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Abstract: This paper discusses modeling the behavior and prediction of fracture of brittle materials.
Numerous publications show that progress in this area is characterized by the emergence of a number
of new models that meet the requirements of the mining industry, construction and other engineering
practices. The authors focus only on one class of models, paying special attention to the compromise
between simplicity of solution and versatility of the model. A new version of the model is proposed,
taking into account the advantages of previous models. We present a differential energy criterion for
brittle fracture substantiated, according to which, fracture occurs at a certain ratio of dissipated and
stored (elastic) energy. Fracture is considered as the end of the deformation process with a virtual
transformation of the initial material almost without cracks into a real material with cracks. The
highest and lowest elastic moduli are analytically determined, respectively, on the ascending and
descending branches of the stress–strain curve. A graphical version of the algorithm for determining
the brittle fracture point on the post-peak branch of the stress–strain curve is proposed. The modeling
results are consistent with the experimental data known from the literature.

Keywords: fracture mechanics; brittle materials; complete stress–strain curve; differential energy
fracture criterion; analytical model; graphical model

1. Introduction

Rocks consist of many small mineral grains that form a strong but brittle framework in
which intergranular boundaries, pores, cracks and joints are inevitable due to the conditions
of origin and life cycle [1–3]. From the point of view of mechanics, such an inhomogeneous
structure is characterized by a nonlinear load–displacement dependence. This dependence
is an external manifestation of the internal processes of interaction between the aforemen-
tioned grains and material strains, i.e., this dependence indirectly reflects all stages of rock
behavior as a brittle material and is therefore of paramount importance for predicting
the strength and fracture of rocks and similar materials [4–7]. Despite progress in this
area [8], many criteria have limited application because they do not fully correspond to
real materials. At the same time, the best results are obtained using energy criteria [9–11].

We focus on the application of the energy approach in combination with Equivalent
Material Concept (EMC) [12], which developed in Fictitious Material Concept (FMC) [13].

Note that EMC and FMC are effectively used mainly for modeling load-bearing
elements with cracks and notches of various shapes [12–14]. Both concepts are based on
the idea of replacing a real elastic–plastic material with a model of an ideal brittle material
for subsequent application of known and simpler methods of linear analysis. However,
the ways of implementing this fundamental idea are different: EMC and FMC focus on the
same basic problem related to estimating the critical load on an elastic–plastic element with
a notch (or crack) without directly performing a nonlinear analysis, which is complex and
time-consuming [15,16]. The EMC replaces the nonlinear load–displacement relation of the
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real material with a linear (virtual) relation with an appropriate equivalent strength and
preserves the same elastic modulus as the real material [14]. Another approach, according to
FMC, is that the real and virtual material have different values of the modulus of elasticity,
but the strain at the maximum stress is the same. This means that the ultimate strength
of the fictitious material may differ from the ultimate strength of the real material. The
essential difference between EMC and FMC is that EMC assumes the same modulus of
elasticity for a real ductile material and a fictitious brittle material, but the strain at failure
must be different [14].

The use of EMC-based models has shown to be effective for small notch radii
(e.g., 0.15 mm), but predictions lose accuracy if the notch radius increases [15]. A model
based on the concept of fictitious material [13] fills this gap.

As the literature review has shown, the development of strength and fracture criteria
that take into account the influence of all material defects requires further research, which
is especially important for rocks because their physical and mechanical properties are very
variable [17,18]. Given that, in general, all models are to some extent approximate [19],
and their areas of effective application may not coincide, it is advisable to complement
the many known approaches and models of brittle fracture in order to reduce gaps in
this area and improve understanding of the behavior of rocks and similar materials for
sustainable development. Given this circumstance and the relevance of the problem [20,21],
it is relevant to note that, along with the EMC and FMC mentioned above, a third approach
is possible, in which the values of both the elastic modulus and strain of the virtual material
are equal to the corresponding values for the real material, as briefly discussed in [22].
Conceptualizing and expanding the scope of this approach to model to not only axial,
but also lateral deformation and brittle fracture in uniaxial compression is the goal of this
paper, which will provide additional tools for analyzing the behavior and predicting the
fracture of rocks and similar materials to improve the efficiency and safety of their use for
sustainable development.

