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Abstract: In this study, the stability of inhomogeneous nanocomposite cylindrical shells (INCCSs)
under hydrostatic pressure in a thermal environment is presented. The effective material properties
of the inhomogeneous nanocomposite cylindrical shell are modeled on the basis of the extended
mixture rule. Based on the effective material properties, the fundamental relations and stability
equations are derived for thermal environments. In this process, the first-order shear deformation
theory (FSDT) for the homogeneous orthotropic shell is generalized to the inhomogeneous shell
theory. This is accomplished using the modified Donnell-type shell theory. The analytical expressions
are obtained for hydrostatic buckling pressure of INCCSs in the framework of FSDT and classical
shell theory (CST) by obtaining a solution based on Galerkin’s procedure. The numerical examples
presented include both comparisons and original results. The last section shows the influences of
carbon nanotube (CNT) models, volume fraction, and shell characteristics on the hydrostatic buckling
pressure in the thermal environment.

Keywords: nanocomposites; inhomogeneity; cylindrical shell; stability; hydrostatic pressure;
buckling pressure

1. Introduction

Cylindrical shells are used in a wide variety of fields such as aircraft and spacecraft,
submarines, rockets, and nuclear reactors. The properties of the composite materials used
for the manufacture of cylindrical shells should be at a level that can meet the requirements
of modern technology. At the end of the 20th century, the extraordinary efforts of materials
scientists led to successful results, and in 1991, a seminal composite material with extraor-
dinary properties, called carbon nanotubes, was discovered [1]. Being extremely small
and light, the resources required to manufacture them made this material advantageous,
as many can be produced with only a small amount. Initially, despite the extremely low
densities of carbon nanotubes, their high tensile strength, high toughness, and wear resis-
tance were demonstrated by experimental and theoretical studies. Then, the extraordinary
properties of CNTs enabled them to be used as reinforcement in structural elements made
of polymer, ceramic, metal, and other materials and to form nanocomposites [2–4].

In recent years, developments in nanotechnology have facilitated the design and
production of new-generation advanced functionally graded materials and extended their
application areas. Nanocomposites (NCs) are a new class of inhomogeneous materials
that are used in the aerospace, aviation, and automotive industries because they allow
the production of structural elements that use few raw materials, and they are affordable
and lightweight and use less energy. In addition, polymer structural members reinforced
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with CNTs can exhibit high mechanical properties, high toughness, improved thermal
and electrical properties, good optical clarity, high wear resistance, and other outstanding
properties, despite the slight increase in weight [5–9].

After research on nanocomposites revealed that they have extraordinary mechan-
ical, physical, and chemical properties [10–12], Shen [13] created a new concept of the
stability of shells consisting of various patterned nanocomposites and opened up a new
field for setting and solving a number of stability and vibration problems. This concept
was experimentally confirmed by Kwon et al. [14]. Following this work, Shen and co-
authors [15,16] investigated the postbuckling of nanotube-reinforced composite cylindrical
shells under axial and radial mechanical loads in thermal environments using a singular
perturbation technique. Brischetto and Carrera [17] proposed classical and refined shell
models for the analysis of nano-reinforced structures. Aragh [18] presented mathematical
modeling of the stability of carbon nanotube-reinforced panels. Garcia-Macias et al. [19]
investigated buckling analysis of functionally graded CNT-reinforced curved panels under
axial compression and shear. Summaries of information on the studies of inhomogeneous
nanocomposite structural elements, especially cylindrical shells, between 2012 and 2020 are
included in review articles of Khaniki and Ghayesh [20], Liew et al. [21], and Garg et al. [22].
In the vast majority of studies conducted on this subject in the last three years, different
aspects of the stability and instability of unconstrained CNT-patterned cylindrical panels
and shells in different environments have been investigated by using different methods
within the framework of different shell theories. Among them, Tocci Monaco et al. [23]
investigated the hygro-thermal vibrations and buckling of laminated nanoplates via nonlo-
cal strain gradient theory. Bacciocchi [24] examined the buckling analysis of three-phase
CNT/polymer/fiber functionally graded orthotropic plates and discussed the influence of
the non-uniform distribution of the oriented fibers on the critical load. Hieu and Tung [25]
presented the buckling of shear deformable CNT-patterned cylindrical shells and toroidal
shell segments under mechanical loads in thermal environments. Tocci Monaco et al. [26]
reported the critical temperatures for vibrations and buckling of magneto-electro-elastic
nonlocal strain gradient plates. Cornacchia et al. [27] presented an analytical solution for
linear vibrations and buckling problems of cross- and angle-ply nanoplates with strain gra-
dient theory. Tocci Monaco et al. [28] presented the trigonometric solution for the bending
analysis of magneto-electro-elastic strain gradient nonlocal nanoplates in a hygro-thermal
environment. Izadi et al. [29] studied the torsional characteristics of CNTs by using mi-
cropolar elasticity models and a molecular dynamics (MD) simulation. Hieu and Tung [30]
reported the thermal buckling and postbuckling of a CNT-reinforced composite cylindrical
shell surrounded by an elastic medium with tangentially restrained edges. Chakraborty
et al. [31] investigated the instability characteristics of damped CNT-reinforced laminated
shell panels subjected to in-plane excitations and thermal loading. Khayat et al. [32] investi-
gated the effect of uncertainty sources on the dynamic instability of CNT-reinforced porous
cylindrical shells integrated with piezoelectric layers under electro-mechanical loadings.
Ghasemi and Soleymani [33] examined the effects of CNT distribution on the buckling of
carbon nanotubes/fiber/polymer/metal hybrid laminate cylindrical shells. Avey et al. [34]
presented the mathematical modeling and analytical solution of the thermoelastic stability
problem of functionally graded nanocomposite cylinders within different theories. Shah-
mohammadi et al. [35] studied the nonlinear thermo-mechanical static analysis of toroidal
shells made of nanocomposite/fiber-reinforced composite plies surrounded by an elastic
medium. Sofiyev et al. [36] investigated the buckling behavior of sandwich cylindrical
shells covered by functionally graded coatings with clamped boundary conditions under
hydrostatic pressure. Sun et al. [37] examined the postbuckling analysis of GPL-reinforced
porous cylindrical shells under axial compression and hydrostatic pressure. Trang and
Tung [38] investigated the thermoelastic stability of thin CNT-reinforced composite cylin-
drical panels with elastically restrained edges under non-uniform in-plane temperature
distribution. Avey et al. [39] presented the thermoelastic stability of CNT-patterned conical
shells under thermal loading in the framework of FSDT. Avey et al. [40] examined the



