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Abstract: An increase in textile resistance to antimicrobial agents has posed a pressing need for
the development of new antimicrobials. Therefore, the antimicrobial characteristics of thiophene
and pyridine acetohydrazide derivatives have been developed as novel textile-modified complexes
exhibiting antibacterial agents. Synthesis and characterization of pyridyl-thienyl acetohydrazide
derivative (AHZ) using NMR (13C and 1H) and FTIR. Modification of cotton fabric (CF) with aceto-
hydrazide (AHZ) and metal chlorides of divalent Cr, Mn, Co, Ni, Cu, and Zn and trivalent Fe, and
Cr. SEM-EDX and Fourier-transform infrared were utilized to characterize cellulose-based cotton
fabric (CF) attached to AHZ and their metal (M) complexes. Antimicrobial activity was examined
against two types of bacteria, namely S. aureus and E. coli, and two types of fungi, namely C. albicans
and A. flavus. All modified samples exhibited higher efficiency towards bacterial strains than fungal
strains. In addition, cellulose modified with Ni (II) confers the most antibacterial protection efficiency.

Keywords: pyridine acetohydrazide; cotton coating; metal complex; ligand; antimicrobial activity

1. Introduction

Due to the increasing number of microorganisms that are resistant to antibiotics,
there is a significant need to develop novel antibacterial agents other than commercially
available compounds to combat this [1]. Cellulose, which is the main component of
cotton fabric, is the most common type of natural polysaccharide derived from algae,
trees, plants, and bacteria. Cotton is a biodegradable, natural, hydrophilic cellulose-based
fiber with OH functional groups that has numerous benefits in textile and biomedical
engineering [2,3]. Cotton fabrics encourage the growth of germs like bacteria and fungi [4].
The most promising area for new textile materials is medical fabrics with antibacterial
properties. Significant efforts are being made to enhance materials and techniques that
could provide secure and efficient defense from various bacteria [5]. Therefore, it is
essential to understand cotton fabrics’ (CF) antibacterial properties. Numerous antibacterial
materials have been imparting antibacterial properties and improving them, including
nanomaterials [6], reduced graphene oxide/silver nano complex [7], chitosan [8], and
curcumin/titanium dioxide nanocomposite [5].

There is a lot of curiosity about the biological activity of hydrazides (R-CO-NH-
NH2), such as their antibacterial, antifungal, and antitumoral effects [9]. Many ligands of
amino acids hydrazide derivatives have been reported to act as models for biologically
significant species such as metalloenzymes, making them vital in the advancement of
bioinorganic chemistry. These complexes are well-known for their outstanding functions in
biological, analytical, therapeutic, and industrial applications in addition to their vital roles
in catalysis, drug dealing, and chemical synthesis [10]. Recently the ability of complexes
of acetohydrazide derivatives to interact with DNA more than the free ligands has been
demonstrated [11].
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Because of their different biological activities, pyridine ring systems are very important
classes of compounds. Biological targets include viral infections, different malignant
cells, and microbial diseases when substituents on the pyridine nucleus are modified. To
target specific biological problems, these compounds interact with enzymes, proteins, and
DNA [12,13].

Cysteine, glutathione (GSH), taurine, methionine, N-acetylcysteine (NAC), and other
sulfur compounds are all amino acids that include sulfur, making it a vital component in
regular physiological function [14]. Othman et al. (2020) created many pyridine compounds,
including the (imidazo [4,5-b]thieno [3,2-e]pyridine-6-carboxylic acid) and its ketone deriva-
tives, which showed promising activity against all strains, particularly K. pneumoniae,
A. flavus, and A. ochraceus [1]. To continue our research on cellulose treatment and ap-
plications [15,16]. In our previous textile applications Schiff base metal (M) complexes
that modified cotton fabric (CF) were studied and showed promising antimicrobial activ-
ities [17,18]. Also, cadmium pyrimidinethione hydrazide-modified CF was studied and
produced more antimicrobial than the other metal (M) [19]. In this work, the synthesis of
2-((3-cyno-4-(4-methoxyphenyl)-6-(thiophen-2-yl)pyridine 2yl) oxy)acetohydrazide (AHZ)
ligand is characterized using different techniques. CF was treated with the synthesized
AHZ, which was subsequently reacted with Zn (II), Ni (II), Cr (III), Co (II), Cu (II), Mn (III),
or Fe (III) chlorides to form CF modified metal complexes. The antimicrobial effectiveness
of the treated fabrics was evaluated.