To make the following text easier to read, we have divided it into small sections, which
are interconnected by the logic of the study. In addition, each important point of the study
is explained by an example and comparison with the literature modeling results of some
rocks. Thus, the logic of the study predetermined the form of its presentation in this article.
The conceptual and methodological aspects of the study determine the way to achieve the
goal, so these aspects are logically inseparable from the results. Nevertheless, the article
is structured, and the above aspects and results of the study presented in separate, but
logically related to each other small sections in order, as mentioned above, to facilitate the
reading of the research material.

2. Conceptual Aspects, Methodology and Results
2.1. Preliminary Remarks

As noted above, from the point of view of material mechanics, the heterogeneous
structure of rock and similar materials is characterized by a nonlinear load–displacement re-
lation. This dependence is an external manifestation of the internal processes of interaction
of the aforementioned grains at the micro-, meso- and macro-levels, i.e., this dependence in-
directly reflects all stages of rock behavior as a brittle material and is therefore of paramount
importance for predicting the strength and fracture of rocks and similar materials [4–7].
To model the behavior of such materials, we will use the basic ideas of fracture mechan-
ics [23,24], in which the key role in justifying the analytical load–displacement relation is
played by the choice of the damage variable (D), which determines the fraction of damaged
material depending on its deformed state. Consider the process of monotonic load growth.

From the physical point of view, it is clear that under monotonic load, as the weak-
est particles and connections between them are gradually withdrawn from work, the
cross-sectional area decreases and the load redistributed to those particles, which are still
undestroyed. Therefore, the average stress in the undestroyed particles increases, leading
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to increasing deformations of the particles in accordance with Hooke’s law. This process is
described in terms of weak link theory [25].

Disconnection of particles and destruction of bonds between them means reduction
in the cross-sectional area during loading relative to the initial value (A0), so the cross-
sectional area (A) should be considered as a variable, which can be related to A0 by means
of damage variable D. However, to obtain a specific relationship between A and A0, it is
necessary to use some physically adequate assumption (hypothesis) about the influencing
factors. Such a factor can be a change in the characteristic size of a brittle material specimen
under uniaxial compression. For example, if the initial height of the specimen is equal to
H0, and the displacement in the direction of this load is equal to u, then the value of u can
be considered an influencing factor, since it is related (according to Hooke’s law) to the
internal force in this element. A typical plot of the dependence of the cross-sectional area A
on the displacement u shown in Figure 1.
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Figure 1. Typical plot of cross-sectional area A versus displacement u under uniaxial compression.

2.2. Research Hypothesis

In this section, we consider the problem from a physical point of view, and then
formalize the physical model using methods of mathematical modeling.

Based on the ideas of fracture mechanics, we take into account only the effect of
material damage on the change in the cross-sectional area of the specimen (Figure 1). To
the physical meaning of the problem does not contradict the hypothesis: damage (dA) is
proportional to the undamaged part of the area and the power function of displacement
(deformation):

dA = −A

(
u

upeak

)n−1

du. (1)

Here the sign “minus” is written, since the function A(u) is a decreasing function
according to the physical meaning of the problem (Figure 1). The initial cross-sectional
area is equal to A0 (at u = 0). The upeak equal to the displacement u at the peak point on
the load–displacement graph F(u) (Figure 2). The model parameter n used to simulate
nonlinearity, and determined during model calibration.
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Formalizing the hypothesis and considering the problem in terms of mathematical
modeling, let us move to dimensionless variables. Let us divide both parts of Equation (1)
by A0, denote by θ = A/A0 and transform Equation (1) to the form (2):

dθ

θ
= −

(
u

upeak

)n−1

du. (2)

Given that θ = 1 at u = 0, we define the function θ from Equation (2) and express A :

θ = e
− 1

n (
u

upeak
)n

; (3)

A = A0θ. (4)