Materials 2023, 16, 4887 3 of 17

mathematical modeling and solution of the nonlinear vibration problem of laminated plates
with CNT-originating layers interacting with a two-parameter elastic foundation. Izadi
et al. [41] studied the bending characteristics of CNTs using micropolar elasticity models
and MD simulations. Ipek et al. [42] investigated the buckling behavior of nanocomposite
plates with functionally graded properties under compressive loads in elastic and thermal
environments.

The literature review reveals that the stability of INCCSs subjected to hydrostatic
pressure in a thermal environment is not sufficiently investigated. In this work, the FSDT
proposed by Ambartsumian [43] for the homogeneous anisotropic shells is generalized to
INCCSs. This is one of the original aspects of the study. Unlike some studies mentioned
above, the shear stress functions are used instead of the shear correction factor for INCCSs
in this study. It should be emphasized that in inhomogeneous nanocomposite structural
elements, it is unrealistic to use the fixed-valued shear correction factor, since the value of
the shear correction factor will change when the shape of the CNT patterns is changed. The
Shapery model is used for the coefficients of thermal expansion, which are functions of
the thickness coordinate [44]. The accuracy of the present method for buckling analyses
of cylindrical shells subjected to hydrostatic pressure is confirmed by two comparative
studies by Kazagi and Sridharan [45] using the finite element method (FEM), and Shen and
Noda [46] using high-order shear deformation theory (HSDT) and a singular perturbation
technique.

This paper is structured as follows: the description of the model is presented in
Section 2, Section 3 includes the derivation of governing equations, the solution procedure
is performed in Section 4, and Section 5 includes comparative and specific examples.

2. Description of the Model

The notes on the geometry of the inhomogeneous nanocomposite cylindrical shell sub-
jected to hydrostatic pressure are illustrated in Figure 1. The geometrical parameters such
as length, radius, and thickness of the INCCS are designated by L, R, and h, respectively
(Figure 1a). The shell displacements surface in the x1, x2, and x3 directions are designated
by u, v, and w, respectively.
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Figure 1. Schematic diagram of INCCS (a) geometry and coordinate axes and (b) under hydrostatic
pressure.

The hydrostatic pressure acting on the inhomogeneous nanocomposite cylindrical
shell is expressed as follows (Figure 1b) [47]:

N0
11 = −P · R/2, N0

22 = −P · R, N0
12 = 0 (1)

where N0
ij are the membrane forces for the condition with zero initial moments.

The INCCS is assumed to be formed by the reinforcement of the homogeneous
isotropic polymer with single-walled CNTs (SWCNTs). The SWCNT reinforcement is
aligned in the x1 direction and distributed either uniformly (U) or inhomogeneously (IN)
in the thickness direction of the shell.

It is assumed that the material properties of the CNTs and the matrix are temperature-
dependent. Therefore, the effective material properties of INCCSs, such as Young’s mod-
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ulus, shear modulus, and thermal expansion coefficients, are functions of temperature
and location. Since the effective Poisson’s ratio and density are weakly dependent on
temperature change and location, they are considered constant [13,15]. Considering these
assumptions, the micromechanical model of the mechanical and thermal properties of
INCCSs can be constructed as follows:

E(x3,T)
11 = η1VcntEcnt

11 (T) + VmEm, η2

E
(x3,T)
22

= Vcnt
Ecnt

22 (T) +
Vm

Em(T) , η3

G
(x3,T)
12

= Vcnt
Gcnt

12 (T) +
Vm

Gm(T) ,

G(x3,T)
13 = G(x3,T)

12 , G(x3,T)
23 = 1.2G(x3,T)

12 , ν12 = V∗cntν
cnt
12 + Vmνm, ρ12 = V∗cntρ

cnt
12 + Vmρm

(2)

where the total volume fraction of CNTs is determined from the following expression:

V∗cnt =
mcnt

mcnt + (ρcnt/ρm)(1−mcnt)
(3)

in which mcnt is the mass fraction of the CNT, and ρcnt and ρm are the densities of the
CNT and matrix, respectively. Ecnt

11 , Ecnt
22 , Gcnt

12 , ρcnt, and νcnt
12 indicate the Young’s modulus,

shear modulus, density, and Poisson ratio of the CNT, respectively, Em, Gm, ρm, and νm

indicate similar properties of the polymer. Vcnt and Vm are the volume fractions of CNT
and the matrix, which are related by Vcnt + Vm = 1. Moreover, ηj(j = 1, 2, 3) are the
CNT efficiency parameters defined to account for the size dependence of the resulting
nanocomposites. The magnitudes of the CNT efficiency parameter are determined by
comparing the modulus of elasticity of the nanocomposites obtained from the molecular
dynamics simulation with those estimated from the mixing rule [13].

