C
Tensile strength (MPa) - 0.0003 0.0002 0.4570 0.2058
Elongation at break (%) - 0.0021 0.0010 0.9115 0.1353

Table 3 shows that RC-0.5G and RC-1G materials showed a statistically significant effect,
i.e., the filler significantly reduced the strength of the materials. The RC-0.25C and RC-1C
materials showed a slight increase in strength, but this increase is not statistically significant.

Mechanical tests were complemented by cyclic loading tests according to user-defined
specifications with a view to practical application. The conclusions from the cyclic loading
tests are very significant, given that a large part of product failures was caused by cyclic
loading of varying intensity and number of cycles. Generally, research on materials tends
to focus only on static tests; however, for practical applications, materials also have to be
tested under cyclic stresses, which are largely responsible for their failure. The results of
the cyclic tests are shown in Table 4.
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Table 4. Cyclic test results.

5–50% Number of Completed Tests
(1000 Cycles)/Total Number of Tests Number of Completed Cycles

RC 0/3 168 ± 29
RC-0.5G 0/3 404 ± 139
RC-1G 0/3 541 ± 54

RC-0.25C 1/3 2 tests—912 and 936 cycles
1 test—1000 cycles

RC-1C 2/3 1 test—963 cycles
2 tests—1000 cycles

Table 4 shows that the RC material did not withstand the specified number of 1000 cycles.
The average value of completed cycles was 168 ± 29. It is, therefore, clear that the RC
material exhibits a reduced resistance to cyclic stresses of 5–50% amplitude. The RC-0.5G
material showed an average number of completed cycles, 404 ± 139. Thus, there is a positive
effect of the added filler on the cyclic stress life. RC-1G did not last the specified number
of 1000 cycles. However, it is noticeable that there was a slight increase in the number
of completed cycles compared to RC-0.5G. The RC-0.25C material showed a significantly
higher number of completed cycles for two tests, 912 and 936. One test completed the
specified number of 1000 cycles. Thus, a positive effect of the cotton flake filler on the
cyclic life of the material is evident. For RC-1C, two complete tests, i.e., 1000 cycles, were
completed. One test failed prematurely at 963 cycles. The above results indicate that the
cotton flake filler significantly (positively) affected the cyclic loading life of the materials.
This is due to the fact that the stress applied to the material is uniformly distributed to the
filler within the composite system [27]. Based on the above results, it can be confirmed that
cyclic loading can negatively affect the service life of polymeric material [28,29], especially
for RC material. There is an assumption of microcrack propagation due to cyclic loading
and the magnitude of its amplitude [30]. In polymeric materials, the response to cyclic
loading is primarily visco-elastic, but microcracking can also occur at higher values of
cyclic loading [31]. If cyclic loading exceeds the elastic limit, there is an accumulation of
plastic deformation, which is then the cause of the destruction of the test specimen [29].
The results show that material failure can occur even with a relatively low number of
completed cycles [32]. Zhang et al. [18] reached a similar conclusion in their research on
adhesive bonds.

Figure 11 shows an example of the quasi-static curve of the RC material that withstood
155 cyclic stress cycles with an amplitude of 5–50%.

Based on quasi-static curves (hysteresis loops), the visco-elastic behaviour of materials
can be analyzed on the basis of accumulated stress and associated deformation. These
factors cause the displacement of the hysteresis loops. Senatov et al. [33] stated that
the displacement of the hysteresis loop makes it possible to evaluate the value of the
accumulated deformation for the respective cycle or the number of cycles. Change in the
width and area of the hysteresis loop allows us to evaluate the value of the reversible
deformation that was dissipated during the cyclic loading [33]. Unfortunately, in this
case, the evaluation based on hysteresis loops was not possible due to premature failure
of the materials under cyclic loading (before the completion of 1000 cycles), which is
presented in Table 4.
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Figure 12 shows the complete quasi-static curve of RC-0.25C and the static test that
followed the successful completion of 1000 cycles.
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3.2. Hardness Test