It follows from relation (4) that the function θ defines the undamaged part of the
original cross-sectional area; in physical terms, this function called a residual area function
(or residual lifetime function). After the residual life function (3), the damage measure
(variable) defined as D:

D = 1 − θ. (5)

Note that various approaches to the definition of D as a measure of material damage
under load are well known [26–29]; usually, the corresponding mathematical expressions
are postulated, i.e., accepted a priori or at the level of hypotheses. At the conceptual level,
we have tried to minimize the volume of hypotheses, realizing that it is not possible to
abandon them completely. Nevertheless, we have considered one-step prior to justifying
the magnitude of the damage (5). This small step toward a better understanding of the
mechanical behavior of brittle materials is justified by Equations (1)–(4), the application of
which discussed below.

2.3. Estimates of the Undamaged and Damaged Area Depending on the Strain

Equations (3)–(5) express estimates of the undamaged and damaged portions of the
cross-sectional area using displacement u. The estimates thus calculated refer to a specific
specimen or to a specific structure (Figure 3).
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In Equation (3), in order to characterize not only the structure but also the material,
relative strain (ε) should be used [30]. If the height of the specimen is equal to H0, then
ε = u/H0; u = εH0; upeak = εpeak H0. After substituting the expressions u and upeak in (3)
we obtain:

θ = e
− 1

n (
ε

ε peak
)n

. (6)

The model parameter n, as noted above, is determined at the stage of model calibration.
The value of the undamaged area is equal to (4). The damage measure is determined
similarly to (5): D = 1 − θ.
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2.4. Degradation of the Cross-Sectional Area

Using the above Figure 3 and relations (4) and (6), consider strain and stress in the
damaged material. According to Hooke’s law

∆H = u =
FH0

EA
=

FH0

EA0θ
. (7)

Using Equation (7), let us define the strain:

ε =
∆H
H0

=
u

H0
=

F
EA

=
F

EA0θ
. (8)

Under uniaxial load σ = εE. Taking into account relation (8) we write:

σ = εE =
F

A0θ
. (9)

Ratio (9) shows that the deformation of brittle material degrades the cross-sectional
area (Figure 1).

To continue the study, it is necessary to determine the dependence of force F on
displacementu; the dependence of stress σ on strainε; and the parameter n in relations (3)
and (6).

2.5. Justification of the Load–Displacement Relation in Uniaxial Compression

On the conceptual level, we assume that the average value of the elastic modulus
of each individual particle, of which a brittle material consists, does not change under
loading under normal conditions. This assumption does not contradict modern ideas
about materials [30]. This does not deny that the modulus of elasticity (stiffness) of the
conglomerate of these particles changes under load.

Using one of relations (7), let us express the modulus of elasticity from it and using
Equation (3), we write:

u =
FH0

EA0θ
; E =

FH0

uA0θ
=

FH0

uA0
e

1
n (

u
upeak

)n

. (10)

Equation (10) is acceptable for any pair of values of u and F corresponding to the
physical meaning of the problem, for example, for u = upeak and F = Fpeak:

E =
Fpeak H0

upeak A0
e

1
n . (11)

The values of the modulus of elasticity in relations (10) and (11) are the same, which
makes it possible to obtain the equation for determining the dependence of the load F on
the displacement u:

FH0

uA0
e

1
n (

u
upeak

)n

=
Fpeak H0

upeak A0
e

1
n . (12)

F = Fpeak
u

upeak
e

1
n (1−

un
un

peak
)
. (13)

The model parameter n is determined at the stage of model calibration, by analogy
with [6].

2.6. Justification of the Stress–Strain Relation in Uniaxial Compression

In Equation (13), to characterize not only the structure but also the material, stress (σ)
and strain (ε) should be used [30]. As usual, σpeak = Fpeak/A0, i.e., F = σA0,
Fpeak = σpeak A0. If the height of the specimen is equal to H0 (Figure 3), then ε = u/H0;
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u = εH0; upeak = εpeak H0. After substituting these expressions F, u and upeak in Equation
(13) we obtain:

σ = σpeak
ε

εpeak
e

1
n (1−

εn
εn

peak
)
. (14)

As noted above, the model parameter n is determined during model calibration, by
analogy with [6].