Since the coefficients of thermal expansion are functions of the thickness coordinate,
their mathematical expression in the longitudinal and transverse directions is expressed by
the Shapery model as follows [44]:

α
(x3,T)
11 =

VcntEcnt
11 (T)αcnt

11 (T)+VmEm(T)αm(T)
VcntEcnt

11 (T)+VmEm(T) ,

α
(x3,T)
22 = (1 + νcnt

12 )Vcntα
cnt
22 (T) + (1 + νm)Vmαm(T)− ν12α

(x3,T)
11

(4)

where αcnt
11 , αcnt

22 , and αm indicate thermal expansion coefficients of the CNT and the matrix.
It is assumed that the CNT distribution in NCs is linearly graded in the thickness

direction since the possibilities of contemporary technologies can provide linear variation of
the volume fraction. Three types of patterns, namely Λ-, X-, and V-models, are considered,
apart from the uniform (U) distribution. The volume fraction of these patterns is modeled
as follows [13]:

Vcnt = (1 + 2x3)V∗cnt for Λ
Vcnt = 4|x3|V∗cnt for X
Vcnt = (1− 2x3)V∗cnt for V

(5)

In the U-model of CNTs along the thickness, one has Vcnt = V∗cnt.
The configurations of the homogeneous U-model and three types of INCs are illus-

trated in Figure 2.
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3. Governing Equations

The stress–strain relationships of inhomogeneous nanocomposite cylindrical shells in
thermal environments within FSDT can be expressed as follows [34,39]:


τ11
τ22
τ12
τ13
τ23

 =


a(x3,T)

11 a(x3,T)
12 0 0 0

a(x3,T)
21 a(x3,T)

22 0 0 0
0 0 a(x3,T)

66 0 0
0 0 0 a(x3,T)

55 0
0 0 0 0 a(x3,T)

44




ε11
ε22
γ12
γ13
γ23

+


τ1T
τ2T
0
0
0

 (6)

where τiT(i = 1, 2) are defined as

τiT = −
E(x3,T)

ii α
(x3,T)
ii T(x3)

1− ν12ν21
(7)

in which τij(i, j = 1, 2, 3); εii and γij are the stresses and strains of the INCCSs, respectively;

and the coefficient a(x3,T)
ij denotes the stiffness matrix, and its elements are expressed as

a(x3,T)
11 =

E
(x3,T)
11

1−ν12ν21
, a(x3,T)

22 =
E
(x3,T)
22

1−ν12ν21
, a(x3,T)

12 =
ν21E

(x3,T)
11 )

1−ν12ν21
=

ν12E
(x3,T)
22

1−ν12ν21
= a(x3,T)

21 ,

a(x3,T)
44 = G(x3,T)

23 , a(x3,T)
55 = G(x3,T)

13 , a(x3,T)
66 = G(x3,T)

12

(8)

The shear stresses of INCCSs within FSDT change in the thickness direction as fol-
lows [34,39,43]:

τ13 =
d f (x3)

dx3
F1(x1, x2), τ23 =

d f (x3)

dx3
F2(x1, x2) (9)

where Fi(x1, x2), (i = 1, 2) indicate the normal rotations to the mid-surface versus x2 and
x1 axes, respectively, and f (x3) denotes an a posteriori specified shape function and is
defined as f (x3) = x3 − 4x3

3/3h2 [43].
The relations ε11, ε22, and γ12 for the INCCSs within the FSDT can be expressed as

follows: 
ε11

ε22

γ12

 =


ε0

11

ε0
22

γ0
12

− z


∂2w
∂x2

1
∂2w
∂x2

2

2 ∂2w
∂x1∂x2

+


Γ(x3,T)

1
∂F1
∂x1

Γ(x3,T)
2

∂F2
∂x2

Γ(x3,T)
1

∂F1
∂x2

+ Γ(x3,T)
2

∂F2
∂x1

 (10)

The first column on the right-hand side of Equation (10) shows the strain components
at the mid-surface, and the following definitions apply:

Γ(x3,T)
1 =

x3∫
0

1

Q(x3,T)
55

∂ f
∂x3

dx3, Γ(x3,T)
2 =

x3∫
0

1

Q(x3,T)
44

∂ f
∂x3

dx3 (11)

The stress resultants of INCCSs are determined as follows [43]:

(
Nij, Qi, Mij

)
=

h/2∫
−h/2

(
σij, σi3, x3σij

)
dx3, (i, j = 1, 2) (12)

where Nij and Qi are the forces, and Mij are the moments.
The thermal forces and moments (NT

11, NT
22, MT

11, MT
22) are determined as fol-

lows [13,15,16,34]:
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NT
11 =

h/2∫
−h/2

[
a(x3,T)

11 α
(x3,T)
11 + a(x3,T)

12 α
(x3,T)
22

]
∆Tdx3, NT

22 =
h/2∫
−h/2

[
a(x3,T)

21 α
(x3,T)
11 + a(x3,T)

22 α
(x3,T)
22

]
∆Tdx3

MT
11 =

h/2∫
−h/2

[
a(x3,T)

11 α
(x3,T)
11 + a(x3,T)

12 α
(x3,T)
22

]
x3∆Tdx3, MT

22 =
h/2∫
−h/2

[
a(x3,T)

21 α
(x3,T)
11 + a(x3,T)

22 α
(x3,T)
22

]
x3∆Tdx3

(13)

where ∆T = T − T0 is the rise in temperature against the reference temperature T0. It
should be emphasized that when T = T0 the shell has no thermal strains.