2. Materials and Methods
2.1. Materials

Mill-bleached pure 100% cotton fabric was procured from Mehalla El-Kobra, Egypt,
by Misr Company for spinning and weaving.

2.2. Chemicals

The starting chemicals were metal salts, ammonium acetate, hydrazine hydrate, acetyl
thiophene, 4-methoxy benzaldehyde, ethyl cyanoacetate, ethyl chloroacetate, and potas-
sium carbonate that were purchased from Sigma Aldrich and utilized without additional
purification. Fisher Scientific (Loughborough, UK) supplied the solvents, which were
ethanol (99%) and N,N-Dimethylformamide (99%).

2.3. Syntheses of Acetohydrazide Ligand (AHZ)

AHZ ligand was prepared as in our previous work [20] using the following steps:
(Scheme 1)

1st step: Preparation of 4-(4-Methoxyphenyl)-2-oxo-6-(thiophene-2-yl)-1,2-dihydro-
pyridine-3-carbonitrile (1)

In Et OH (40 mL), 5 mmol of (acetyl thiophene and 4-Methoxybenzaldehyde), 15 mmol
of ammonium acetate were added to 5 mmol of ethyl cyanoacetate, and the mixture was
heated under reflux while stirring for five hours. The reaction mixture was cooled to 25 ◦C.
The precipitated was then washed with ethanol, dried, and recrystallized from EtOH-DMF
mixture to yield compound 1 as a yellowish powder [21].

2nd step: Preparation of Ethyl 2-((3-cyano-4-(4-methoxyphenyl)-6-(thiophen-2-yl)
pyridin-2-yl)oxy)acetate (2)

A solution of Ethyl chloroacetate and potassium carbonate (5 mmol: 5 mmol) was
added to the substituted cyanopyridine derivative (1) that had been thoroughly stirred for
30 min. At 25 ◦C, the reaction mixture was stirred once more for six hours. The created
solution was poured over ice-cold water. The ethyl ester derivative 2 was produced as a
yellowish powder by filtering, washing with water, drying, and crystallizing the precipitate
that resulted from an EtOH-H2O (2:1) mixture.

3rd step: preparation of AHZ ligand (3)
Hydrazine hydrate (99%) was added to a solution of the ester 2 (5 mmol) in absolute

EtOH (25 mL), and the solution was refluxed for 4 h. The solvent was removed using a
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rotary evaporator. The resulting precipitate was filtered, dried, and crystallized to produce
the yellow crystals of AHZ compound 3.
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2.4. Coating of Cotton Fabric (CF) with AHZ and M-AHZ

For 3–4 min at (50 ◦C, 40 kHz), 0.1 g of the prepared ligand was sonicated in thirty ml
of DMF. In total, 1 g of cotton textile was soaked in the previous solution and sonicated for
30 min. Samples were then dried and produced cotton fabric-based cellulose modified with
acetohydrazide (AHZ-CF). After that, 0.1 g of metal salt (Zn, Ni, Cu, Co, Cr, Mn, or Fe) was
added to the mixture. Once again, the AHZ-CF sample was submerged in solution while
being stirred constantly under sonication for 30 min. After removal, washing in distilled
water, and drying, the resulting cotton fabric (CF) treated with AHZ metal complexes was
obtained (M-AHZ-CF); M is Co, Cr, Mn, Cu, Fe, Ni, or Zn) [17].

2.5. Instruments

The 1H and 13C NMR spectroscopies were carried out using a Bruker spectrometer at
850 MHz (Billerica, MA, USA). The solid-state Fourir-transform infrared (FTIR) spectra were
carried out using an Agilent spectrometer (Cary 600) in the 4000–400 cm−1 wavenumber
range (Santa Clara, CA, USA). An SEM analysis was implemented by means of a VEGA3
(Tescan, Brno, Czechia). An energy-dispersive X-ray (EDX) was achieved by using JEOL
JSM-7100F (EDX, Oxford X-act, Tokyo, Japan).

2.6. Tensile Strength

The test method (ASTM D-1682-94, (1994) [22] was utilized to determine the tensile
strength of the fabric specimens. Two specimens were examined in the warp direction to
measure the breaking load (Lb) of each modified fabric, and the average value was reported.

2.7. The Add-On (%) Loading

The equation was used to calculate the add-on

Add− on(%) =
W2 −W1

W1
× 100

where (W1) and (W2) are the pre and post treatment weights of specimens of the CF, respectively.
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2.8. Antimicrobial Efficiency

The coated fabrics with the AHZ and M-AHZ were tested for antimicrobial activ-
ity against various strains of Gram-negative bacteria Escherichia coli (E. coli) and Gram-
positive bacteria Staphylococcus aureus (S. aureus), as well as fungal strains Candida albicans
(C. albicans) and Aspergillus flavus (A. flavus) using the disk diffusion method [5].