2.7. Previous Models of the Class under Discussion

We consider models belonging to the same class, which begins with the Furamura
model (15) [6]:

σ = σpeak
ε

εpeak
e

1− ε
ε peak . (15)

A comparison of Equations (14) and (15) shows that if n = 1, we obtain a simpler
model (15). Thus, our proposed Equation (14) is a generalization of model (15), which
extends the scope of its application.

We obtain more opportunities for nonlinear analysis if we use the Blagojevich model
(16) [31]:

σ = σpeak

(
ε

εpeak
e

1− ε
ε peak

)B

. (16)

DDThe model parameter B is determined when calibrating the model, for example,
using the least-squares method [6].

By analogy with (16), we can modify model (14) to the form (17):

σ = σpeak

(
ε

εpeak
e

1
n (1−

εn
εn

peak
)
)B

. (17)

Thus, model (14) and a modification of this model (17) represent two new steps in the
progress of models of this class. The universality of models (14)–(17) is explained by the
possibility of using them to independently control the pre-peak and post-peak branches of
the full load–displacement (stress–strain) curve [6,32]. The parameters B and n specified in
(17) can be integers and fractions.

Note also that Equations (14)–(17) are indifferent to signs of deformations, so they
can be used for both compression and tension. Analysis of accumulated energy can be
performed by integrating these equations. Thus, application of the analytical model (17) can
improve understanding of the mechanical behavior of brittle materials, such as clarifying
notions of the tangential modulus of elasticity in the pre-peak and post-peak stages, as
discussed below.

2.8. Pre- and Post-Peak Modulus of Elasticity

Analysis of brittle material state changes under its loading is a part of many research
studies, the review and the current state of which can found in [33]. Besides the review,
in [33], experimental data and analysis of tests of marble and granite on test machines of
different stiffness are given. These results are a good basis for checking the adequacy of
model (17) as a tool for analyzing the mechanical behavior of brittle material. We focus on
the analysis of changes in the modulus of elasticity.

Using the second Equation (17), we define a function that models the dependence of
elastic modulus on strain:

E(ε) =
dσ

dε
=

σpeak

ε
(1 − εn

εn
peak

)B

(
ε

εpeak
e

1
n (1−

εn
εn

peak
)
)B

. (18)
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The value of ε, at which the extremum of the function (18) is reached, can be found
from the condition (19):

d2σ

dε2 = 0. (19)

Using (19), we obtain two values of ε = εle f t and ε = εright, for the left and right
branches, respectively:

εle f t = εpeak

1 +
n − 1 −

√
4Bn + (n − 1)2

2B


1
n

; (20)

εright = εpeak

1 +
n − 1 +

√
4Bn + (n − 1)2

2B


1
n

. (21)

Substituting ε = εle f t and ε = εright in Equation (18), we calculate, respectively, tangen-
tial modulus of elasticity E and post-peak modulus M (review and new results related to
post-peak modulus are given in [33]). In the following section, we consider an example of
the application of Equations (18)–(21) and compare it with the experimental data known
from the literature.

2.9. Comparison of Simulation Results and Experimental Data

In this section, we will compare the results obtained with the proposed model (17)
and experimental data for uniaxial compression of marble from [33] for two relations: axial
stress–axial strain and axial stress–lateral strain. The same model (17) is used to analyze
both axial and lateral deformations, but with different values of model parameters. Initial
data for calculations using Equation (17) given in Tables 1 and 2.

Table 1. Input data and calibration parameters for modeling axial strain.

Specimen Number
Input Data Calibration Parameters

εpeak
(%)

σpeak
(MPa) n B

1 0.268 95.6 9.5 1.3
2 0.270 95.8 8.0 1.3
3 0.274 96.3 7.0 1.3
4 0.279 96.4 6.0 1.3

Table 2. Input data and calibration parameters for modeling lateral strain.