By introducing the Airy stress function Φ as follows [43]:

N11 = h
∂2Φ
∂x2

2
, N12 = −h

∂2Φ
∂x1∂x2

, N22 = h
∂2Φ
∂x2

1
(14)

when the relations (6), (9), (11) and (13) are solved together, the force and moment compo-
nents and the strains in the mid-surface are expressed with the functions Φ, w, F1, and F2
without taking into account the intermediate operations. Then the resulting expressions
and (12) are substituted into the stability and compatibility equations for INCCSs under
hydrostatic pressure in the thermal environment, and the following governing equations
are derived:

L11(Φ) + L12(w) + L13(F1) + L14(F2) = 0
L21(Φ) + L22(w) + L23(F1) + L24(F2) = 0
L31(Φ) + L32(w) + L33(F1) + L34(F2) = 0
L41(Φ) + L42(w) + L43(F2) + L44(F2) = 0

(15)

where Lij(i, j = 1, 2, 3, 4) are described in Appendix A.
Equation (15) presents the governing equations of INCCSs under hydrostatic pressure

in the thermal environment within FSDT.

4. Solution Procedure

Suppose that the two end edges of the cylindrical shell are simply supported; the
corresponding boundary conditions are modeled as follows [13]:

At x1 = 0, L

w =
∂2Φ
∂x2

2
= F2 = M11 = 0 (16a)

2πR∫
0

N11dx2 + πR2P = 0 (16b)

Also, the closed or periodicity condition is expressed as

2πR∫
0

∂v
∂x2

dx2 = 0 (17)

The approximation functions for the above boundary conditions are searched as
follows [43]:

Φ = C1 sin(mx1) sin(nx2), w = C2 sin(mx1) sin(nx2),
F1 = C3 cos(mx1) sin(nx2), F2 = C4 sin(mx1) cos(nx2)

(18)

where Ci denote amplitudes; m = mπ
L and n = n

R , where m and n wave numbers contained
in these parameters.
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Substituting (18) into the system of Equation (15), and also taking into account (1), and
then using the Galerkin procedure for the resulting equations in the range {0 ≤ x1 ≤ L,
0 ≤ x2 ≤ 2πR}, one obtains

A11 −A12 A13 A14
A21 −A22 A23 A24
A31 −A32 A33 A34
A41 P · A42 A43 A44




C1
C2
C3
C4

 =


0
0
0
0

 (19)

where Aij(i, j = 1, 2, 3, 4) are parameters characterizing the INCCSs’ properties and hydro-
static pressure and are given in Appendix B.

To find the analytical expression that determines the hydrostatic buckling pressure
of the INCCSs, the determinant of the square matrix of the coefficients of Equation (18),
expressed by the cofactors Ki(i = 1, 2, . . . , 4), is set to zero:

A41K1 − R(0.5m2 + n2)
2
K2 + A43K3 + A44K4 = 0 (20)

where

K1 = −

∣∣∣∣∣∣
A12 A13 A14
A22 A23 A24
A32 A33 A34

∣∣∣∣∣∣, K2 =

∣∣∣∣∣∣
A11 A13 A14
A21 A23 A24
A31 A33 A34

∣∣∣∣∣∣, K3 = −

∣∣∣∣∣∣
A11 A12 A14
A21 A22 A24
A31 A32 A34

∣∣∣∣∣∣, K4 =

∣∣∣∣∣∣
A11 A12 A13
A21 A22 A23
A31 A32 A33

∣∣∣∣∣∣ (21)

From Equation (20), one obtains

Psdt
1buc =

A41K1 + A43K3 + A44K4

EmRK2(0.5m2 + n2)
(22)

Since the influence of shear stresses is ignored in the basic relations, the following
expression for the hydrostatic buckling pressure of INCCSs is obtained within the CST:

Pcst
1buc =

1
(0.5m2+n2)EmR

{
t13m4 + (t14 + 2t32 + t23)m2n2 + t24n4 +

[
m2/R− t12m4

−(t11 − 2t31 + t22)m2n2 − t21n4
]
× [m2/R+s23m4+(s13−s32+s24)m2n2+s14n4]

s22m4+(s12+s13+s21)m2n2+s11n4

} (23)

5. Numerical Examples and Discussion

The numerical values of the hydrostatic buckling pressure of INCCSs in thermal
environments are presented in this section. The material used for the matrix is poly
(methylmethacrylate), called PMMA, and the material used as the reinforcement element is
(10, 10) armchair SWCNT with length Lcnt = 9.26 nm, radius rcnt = 0.68 nm , and thickness
hcnt = 0.067 nm. The material properties and efficiency parameters are evaluated as [13]

Em = 3.52− 0.0034T, αm = 45(1 + 0.0005∆T) · 10−6/K, νm = 0.34,
Ecnt

11 = 6.18387− 2.86× 10−3T + 4.22867× 10−6T2 − 2.2724× 10−9T3

Ecnt
22 = 7.75348− 3.58× 10−3T + 5.30057× 10−6T2 − 2.84868× 10−9T3

Gcnt
12 = 1.80126 + 0.77845× 10−3T − 1.1279× 10−6T2 + 4.93484× 10−10T3

αcnt
11 = (−1.12148 + 2.289× 10−2T − 2.88155× 10−5T2 + 1.13253× 10−8T3) · 10−6/K

αcnt
22 = (5.43874− 9.95498× 10−4T + 3.13525× 10−7T2 − 3.56332× 10−12T3) · 10−6/K

(24)

and

η1 = 0.137, η2 = 1.022, η3 = 0.715 for V∗cnt = 0.12; η1 = 0.142, η2 = 1.626, η3 = 1.138
for V∗cnt = 0.17; η1 = 0.141, η2 = 1.585, η3 = 1.109 for V∗cnt = 0.28

(25)

It should be emphasized that in medium-length cylindrical shells (1 ≤ L/R ≤ 5) at
R/h > 100, when Formula (22) is minimized according to the wave numbers, the expression
for the hydrostatic buckling pressure within FSDT gives valid results within CST. When
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R/h > 100, the results obtained using the Formula (22) are the same as the results obtained
with Formula (23) until the third digit after the decimal point. When R/h = 100, the
same values are obtained up to the second digit after the decimal point. Therefore, when
R/h > 100, Formula (22) can also be used for the hydrostatic buckling pressure calculations
within the framework of the CST. In numerical calculations, Formulas (24) and (25) are
used for the material properties. Other parameters are presented in Table 1.