3. Results and Discussion
3.1. Characterizations of AHZ Ligand
3.1.1. NMR

Characterization of the AHZ ligand Yield: 82%; m.p. 196 ◦C; IR (KBr, cm−1)
υ: 3324–3138 (NH2, NH), 1676 (C=O), 3050 (C–H ar), 2960 (C–H aliph), 2218 (CN), 1610
(C=N ar), 1021 (N–N), 819 (C–S). 1H NMR (DMSO-d6) (Figure 1) δ: 3.87 (s, 3H, OCH3), 4.27
(s, 2H, NH2), 4.93 (s, 2H, CH2), 7.16 (d, 2H, J = 8.4 Hz, Ar–H), 7.23 (m, 1H, Ar–H), 7.73
(d, 2H, J = 7.8 Hz, Ar–H), 7.75 (d, 1H, J = 8.2 Hz, Ar–H), 7.83 (s, 1H, pyridine-H5), 8.05 (d,
1H, J = 7.6 Hz, Ar–H), 9.39 (br, 1H, NH). 13C NMR (Figure 2) (DMSO-d6) δ: 55.9 (CH3),
64.7 (CH2), 91.6 (CN), 112.2, 112.7, 114.8, 116.0, 128.9, 129.1, 129.5, 131.8, 142.9, 143.1, 152.8,
161.3, 163.8 (Ar–C, pyridyl-C, thienyl-C), 166.4 (C=O). Elemental analysis (%): calcd. for
C19H16N4O3S: H, 4.24; C, 59.99; N, 14.74; S, 8.43. Found: H, 3.76; C, 54.45; N, 7.23; S, 20.91.
λmax (nm): 300 and 241.
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3.1.2. FTIR Spectra of AHZ

The ligand’s significant FT-IR spectral bands are shown in Figure 3. The spectrum of
the AHZ appeared medium band in the range of (3183–3324 cm−1), which is conformable
to NH2 and NH groups, and a strong band at 2218 cm−1 concerning the C≡N group [23],
whilst the strong band at 1676 cm−1 concerning the C=O group of acetohydrazide [9],
and strong bands at 1610, 1021 cm−1 concerning C=N and N–N of the pyridine ring
and acetohydrazide [24,25], respectively. At 819 cm−1, a strong band induced by (C–S)
thiophene stretching appeared [26].
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3.2. Cotton Fabric Analysis
3.2.1. The Proposed Mechanism between CF and AHZ Derivative

Scheme 2 shows the suggested interaction between the cellulose CF and the aceto-
hydrazide complex. The acetohydrazide ligand and cotton fabric cellulose molecules
interact primarily through H-bonding and a weak Vander-Wall interaction between the
amino group of the AHZ and the OH groups of the cellulose molecules. Upon complexa-
tion, the participation of the C=O, NH2 of the AHZ molecule, and OH group of cellulose
chains in binding to the metal ions. Coordination bonds are created between the OH
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groups of cellulose chains and metal ions. As a consequence, a complex is created between
AHZ and the cellulose structure, using the metal ions attached in the cellulose chain via
coordination bond.
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3.2.2. FT-IR Spectra of the Modified Cotton

The adsorption of AHZ and M-AHZ on the surface of CF is studied using the FT-IR
spectral method. Figure 4 and Table 1 show the spectra of blank cotton fabric, as well
as AHZ and complex modified CFs. A peak appeared in the (3200–3500 cm−1) range
for unmodified CF, which can be assigned to O–H stretching. The cellulose vibrations
of C–H stretching and C–H bending were attributed to the weaker peaks at 2904 cm−1

and 1371 cm−1 [27]. While an appearance of O–H, C–O–C, and C–O vibrations caused
the cellulose bands to appear in the 1500–800 cm−1 range [7]. Moreover, the spectra
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of modified CFs showed characteristic peaks related to cellulose structure, in addition
to the peaks of the AHZ. Figure 4 shows that AHZ-CF has a new peak at 1652 cm−1,
which corresponds to the stretching C=O group of the ligand. Furthermore, AHZ-CF
has broadband around 3468 cm−1 and 3191 cm−1 [28], which could be due to vibrational
(NH) stretching vibration for a ligand latent behind the hydroxyl band CF. In this instance,
hydrogen bonding dominates the interaction between the acetohydrazide ligand and the
cellulose molecule, with a minor Van-der-Wall interaction between the NH2 group of the
AHZ and the hydroxyl groups of the cellulose structure. C=O, NH2, and OH groups
are shifted to lower wavenumbers due to complexation with metal ions [29,30]. The
participation of the NH2, C=O of the AHZ, and the OH group of cellulose in binding to the
metal ion is supported by these shifts. Furthermore, all metal complexes have peaks M–Cl,
M–O, and M–N in the range of 592 to 434 cm−1 which overlap with peaks of CF [31,32].
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Figure 4. (a) and (b) FTIR of blank CF, ligand coated CF, and metal complexes coated CF.