Specimen Number
Input Data Calibration

Parameters

Poisson’s Ratio ν
εpeak
(%)

σpeak
(MPa) n B

1 0.2 −0.0536 95.6 1.00 0.10
2 0.2 −0.0540 95.8 1.05 0.20
3 0.2 −0.0548 96.3 1.08 0.20
4 0.2 −0.0578 96.4 1.15 0.20

The Poisson’s ratio used in Table 2 to determineε peak using data from Table 1,
e.g., εpeak = −0.2·0.268 = −0.0536. The simulation results shown in Figure 4 and Table 3.
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the behavior of brittle material at the pre-peak stage of deformation. The post-peak 
modulus is considered in detail in [33]. Note that according to [33], the values of the post-
peak modulus significantly depend on the stiffness of the test machine and, for example, 
during uniaxial compression of marble, these values can vary in the range from −550 to 
−0.49 GPa. To improve the accuracy of modeling the post-peak stage of axial deformation, 
it is reasonable to use independent control of the parameters of the pre-peak and post-

Figure 4. Plots of axial stress–axial strain and axial stress–lateral strain during uniaxial compression
of marble. The semi-transparent color shows experimental data from [33] obtained with test machines
of different stiffness (4.7, 5.6, 6.4 and 7.4 GN/m). Colored circles 1, 2, 3 and 4 correspond to the points
at which the condition (19) is satisfied; tangents (thin slanted lines) pass through these points. The
tangent angle of these lines determines the pre- and post-peak moduli (Table 3).

Table 3. Pre- and post-peak module by (18)–(20).

Specimen
Number

Pre-Peak Module Post-Peak Module

E
(GPa)

ε
(%)

σ
(MPa)

M
(GPa)

ε
(%)

σ
(MPa)

1 46.1 (46.8) 1 0.183 66.67 −133.34 0.336 45.85
2 45.9 (44.7) 0.175 63.89 −112.48 0.346 47.18
3 45.7 (44.6) 0.169 61.83 −98.05 0.359 48.47
4 45.2 (45.5) 0.163 59.01 −83.21 0.374 49.81

1 The experimental values of the elastic modulus from [33] are given in parentheses.

Figure 4 and the first column of Table 3 show that model (17) is suitable for analyz-
ing the behavior of brittle material at the pre-peak stage of deformation. The post-peak
modulus is considered in detail in [33]. Note that according to [33], the values of the post-
peak modulus significantly depend on the stiffness of the test machine and, for example,
during uniaxial compression of marble, these values can vary in the range from −550 to
−0.49 GPa. To improve the accuracy of modeling the post-peak stage of axial deformation,
it is reasonable to use independent control of the parameters of the pre-peak and post-peak
branches of the full stress–strain curve [32]; details of this issue are beyond the scope of
this paper.

2.10. The Point of Maximum Modulus of Elasticity on the Ascending Branch of the Stress–Strain
Curve as the Point of Highest Density of a Brittle Material

At the pre-peak stage of deformation (Figure 4), the initial concave stress–strain curve
simulates the stage of cracks closure, in which a denser packing of material particles formed,
leading to a certain decrease in porosity and an increase in material density. Therefore, the
modulus of elasticity increases, which is confirmed by the increase in the angle of inclination
of the tangent, i.e., the growth of the modulus of elasticity to the maximum values at points
1, 2, 3 and 4 (Figure 4). If we assume that there were no cracks at the beginning of the
material life cycle, then the highest value of the modulus may be considered as an estimate
of the modulus of elasticity of the native material.
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Since the real material is inhomogeneous and has some plasticity potential, the load
growth is accompanied by the interaction of two opposite tendencies, one of which is
compaction and growth of elastic modulus and the other is growth of plastic deformations
and gradual disconnection of the weakest links (in accordance with the theory of a weak
link [25]). The interaction of these trends leads to the appearance of an inflection point on
the ascending branch. For the specimens 1, 2, 3 and 4 (Tables 1–3) these points are marked
by colored circles with the same numbers in Figure 4, which shows that after passing
through these points the material destruction intensifies.

The inflection points on the descending branch of the stress–strain curve for specimens
1, 2, 3 and 4 also indicated in Figure 4.