Table 1. Comparison of Formulas (22) and (23) for hydrostatic buckling pressure of nanocomposite
cylinders of different lengths for R/h ≥ 100.

Pcst
1buc ×104, (ncr)

Using Formula (23); V∗cnt =0.28
Psdt

1buc ×104, (ncr)
Using Formula (22); V∗cnt =0.28

U V Λ X U V Λ X

R/h L/R = 1, T = 300 (K)

100 0.3227 (10) 0.3240 (10) 0.3040 (9) 0.4140 (10) 0.3206 (10) 0.3223 (10) 0.3030 (9) 0.4100 (10)
300 0.0195 (13) 0.0206 (13) 0.0195 (13) 0.0239 (13) 0.0195 (13) 0.0206 (13) 0.0194 (13) 0.0239 (13)
500 0.0056 (16) 0.0059 (16) 0.0057 (15) 0.00679 (15) 0.0056 (16) 0.0059 (16) 0.0057 (15) 0.00679 (15)

R/h L/R = 5, T = 300 (K)

100 0.0729 (5) 0.0772 (5) 0.0754 (5) 0.0871 (5) 0.0729 (5) 0.0772 (5) 0.0754 (5) 0.0870 (5)
300 0.0051 (7) 0.0054 (7) 0.0053 (7) 0.0061 (7) 0.0051 (7) 0.0054 (7) 0.0053 (7) 0.0061 (7)
500 0.00149 (8) 0.00156 (8) 0.00155 (8) 0.00177 (8) 0.00149 (8) 0.00156 (8) 0.00155 (8) 0.00177 (8)

R/h L/R = 1, T = 750 (K)

100 0.1634 (11) 0.1529 (10) 0.1450 (10) 0.2170 (11) 0.1605 (11) 0.1511 (10) 0.1440 (10) 0.2110 (11)
300 0.0085 (14) 0.0087 (14) 0.0082 (13) 0.0107 (14) 0.0085 (14) 0.0087 (14) 0.0082 (13) 0.0107 (14)
500 0.0023 (16) 0.0025 (16) 0.0023 (13) 0.0029 (16) 0.0023 (16) 0.0025 (16) 0.0023 (13) 0.0029 (16)

R/h L/R = 5, T = 750 (K)

100 0.0306 (5) 0.0324 (5) 0.0313 (5) 0.0364 (4) 0.0306 (5) 0.0324 (5) 0.0313 (5) 0.0364 (4)
300 0.00221 (8) 0.00232 (8) 0.00230 (8) 0.00264 (7) 0.00221 (8) 0.00232 (8) 0.00230 (8) 0.00264 (7)
500 0.00064 (9) 0.00067 (9) 0.00067 (9) 0.00077 (9) 0.00064 (9) 0.00067 (9) 0.00067 (9) 0.00077 (9)

The accuracy of the present method for buckling analyses of cylindrical shells subjected
to hydrostatic pressure is confirmed by two comparative studies.

Example 1. In this example, our results are compared with the results of Kazagi and Sridharan [45]
and Shen and Noda [46] for hydrostatic buckling pressure (in psi) of cylindrical shells of different
sizes made of pure metal and tabulated in Table 2. Unlike our study, Kazagi and Sridharan [45] used
FEM, and Shen and Noda [46] used HSDT and the singular perturbation technique. Formula (22)
is used in the calculation, taking into account that V∗cnt = 0, Vm = 1, E(x3,T)

11 = E(x3,T)
22 =

Em, ν12 = ν21 = νm. Some of the data used in the comparison are given in Table 2, and some
of them are as follows Em = 107psi, νm = 0.33, R = 50 h. The Badthorf shell parameter is

presented as Zb in Table 2 and is defined as Zb = L2

Rh

√
1− (νm)2. The values in parentheses denote

the buckling mode in Table 2. It is seen that the hydrostatic buckling pressure values are in good
agreement with the results obtained by HSDT and FEM (see Refs. [45,46]).

Table 2. Comparison of the hydrostatic buckling pressure values with the results obtained using
HSDT and FEM.

Pcst
buc(in psi); (mcr,ncr)

¯
Zb

Shen and Noda [45]
HSDT

Kazagi and Sridharan [46]
FEM Present Study

50 566.09 (1,7) 560.0 (1,7) 566.02 (1,7)
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Table 2. Cont.

Pcst
buc(in psi); (mcr,ncr)

¯
Zb

Shen and Noda [45]
HSDT

Kazagi and Sridharan [46]
FEM Present Study

100 389.62 (1,6) 385.6 (1,6) 389.60 (1,6)
500 166.77 (1,4) 165.0 (1,4) 166.77 (1,4)
1000 124.98 (1,3) 123.5 (1,3) 124.99 (1,3)
5000 56.500 (1,2) 55.90 (1,2) 56.570 (1,2)

Example 2. The magnitudes of the lateral buckling pressure for composite cylindrical shells
patterned by CNTs with the U- and X-models based on the FSDT under two thermal environmental
conditions are compared with the results of Shen [13] using HSDT and the singular perturbation
technique and are presented in Table 3. From Formula (22), the formula for the lateral buckling
pressure is obtained as follows:Psdt

buc =
A41K1+ A43K3+A44K4

K2n2 . The material properties are taken from
the study of Shen [13] and can be calculated from (24) and (25) at T = 300 (K). The following
geometrical data are used: L2/Rh = 100, h = 0.002 m, R = 30h [13]. Since the number of
longitudinal waves corresponding to the lateral buckling pressure is equal to one, it is not included
in Table 3, and the values of the number of circumferential waves are shown in the table. The
magnitudes of lateral buckling pressure for the U- and X-patterned nanocomposite cylinders based
on the FSDT for the same circumferential wave numbers are in good agreement with the results of
Ref. [13] at two thermal environmental conditions.