Table 1. FT-IR values of coated CF.

Compound ν (OH) ν (CH2) ν (C=O) ν (C–O–C) ν (C–O) ν (M–O) ν (M–N) ν M–Cl

AHZ-CF 3468–3191 br 2896, 2850 m 1652 m 1160, 1106 m 1053, 1028 s - - -
Zn–AHZ-CF 3466–3184 br 2894, 2848 m 1648 m 1161, 1106 m 1053, 1028 s 591 w 518 m 434 m
Ni–AHZ-CF 3467–3188 br 2894, 2848 m 1651 m 1162, 1105 m 1053, 1028 s 590 w 518 m 434 w
Cu–AHZ-CF 3464–3191 br 2895, 2848 m 1651 m 1160, 1106 m 1053, 1028 s 592 w 518 m 435 w
Co–AHZ-CF 3468–3189 br 2895, 2848 m 1648 m 1160, 1105 m 1053, 1028 s 590 w 518 m 436 m
Cr–AHZ-CF 3464–3183 br 2895, 2846 m 1650 m 1161, 1105 m 1053, 1028 s 591 w 518 m 436 m
Mn–AHZ-CF 3461–3183 br 2896, 2851 m 1651 m 1160, 1106 m 1053, 1028 s 592 w 518 m 434 m
Fe–AHZ-CF 3461–3187 br 2896, 2851 m 1650 m 1160, 1106 m 1053, 1028 s 592 w 518 m 435 m

ν (wavenumber), S (strong), br (broad), m (medium), w (weak).

3.2.3. SEM/EDX Analysis

The surface morphology of cotton fabrics (CF) with acetohydrazide ligand and its
metal complexes were evaluated using scanning electron microscopy (SEM). Figure 5a
displays the SEM of the blank cotton fabric, which reveals the appearance of a smooth
surface [33,34], whereas Figure 5b–i shows agglomerated particles on the coated cellulosic
fiber surface (CF) with acetohydrazide (AHZ) and the CF modified with acetohydrazide
metal complexes (M–AHZ-CF; M is Cu, Ni, Zn, Co, Cr, Mn, or Fe) as a result of the
modification of CF. Figure 6 also shows the results of an EDX analysis of coated cellulose
cotton fabric (CF) with acetohydrazide ligand (AHZ) and AHZ metal complexes. The
untreated fabric (Figure 6a) demonstrates that only carbon and oxygen are present in
the fabric’s composition. The deposition of the acetohydrazide on the cellulosic fiber is
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indicated by the appearance of new elements in Figure 6b. Figure 6b–i show Zn, Ni, Cu,
Co, Cr, Mn, and Fe metals with nitrogen and sulfur, which is evidence that the CF was
successfully modified with AHZ metal complexes [34].
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3.2.4. Antimicrobial Studies