The points with abscissa (20) and (21) determine, as indicated above, the largest pre-
peak and smallest post-peak moduli (Table 3). Thus, the points for which condition (19)
is satisfied can referred to characteristic points on the stress–strain curve. The practical
value of these modules lies, for example, in their application in justification of strength and
fracture criteria for brittle materials [22].

2.11. The Concept of Virtual Material Transformation

Virtual transformation means the transition from the native material as it was at birth
to the real cracked worn material. The observation mentioned in Section 2.10 that the
highest value of the elasticity modulus for a real material with cracks closed in compression
considered as an estimate of the elasticity modulus for a native material induces the idea of
a virtual transformation of an initially ideal elastic material to a real material with cracks.
The stress–strain relationship for the ideal and real material shown in Figure 5 as a straight
line and a curved line, respectively.
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Figure 5. Axial stress–axial strain relationships for an ideal material (thin straight line) and a real
material (curve).

The tangent to the curve in Figure 5 passes through point 1 for which condition (19)
holds. The abscissa of point 1 can be calculated by Formula (20), then calculate the highest
value of the modulus of elasticity (18).

In this paper, we consider the virtual transformation from an ideal material to a real
material as a long-term process of summation of a very large number of small damages
arising from external influences. Under load, conglomerates of material particles deform
and internal forces arise in them. If these forces are large enough, the weakest particles
and particle connections gradually damaged and disconnected (partially or completely).
For this reason, part of the input energy is dissipated. Another part of the input energy is
stored in the undamaged deformed particles. The energy calculated as the area under the
stress–strain curve, i.e., an integral approach is used. Note that such ideas about energy
consumption during deformation of elastic–plastic and brittle materials are basic in a large
number of studies [34–41]. We will consider the ratio of stored (dWe) and dissipated (dWd)
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energy at an infinitesimal change in material strain (dε) at the final stage of brittle fracture,
i.e., we will use the differential approach to determine the “last straw” (Figure 6).
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Figure 6. Change in dissipated (dWd) and stored (dWe) energy at infinitesimal increment of defor-
mation (dε). The modulus of elasticity is greatest at point 1. Point 1 can be determined numerically
(by processing measurements during material tests) or analytically (by differentiating the function
(17)); see also Section 2.8. The stress–strain relation (σ = εE) for the ideal material is represented by
the tangent to the stress–strain curve (17) for the real material; point 1 is the common point of these
dependencies, i.e., as noted above, the elastic modulus of the ideal material at this point is equal to
that of the real material.

The issue of the coordinates (ε and σ) of the fracture point (Figure 6), at the level of
idea, briefly discussed in [22]. This issue is key in the context of the current study, so it
investigated in more detail, using Equation (17) in Section 2.12.

2.12. Relationship between dWe and dWd, Strength Condition and Fracture Point Coordinates

Figure 6 shows that the fracture point is on the stress–strain curve for the real material.
The following equations can written:

dWe + dWd = dW = σdε = εEdε. (22)

To determine the coordinates ε and σ of the fracture point (Figure 6), two equations
needed. The stress–strain curve Equation (17) is one of these equations. The second
equation can be obtained by finding the relationship between dWe and dWd. This requires
answering two questions [22].

Question 1: If ε > 0, is equality dWd = 0 possible?
Answer: Yes, it is possible. Equality dWd = 0 is realized, for example, at point 1

(Figure 6).
Question 2: If ε > 0, is the equality dWe = 0 possible?
Answer: If ε > 0, the equality dWe = 0 is impossible. Indeed, if ε > 0, then

dW = dWe + dWd = 0 + dWd = dWd. From the physical point of view, the equality
dW = dWd means that the input energy is completely dissipated and σ = 0, i.e., the
material is nonfunctional. From a physical point of view, for real materials, if ε > 0, then
dWe > 0.