Table 3. Comparison the magnitudes of the lateral buckling pressure for cylindrical shells patterned
by CNTs based on the FSDT with the results of Shen [13].

Psdt
buc (in kPa), (ncr)

Pattern Type U X

T (K) V∗cnt = 0.12

Shen [13] Present study Shen [13] Present study
300 474.80 (5) 473.74 (5) 558.72 (6) 557.36 (6)
500 367.35 (6) 367.29 (6) 432.75 (6) 431.33 (6)

T (K) V∗cnt = 0.28

300 943.62 6) 942.46 (6) 1234.8 (6) 1235.20 (6)
500 723.33 (6) 723.68 (6) 963.81 (6) 958.93 (6)

Typical results of the parametric study are presented in Tables 4 and 5 and illustrated in
Figures 3–6. In these examples, h = 0.002 m and L/R = 1 for moderately thick cylindrical
shells under four thermal environmental conditions.

Table 4. Distribution of hydrostatic buckling pressure of U-, V-, Λ- and X-scheme homogeneous and
INCCSs according to V∗cnt under four thermal environmental conditions.

P1buc×100, (ncr)

U V Λ X

CST FSDT CST FSDT CST FSDT CST FSDT

V∗cnt T = 300 (K)

0.12 0.078 (8) 0.069 (7) 0.069 (7) 0.063 (7) 0.065 (7) 0.060 (7) 0.095 (8) 0.081 (8)
0.17 0.123 (7) 0.111 (7) 0.111 (7) 0.103 (7) 0.105 (7) 0.098 (7) 0.154 (8) 0.134 (8)
0.28 0.160 (8) 0.140 (8) 0.144 (7) 0.131 (7) 0.138 (7) 0.126 (7) 0.217 (8) 0.177 (8)
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Table 4. Cont.

P1buc×100, (ncr)

U V Λ X

CST FSDT CST FSDT CST FSDT CST FSDT

V∗cnt T = 450 (K)

0.12 0.067 (8) 0.059 (8) 0.060 (7) 0.054 (7) 0.056 (7) 0.051 (7) 0.083 (8) 0.069 (8)
0.17 0.107 (8) 0.095 (7) 0.095 (7) 0.087 (7) 0.090 (7) 0.083 (7) 0.134 (8) 0.113 (8)
0.28 0.140 (8) 0.119 (8) 0.124 (8) 0.111 (7) 0.121 (7) 0.108 (7) 0.191 (9) 0.149 (8)

V∗cnt T = 600 (K)

0.12 0.057 (8) 0.048 (8) 0.049 (8) 0.044 (8) 0.047 (8) 0.042 (7) 0.070 (9) 0.056 (8)
0.17 0.089 (8) 0.077 (8) 0.079 (8) 0.071 (7) 0.075 (7) 0.068 (7) 0.114 (9) 0.091 (8)
0.28 0.118 (9) 0.097 (8) 0.103 (8) 0.090 (8) 0.101 (8) 0.088 (8) 0.162 (9) 0.120 (8)

V∗cnt T = 750 (K)

0.12 0.045 (9) 0.035 (9) 0.038 (8) 0.032 (8) 0.037 (8) 0.031 (8) 0.056 (10) 0.041 (9)
0.17 0.070 (9) 0.057 (8) 0.061 (8) 0.052 (8) 0.059 (8) 0.051 (8) 0.090 (10) 0.067 (9)
0.28 0.094 (10) 0.071 (9) 0.081 (9) 0.067 (9) 0.080 (9) 0.065 (8) 0.129 (10) 0.086 (9)

Table 5. Distribution of hydrostatic buckling pressure of homogeneous and INCCSs according to
R/h with different temperatures.

P1buc×100, (ncr)

U V Λ X

CST FSDT CST FSDT CST FSDT CST FSDT

R/h T = 300 (K)

20 0.149 (7) 0.125 (7) 0.132 (7) 0.116 (7) 0.125 (7) 0.111 (7) 0.184 (8) 0.146 (8)
25 0.078 (8) 0.069 (7) 0.069 (7) 0.064 (7) 0.065 (7) 0.060 (7) 0.095 (8) 0.081 (8)
30 0.046 (8) 0.042 (8) 0.041 (7) 0.039 (7) 0.039 (7) 0.037 (7) 0.056 (8) 0.050 (8)
35 0.029 (8) 0.028 (8) 0.027 (7) 0.026 (7) 0.025 (7) 0.024 (7) 0.035 (9) 0.033 (8)
40 0.020 (8) 0.019 (8) 0.019 (8) 0.018 (8) 0.017 (7) 0.017 (7) 0.024 (8) 0.023 (8)

R/h T = 450 (K)

20 0.130 (8) 0.106 (7) 0.113 (7) 0.098 (7) 0.108 (7) 0.094 (7) 0.161 (8) 0.122 (8)
25 0.067 (8) 0.059 (8) 0.060 (7) 0.054 (7) 0.056 (7) 0.051 (7) 0.083 (8) 0.069 (8)
30 0.039 (8) 0.036 (8) 0.036 (7) 0.033 (7) 0.033 (7) 0.031 (7) 0.049 (9) 0.042 (8)
35 0.025 (8) 0.023 (8) 0.023 (8) 0.022 (8) 0.021 (7) 0.020 (8) 0.031 (9) 0.028 (8)
40 0.017 (8) 0.016 (8) 0.016 (8) 0.015 (8) 0.015 (8) 0.014 (8) 0.021 (9) 0.019 (9)