Using the disk diffusion method, the microbial activity of unmodified and modi-
fied CFs were tested against representative pathogens, including Gram+ (S. aureus) and
Gram- (E. coli). Also, all samples were tested against a variety of fungal strains, namely
(A. flavus) and (C. albicans). As shown in Table 2 and Figure 7, all treated samples of
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cotton fabric had an antibacterial action with a zone of inhibition ranging from 10 to
21 mm. It is clear from Table 2 that all modified CFs with AHZ and its M–AHZ com-
plexes had almost a greater response to Gram-positive than Gram-negative, and variance
in bacterial cell wall organization structure may account for this. It was noticed that the
ligand modified cotton fabric was found to have moderate activity against Gram-positive
(S. aureus) bacteria, whereas low activity against Gram-negative (E. coli) bacteria. When
compared to the AHZ-CF, cotton fabric modified with metal complexes was found to have
remarkable antimicrobial activity. The Ni–AHZ-CF complex demonstrated the highest
antibacterial activity against both Gram- and Gram+ bacteria, followed by the Zn–AHZ-CF,
as well as the Fe–AHZ-CF displayed the lowest antibacterial activity when compared to
the other M−AHZ-CF. The order of antibacterial effects is as follows: Ni–AHZ-CF > Zn–
AHZ-CF > Cu–AHZ-CF > Co–AHZ-CF > Cr–AHZ-CF, Mn–AHZ-CF > Fe–AHZ-CF, as pre-
sented in Figure 8. The improved performance of M-AHZ complexes can be demonstrated
by the chelation theory [35–37]. This indicated that upon complexation, the polarity of the
metal ion is diminished as a result of its positive charge being shared partially with donor
groups. In addition, it boosts the complex’s lipophilicity and increases the delocalization
of π-electrons across the entire chelate ring. This increased lipophilicity improves the
complexes’ ability to penetrate the bacterial cell membrane’s lipid layer and hinders the
M-binding sites on the enzymes of microorganisms. On the other hand, Table 2 also shows
the antifungal activity of all treated samples. Ligand-modified cotton fabric has no activity
against both fungal strains, (A. flavus) and (C. albicans). Metal complexes modified cotton
fabric were found to have a higher activity against C. albicans than A. flavus. All complexes
had no activity against A. flavus. Zn–AHZ-CF was found to possess higher antifungal
activity against C. albicans compared with all the studied samples of cotton fabric-modified
complexes (Figure 7).

Table 2. The Antimicrobial activities of the blank cotton, AHZ-CF, and M-AHZ-CF.

Fabric Coating

Inhibition Zone
(mm/cm Sample) Inhibition Zone

(mm/cm Sample)
Gram (+ve) Gram (−ve)

S. aureus E. coli C. albicans A. flavus

Blank 0 0 0 0
AHZ-CF 11 10 0 0

Zn−AHZ-CF 18 18 19 0
Ni−AHZ-CF 21 18 11 0
Cu−AHZ-CF 16 15 14 0
Co−AHZ-CF 14 14 0 0
Cr−AHZ-CF 12 13 0 0
Mn−AHZ-CF 13 12 0 0
Fe−AHZ-CF 11 0 0 0

3.2.5. The Add-On (%) and Tensile Strength

The add-on values represent the amount of chemicals used during the modification
process that were deposited on the CF. Table 3 shows add-on percentage results. The
outcomes presented that the add–on values for modified CF with AHZ were 2.1% while
the M-AHZ modified fabrics show much larger add–on values ranging from 4.5% to 9.4%.
In contrast, the treated samples’ tensile strength values have significantly decreased. This
could be explained by the various modifications made to cotton fabric.
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Table 3. Results of add-on and tensile strength.

Cotton Sample Add-On
(%)

Tensile Strength
(Kg f)

Blank - 54.8 ± 0.2
AHZ-CF 2.17 ± 0.2 51.8 ± 0.2

Zn−AHZ-CF 4.5 ± 0.2 49.8 ± 0.2
Ni−AHZ-CF 5.97 ± 0.2 47.7 ± 0.3
Cu−AHZ-CF 5.75 ± 0.2 48.8 ± 0.2
Co−AHZ-CF 4.95 ± 0.2 48.50 ± 0.5
Cr−AHZ-CF 3.42 ± 0.2 50.67 ± 0.4
Mn−AHZ-CF 4.8 ± 0.2 49.32 ± 0.46
Fe−AHZ-CF 4.96 ± 0.2 48.3 ± 0.6

4. Conclusions

Herein, we report the synthesis of 2-((3-cyano-4-(4-methoxyphenyl)-6-(thiophen-2-yl)
pyridin-2-yl) oxy) acetohydrazide (AHZ). Spectroscopic techniques including 1HNMR
spectra, 13CNMR spectra, and FTIR spectra successfully elucidated the AHZ structure. The
CF were modified with the AHZ and its complexes by exposing them to ultrasonic waves
for several minutes. SEM images represent distributions of the AHZ and M-AHZ on the
surface of fabric resulting in a rough surface. The EDX results, which showed that the
modified samples contained the elements Ni (II), Cu (II), Mn (II), Co (II), Cr (III), and Fe
(III), revealed the successful deposition of all treatments. The antibacterial and antifungal
properties of the modified cotton complexes were investigated. The treated samples show
antibacterial efficiency in higher results than antifungal properties and have great potential
to be used as antibacterial textiles with high effectiveness. Moreover, the cotton fabric
containing Ni (II) complex was exerted to be more reactive toward both bacteria and fungi
than other metals modified cotton fabric complexes. According to the presented data,
coated cotton fabrics are promising in antimicrobial textile applications.
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