From the answers to questions 1 and 2 it follows: if ε > 0, then the inequality (19) is
satisfied for real brittle materials:

dWe > dWd. (23)
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It follows from (22):
dWd = dW − dWe. (24)

Let us substitute dWd (24) into inequality (23). We obtain:

dWe >
dW
2

. (25)

From a physical point of view, the material is functional, i.e., the material resists the
load if inequality (25) fulfilled. Therefore, inequality (25) used to construct a differential
criterion for the strength of a brittle material [22].

If strict inequality (25) is a condition of strength, then the condition of destruction is a
non-strict inequality (26):

dWe ≤
dW
2

. (26)

The non-strict inequality (26) contains two conditions: dWe < dW/2 and dWe = dW/2.
It is necessary to answer the question: which of these conditions corresponds to the physical
meaning of the problem? Since dW = εEdε (18), then instead of (26) we can write (27):

dWe ≤
εEdε

2
. (27)

According to the physical meaning of the problem, the fracture point on the descending
branch of the stress–strain curve corresponds to the smallest value of ε (Figure 6). In this
case, the non-strict inequality (27) realized in the form of equality (28):

dWe =
εEdε

2
. (28)

Given equality (22) and the failure condition (28), we obtain the following equations:

dWe =
dW
2

=
dWe + dWd

2
or

dWe

2
=

dWd
2

; dWe = dWd. (29)

The stress and strain at the fracture point (Figure 6) are denoted, respectively, as
σf racture and ε f racture. Given Equation (22), we rewrite Equation (29) as (30), then (31)
and (32):

σdε =
εEdε

2
; (30)

σ =
εE
2

; (31)

σf racture =
ε f ractureE

2
. (32)

Using relation (17), we write the left part of Equation (32) in the form (33):

σf racture = σpeak

 ε f racture

εpeak
e

1
n (1−

εn
f racture
εn

peak
)

B

. (33)

Finally, using (32) and (33), we obtain Equation (34) to calculate ε f racture:

σpeak

 ε f racture

εpeak
e

1
n (1−

εn
f racture
εn

peak
)

B

=
ε f ractureE

2
. (34)
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The modulus of elasticity (E) can be determined as shown above in Section 2.8; the
determination of the parameters n and B is discussed by example in Section 2.9. The
peak strain and stress (εpeak and σpeak) are determined experimentally, but in some cases
these values can be predicted using experimental data only for the pre-peak stage [32,39].
Additional graphical explanations of Equation (34) shown in Figure 7.
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corresponds to the highest value of the modulus of elasticity.

2.13. Graphic Definition of the Brittle Fracture Point

In the previous section, we considered an analytical model for determining the brittle
fracture point. Considering the above, we can propose a simple algorithm for graphically
determining the fracture point of a brittle material using a complete stress–strain curve
(Figure 8):

1. On the pre-peak branch, determine the point that corresponds to the largest tangential
modulus of elasticity (the point 1 in Figure 8).

2. Draw a tangent through point 1 and define point 2.
3. From any point (for example, point 3) on the tangent, draw a perpendicular to the

abscissa axis. Find point 4.
4. Define point 5 as the midpoint of segment 3–4.
5. Draw a line through points 2 and 5. The point of intersection of this line with the

post-peak branch of the stress–strain curve simulates the point of failure; this is point
6 in Figure 8.

An example of applying the graphical determination of predicted fracture points for
the four curves by Figure 4 shown in Figure 9.
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3. Discussion

The main result in this paper is models (14) and (17), which belong to the same class of
models as the preceding models known from the literature [6,31,32]. Models (14) and (17)
are more versatile as compared to their predecessors, since depending on the parametern
in (14) and (17), known models can be obtained. For example, model (14) at n = 3 coincides
with the model from [34], which are obtained using the energy approach:

σ = σpeak
ε

εpeak
e

1
3 (1−

ε3

ε,3peak
)

. (35)

If n = 1, then model (14) coincides with the Furamura model [6]:

σ = σpeak
ε

εpeak
e
1 − ε

εpeak . (36)