R/h T = 600 (K)

20 0.110 (8) 0.085 (8) 0.095 (8) 0.078 (7) 0.092 (7) 0.076 (7) 0.137 (9) 0.097 (8)
25 0.057 (8) 0.048 (8) 0.049 (8) 0.044 (8) 0.047 (7) 0.042 (8) 0.070 (9) 0.056 (8)
30 0.033 (9) 0.029 (9) 0.029 (8) 0.027 (8) 0.028 (8) 0.025 (8) 0.041 (9) 0.034 (9)
35 0.021 (9) 0.019 (9) 0.019 (8) 0.017 (8) 0.018 (8) 0.017 (8) 0.026 (9) 0.023 (9)
40 0.014 (9) 0.013 (9) 0.013 (8) 0.012 (8) 0.012 (8) 0.011 (8) 0.017 (9) 0.016 (9)

R/h T = 750 (K)

20 0.087 (9) 0.062 (8) 0.074 (8) 0.057 (8) 0.072 (8) 0.056 (9) 0.109 (10) 0.070 (9)
25 0.045 (9) 0.035 (9) 0.038 (8) 0.032 (8) 0.037 (8) 0.031 (8) 0.056 (10) 0.041 (9)
30 0.026 (9) 0.022 (9) 0.022 (9) 0.020 (8) 0.022 (8) 0.019 (8) 0.032 (10) 0.026 (10)
35 0.016 (9) 0.014 (9) 0.014 (9) 0.013 (8) 0.014 (9) 0.013 (8) 0.020 (10) 0.017 (10)
40 0.011 (9) 0.010 (9) 0.010 (9) 0.009 (9) 0.009 (9) 0.009 (8) 0.014 (10) 0.012 (10)
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Table 4 presents the distribution of hydrostatic buckling pressure values of the U-,
V-, Λ-, and X-scheme nanocomposite cylindrical shells according to the change in V∗cnt
under four thermal environmental conditions. The cylinder dimensions used are R = 25 h,
L/R = 1, h = 0.002 m, and the temperature increases by 150 steps between 300 (K)
and 750 (K). Table 4 shows that the increase in V∗cnt significantly increases the hydrostatic
buckling pressure values in homogeneous and all inhomogeneous patterns. Although the
increase in temperature from 300 (K) to 750 (K) reduces the hydrostatic buckling pressure
values, the effect of the V∗cnt change remains important. For example, at V∗cnt = 0.28 and
T = 300 (K), the influences of shear deformations on the buckling pressure in shells with U-,
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V-, Λ-, and X-schemes are 12.58%, 9.03%, 8.7%, and 18.43%, respectively, and at T = 750 (K),
these effects are 24.46%, 17.28%, 18.75%, and 33.33%. When comparing V∗cnt = 0.28 and 0.17,
the influences of shear deformations (SDs) for T = 300 (K) are less by 3.8%, 2%, 3%, and
4.3% in the U-, V-, Λ-, and X-constructs, respectively, while these the effects for T = 750 (K)
are less approximately by 6%, 3.8%, 5.2%, and 7.8%, respectively. In all designs, the effect
of SDs on hydrostatic buckling pressure values at V∗cnt = 0.12 fluctuated between the effects
of V∗cnt = 0.17 and V∗cnt = 0.28. The effects of inhomogeneous patterns on the hydrostatic
buckling pressure values generally increase with the rise in temperature from 300 (K) to
750 (K) in the framework of CST and are more pronounced than the influence in the FSDT.
In addition, for V∗cnt = 0.17 and 0.28, the influence of the X-scheme reduces continuously
with the increase in temperature in the FSDT framework, while in all other cases, those
influences change irregularly. In the FSDT framework, the most pronounced effect occurs
in the X-patterned cylinder with 26.43% when T = 300 (K) and V∗cnt = 0.28, while that effect
occurs in the CST framework for the same volume fraction and patterned shell as 37.23%,
at T = 750 (K). It has been found that as the temperature rises, its influence on the values
of hydrostatic buckling pressure rises. In the same models, the increase in temperature
significantly changes the values of the hydrostatic buckling pressure, and the effect of
temperature is more pronounced in the frame of the FSDT. For example, when comparing
the cases T = 300 (K) and 450 (K) in the same Λ-model, the effect of temperature on the
buckling pressure values within the FSDT is 15%, 15.31%, and 14.29% for V∗cnt = 0.12, 0.17,
and 0.28, respectively, while those effects decrease within CST and are 13.85%, 14.29%,
and 12.32%, respectively. When comparing the cases T = 300 (K) and 750 (K), the effects
of temperature on the buckling pressure in the same Λ-scheme are 48.33%, 47.96%, and
48.41% for V∗cnt = 0.12, 0.17, and 0.28, respectively, within the FSDT, while those influences
reduce significantly and are 43.07%, 43.81%, and 42.03%, respectively, but nevertheless
retain their influence within the CST.

Table 5 and Figures 3–6 show the distribution of hydrostatic buckling pressure values
of the U-, V-, Λ-, and X-scheme nanocomposite cylindrical shells according to the change
in R/h under four thermal environmental conditions. The cylinder dimensions used are
V∗cnt = 0.12, L/R = 1, h = 0.002 m ; the temperature increases in steps of 150 between
300 (K) and 750 (K), and R/h increases from 20 to 40 in steps of 5. Table 5 and Figures 3–6
show that the rise in R/h significantly reduces the hydrostatic buckling pressure values in
the nanocomposite cylinders with homogeneous and all inhomogeneous patterns, whereas
the corresponding circumferential wave numbers slightly increase.