The results of the hardness test are summarised in Table 5. The values in the table are
given in the format mean ± standard deviation. A total of 6 measurements were performed
for each material. For RC-1C variants, the hardness increased from the original 48.3 to 58.4,
an increase in hardness of 20.93%. The hardness of a material is a very important factor
affecting the usability of printed products. The increase in hardness value is a positive
trend, although the hardness of these photosensitive resins is low compared to materials
commonly used in FDM/FFF 3D printing. Examples include HB5/132 for PLA 240 to 290
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and ABS 67 to 83. By modifying the RC filler, the hardness approached the value of the
commonly used ABS plastic.

Table 5. Measured hardness values HB 5/132 for SLA printing materials.

Material HB 5/132

RC 48.29 ± 1.96
RC-0.5G 40.36 ± 2.45
RC-1G 49.78 ± 2.35

RC-0.25C 59.58 ± 3.22
RC-1C 58.4 ± 4.21

The experimental results refuted the concerns related to the opacity of the added
fillers and the reduction in their photosensitivity, which would have prevented the perfect
photocuring mentioned in the literature [4].

There are concerns that the opaque nature of fillers added to photosensitive resins
would reduce their photosensitivity. This could prevent perfect photocuring by the fillers
not pre-absorbing the UV radiation applied during the process. Romero Ocana and Molina
refuted this limiting factor for the use of fillers in SLA technology. In addition, they
demonstrated a large effect of particle size on the resulting mechanical properties [4]. It can
be expected that printing problems will occur as the amount of filler increases [5].

3.3. SEM Analysis of Carbon Fibre and Cotton Fibre/Flakes

The carbon fibres were deposited on an aluminium sample holder equipped with a
carbon target. Subsequently, the carbon fibres were sputtered with a 10 nm layer of Au.
Figures 13 and 14 document the carbon fibre structure at different magnifications. From
the SEM analysis, it is apparent that the fibres have different lengths, a regular cylindrical
shape, and a smooth surface. The fibres were measured in their diameter and length. The
length of the fibres (that could be measured as a whole) was, on average, approx. 155 µm,
the diameter of the fibres was approx 7 µm.
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Cotton fibres/flakes were placed on an aluminium sample holder with a carbon target
in the same way as carbon fibres and sputtered with a 10 nm thick layer of Au. Cotton
fibres are documented in Figures 15 and 16. It was not possible to measure the length of
this type of fibre. Only the thickness of the fibres was measured, which had an average
diameter of 20 µm. The fibres have an irregular shape and length, and the surface of the
fibres is smooth.
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Fractographic SEM analysis of the fracture surface of experimental samples is shown
in Figure 17.

The samples were prepared from printed specimens after static tensile testing before
SEM analysis of the fracture surface. An approximately 1.5 cm long part of the test sample
with a fracture was cut off from the test body with a precision metallographic saw so as not
to damage or contaminate the fracture surface. The sample thus prepared for observation
was then placed on an Al holder of experimental samples for SEM, fixed with a carbon
target, and the fracture surface was sputtered with a 10 nm layer of Au.

Essentially, two areas can be defined, namely the origin and development of the
fracture and its breaking zone on the fracture surfaces of all samples (Figure 17). The area
of development is characterized by the fragmentation of the fracture surface, while the
fracture surface is smooth without significant relief of the fracture. This breaking starts
approximately in the middle of the cross-sectional area of the sample.

A brittle fracture with line morphology was observed in all samples, as documented
in Figures 18–20.

In the case of the photosensitive resin with ground carbon fibres, disordered filler
can be observed (Figures 18 and 20). This disorder is manifested by the different spatial
orientations of the individual fibres. It is also evident from Figure 19 that the fracture
surface has been stripped of all fibres and cavities have been left behind. This is most
likely due to imperfect wetting of the carbon fibres and poor interfacial bonding during the
curing process.