Thus, the known models explicitly consider only energy aspects or only deformation
aspects. Given the heterogeneity of rocks, we can assume that the model will be more
accurate if different aspects are taken into account. The proposed models (14) and (17)
differ in the fact that the parameter n can be a fractional number (n ≥ 1), which makes
it possible to consider in different proportions both energy and deformation aspects, as
well as possible other effects in the same equation. For example, 6.0 ≤ n ≤ 9.5 in Table 1
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above and 1.00 ≤ n ≤ 1.15 in Table 2. An even more versatile analysis tool in this area
is model (17), the results of which (Figure 4 and Table 3) do not contradict experimental
data known from the literature for marble [33]. The application of the graphic algorithm
for determining the predicted fracture points (Section 2.13) on the experimental curves in
uniaxial compression of granite [40] shown in Figure 10.
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Figure 10. The experimental curves are adapted from [40]; points 1–5 on these curves predict the
failure of granite specimens with different modulus of elasticity in uniaxial compression. Points 1–5
obtained as a solution of Equation (34) using the graphical algorithm (Section 2.13).

The considered examples show the consistency of the simulation results with the
experimental data.

We considered the issue of analytical determination of the highest value of the modu-
lus of elasticity. Equations (18)–(20) for calculating this modulus were obtained (Table 3),
which refer to the main results of the current study, because on their basis we formulated the
hypothesis that, at the initial stage of the brittle material life cycle, the elastic modulus esti-
mate is equal to the highest value of the elastic modulus of the real material (Section 2.10). In
development of this hypothesis, the concept of virtual material transformation is proposed
(Section 2.11) and the approach (Figure 6) for determining the differential-energy criterion
for brittle fracture is justified. Equations for calculating strain (34) and stress (33) at the
point of brittle fracture derived. In addition, in view of this result, a graphical algorithm for
determining the point of brittle fracture proposed (Figure 8). An example of consistency
with experimental data known from the literature given (Figure 9). However, the practice
of application of these results is insufficient to recommend the practical application of these
results, that is, further research needed.

The above may be of interest for future research on this topic. First, the effect of
material stiffness and load change rate on model parameters n and B (18) should be
investigated. At this point in time, it is clear that the test results depend not only on
the stiffness of the specimen, but also on the stiffness of the test machine [33]; however,
refinement of these representations requires further research. In addition, it is important to
consider the behavior of brittle materials under seismic loading, despite the large number
of studies in this area [42–44].

4. Conclusions

This article considers the approach to justification of the differential energy criterion
of rock brittle fracture. It focuses on the conceptualization and application to the analysis
of axial and lateral strain during uniaxial compression and fracture of rocks using marble
and granite as examples. The study is based on previous results known from the literature.

1. The hypothesis of the study was formulated (1): the damage to the cross-sectional
area is proportional to the undamaged part of the area and to displacement (strain).
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2. In a logical connection with the research hypothesis (1), the residual resource function
of the cross-sectional area (3) is justified.

3. Based on the research hypothesis, new variants of load–displacement models (13) and
stress–strain models (14), (17) were justified, taking into account both axial and lateral
deformations (Tables 1 and 2, Figure 4).

4. The question of analytical determination of the highest (pre-peak) and lowest (post-
peak) values of the modulus of elasticity is considered. Equations (20) and (21) for
calculating the coordinates and values (18) of these moduli are obtained. Examples of
determining the pre-peak and post-peak modulus of elasticity in uniaxial compression
of marble are given (Table 3).

5. An algorithm for the graphical determination of the brittle fracture point is proposed
(Figure 8). An example of prediction based on experimental data known from the
literature is given (Figure 9).

Given the small amount of research using the developed models, it is necessary
to continue research in this direction, despite the consistency of simulation results and
experimental data known from the literature.
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Nomenclature

A cross-sectional area of the specimen.
B model parameter.
D damage variable.
E Young’s modulus.
EMC concept of equivalent material [12].
F Force (or Load).
FMC concept of fictitious material [13].
n model parameter.
u displacement.
upeak peak displacement.
Wd dissipated energy.
We stored energy.
ε strain.
ε f racture strain in fracture point.
εpeak peak strain.
σ stress.
σf racture stress in fracture point.
σpeak peak stress.
θ undamaged part of the original cross-sectional area.
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