Although the effect of SDs on the hydrostatic buckling pressure reduces as the
R/h ratio increases, it is seen that an increase in temperature increases that effect (see
Figures 3 and 4). For example, the effect of SDs on the hydrostatic buckling pressure in
U-, V-, Λ- and X-models in room temperature for R/h = 20 are 16.11%, 12.12%, 11.2%, and
20.65%, respectively, while those effects reduce to 5%, 5.26%, 0%, and 4.17%, respectively,
at R/h = 40. For T = 750 (K) and R/h = 20, the effects of SDs on the hydrostatic buckling
pressure in U-, V-, Λ-, and X-models are 28.74%, 22.97%, 22.22%, and 35.78%, respectively,
while for R/h = 40, it is observed that those influences decreased to 9.09%, 10%, 0%, and
14.29%.

The influence of the V- and Λ-models on the hydrostatic buckling pressure decreases
compared to that of the U-model, but that effect increases in the X-pattern as the R/h
increases. However, an increase in temperature increases the effect of all inhomogeneous
models on the hydrostatic buckling pressure. For example, at room temperature for
R/h = 20, the pattern effects on the hydrostatic buckling pressure are −7.2% and −11.2%
in the V- and Λ-models, respectively, while those effects reduce to −5.26% and −10.53% at
R/h = 40. For T = 750 (K) and R/h = 20, the pattern effects on the buckling pressure in V-
and Λ-models are 8.07% and −9.68%, respectively, while for R/h = 40, both pattern effects
rise by −10%. For the room temperature, the effect of the X-model increases from 16.8% to
21.05% as R/h increases from 20 to 40, whereas for T = 750 (K), that effect rises from 12.9%
to 20%.
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In the FSDT framework, the influences of the same models on the hydrostatic buckling
pressure rise significantly with increasing temperature. For example, for R/h = 30, the effect
difference between the T = 300 (K) and T = 750 (K) temperatures on the buckling pressure
load of U-, V-, Λ-, and X-modeled cylinders is around −48%. It is seen that the temperature
effect is lower by around 2–12% in the framework of the CST (see Figures 5 and 6).

6. Conclusions

The stability problem of INCCSs subjected to uniform hydrostatic pressure and under
four thermal environmental conditions was investigated comparatively within the frame-
work of two theories. The properties of the polymer-based nanocomposite forming the
cylindrical shells were modeled as the function of the thickness coordinate and temperature.
The effective material properties of the inhomogeneous nanocomposite cylindrical shell
were determined according to the extended mixture rule. The basic relations and stabil-
ity equations were derived using the generalized FSDT. By transforming the governing
equations into algebraic equations with the Galerkin procedure, the expressions for the
hydrostatic buckling pressure of the INCCSs were found in the framework of FSDT and
CST.

The numerical analyses have yielded the following generalizations:

(a) The effects of inhomogeneous models on hydrostatic buckling pressure values gener-
ally increase with increasing temperature in the CST, but this effect is weakened when
FSDT is used.

(b) Although the increase in temperature reduces the hydrostatic buckling pressure
values, the effect of the V∗cnt change remains important.

(c) The effect of the X-scheme decreases continuously with the increase in temperature in
the FSDT frame for V∗cnt = 0.17 and 0.28, while in all other cases, these effects change
unevenly.

(d) In the same models, the increase in temperature significantly changes the values of
the hydrostatic buckling pressure, and the effect of temperature is more pronounced
in the frame of the FSDT.

(e) The rise in R/h significantly reduces the hydrostatic buckling pressure values in the
nanocomposite cylinders with homogeneous and all inhomogeneous models, whereas
the corresponding circumferential wave numbers slightly increase.

(f) Although the effect of shear strains on the hydrostatic buckling pressure reduces as
R/h increases, the increase in temperature increases that effect.

(g) The influence of the V- and Λ-models on the hydrostatic buckling pressure decreases
compared to that of the U-model, but that effect increases in the X-model as the R/h
increases.

Analysis and comments using a closed-form solution revealed significant quantitative
and qualitative changes in the stability of inhomogeneous nanocomposite cylindrical
shells in the thermal environment. In order to prevent the damages that may occur in the
applications and the accidents that may be caused by them, it is foreseen that the critical
values revealed in the current study should be taken into account during the design phase
of the structural elements.
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Appendix A

Here, Lij (i, j = 1, 2, . . . , 4) are differential operators and are defined as follows:
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where Γj = f
(

h
2

)
− f
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− h
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)
, j = 3, 4, and the following definitions apply:
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Appendix B

The parameters Aij(i, j = 1, 2, 3, 4) are given as

A11 =
[
(t11 − t31)m2n2 + t12m4

]
h, A12 = (t14 + t32)m2n2 + t13m4, A13 = t15m3 + t35mn2 + Γ3m,

A14 = (t18 + t38)nm2, A21 =
[
t21n4 + (t22 − t31)m2n2

]
h, A22 = (t32 + t23)m2n2 + t24n4,

A23 = (t25 + t35)mn2, A24 = t28n3 + t38m2n + Γ4n,
A31 = h

[
s22m4 + (s12 + s21 + s31)m2n2 + s11n4

]
,

A32 = s23m4 + (s24 + s13 + s32)m2n2 + s14n4 + m2/R,
A33 = s25m3 + (s15 + s35)mn2, A34 = (s28 + s38)m2n + s18n3, A41 = m2h/R,
A42 = (0.5m2 + n2)R, A43 = Γ3m, A44 = Γ4n

(A4)
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