The presence of individual types of fibres can be observed on the fracture surface of
sample RC-1G, Figure 19. There are fibres embedded in the matrix, but also fibres lying
freely on the fracture surface. Carbon fibre imprints and holes from where the fibres were
pulled can also be observed on the fracture surface. It is the same with cotton fibre (sample
RC-1C, Figure 20). The fillings are pulled out of the matrix and can be observed on the
fracture surface. However, fibre imprints were not observed in this case. The fibres are
more flexible and better adhered to the matrix. Therefore, they do not fall out of the matrix
and do not leave imprints like carbon fibres. However, there are holes on the fracture
surface after the fibres have been pulled out.

The difference between the samples filled with carbon and cotton fibres can be ob-
served in Figures 21 and 22, which document the detail of the filling on the fracture surface.
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As can be seen from the documentation of the fracture surface, the filling in the form
of carbon or cotton fibres contributes to the formation and development of the cracks.
These fillings, therefore, contribute to the reduction in the mechanical properties of the
composite material.

After SEM analysis of the tested samples, it can be concluded that no pores were
detected on the surface. Pore formation during the 3D printing process is a substantial
problem that has been reported in the literature [4,34,35].

The photosensitive resins did not have suspicious aggregates of fillers in the fracture
surfaces. This implies that a certain degree of homogeneity was achieved. At the same
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time, it was not possible to observe a significant amount of air bubbles, which could have
a negative effect on the mechanical properties. It can, therefore, be concluded that the
process of removing air bubbles by means of the vacuum chamber was efficient during the
preparation of the materials. The cotton fibre residue showing a simple shape and structure
can be observed in Figure 22. These fibres are shown in more detail in Figures 15 and 17.
According to SEM analysis, it can be concluded that during the mixing of the filler and
resin, there was a uniform dispersion. There are no suspicious aggregates of filler in the
fracture surfaces of the test samples. In the SEM analysis, for example, different spatial
orientations of the individual carbon fibres can be observed.

With the development of additive technologies, it is necessary to carry out intensive
research in the field of modification of printing materials, i.e., to take into account the
influence and the possibility of the effective use of natural fillers, printing parameters,
the possibility of recycling, and testing of the resulting mechanical properties taking into
account the specific details of the production technology and the application area.

Currently, the price of printing materials for SLA technology is much higher when
compared to materials for FDM printers. At the same time, commercial photopolymers
do not achieve satisfactory mechanical properties. This research focused on the use of
fillers in commercial printing materials for SLA 3D printers in order to modify mechanical
properties and print quality and, secondarily, to reduce the input cost of consumables.

4. Conclusions

In this research, new composite materials suitable for use in stereo-lithography SLA
additive manufacturing techniques are presented. Research demonstrated the possibilities
of adding cotton-based fillers to low-cost, commercially available resins. For photosensitive
resins, the filler was shown to have a positive effect on mechanical properties. For this
reason, further investigation of the mechanical properties of fillers based on secondary raw
materials can be recommended, consistent with an environmental approach. The results of
the experiment refuted the concerns related to the prevention/reduction of photocuring
due to the opacity of the added fillers. This aspect influencing further research activities
related to the modification of photosensitive resins for 3D printing with SLA technology
was refuted, especially in the use of natural fillers. Affordable SLA 3D printing materials
do not achieve good mechanical properties when compared to FDM/FFF printing. Using
filler materials is one way to overcome this limitation. Specifically, the cotton flake filler
was shown to have a positive effect on the mechanical properties of photosensitive resins.

The following significant conclusions were drawn from the experimental results.

• The addition of a carbon-based filler resulted in a reduction in tensile strength.
• The addition of cotton flake filler resulted in a slight improvement in tensile strength.
• The addition of carbon-based and cotton flake-based filler increased the number of

completed cycles during low-cycle tests of tested materials.
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