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Abstract: Application of the 316 L stainless steel (SS) is limited by its relatively low wear resistance,
insufficient strength, and poor corrosion resistance in special environments. To this end, effects of
Mo particles addition on the microstructure, mechanical properties, and corrosion resistance of the
laser powder bed fusion (LPBF) 316 L SS are investigated in this study. The results show that the
addition of Mo particles from 0 wt.% to 10 wt.% can modify the crystal orientation and improve
the strength, wear resistance, and corrosion resistance of LPBF 316 L SSs. Particularly, the LPBF
316 L SS forms a biphasic structure with a similar ratio of α-Fe to γ-Fe with 5 wt.% Mo addition.
As a result, the corresponding samples possess both the excellent toughness of austenitic SSs and
the high strength and corrosion resistance of ferrite SSs, which reaches a high tensile strength of
about 830 MPa, together with a low friction coefficient of 0.421 µ. Since the Mo particles addition
is beneficial to increase the content of Cr2O3 on the samples surface from 13.48% to 22.68%, the
corrosion current density of 316 L SS decreases by two orders of magnitude from 569 nA to 6 nA,
while the mechanical properties remain favorable. This study is expected to serve as a reference for
the preparation of LPBF SSs with excellent integrated performance.

Keywords: 316 L stainless steel; laser powder bed fusion; mechanical properties; corrosion resistance

1. Introduction

The 316 L stainless steel (SS) has been widely used in machinery, aerospace, and
biomedical industry, etc., because of its good ductility, shipping, biomedical, oxidation
resistance, and relatively low cost [1]. However, the relatively low strength and local-
ized corrosion susceptibility of the 316 L SS hinders its further structural applications,
particularly in the biomedical industry field [2]. Laser powder bed fusion (LPBF) [3] is
promising to improve the strength and corrosion resistance of the 316 L SS, as it is able
to refine the grains and prevent the formation of detrimental intermetallic phases due to
the extremely high cooling rate. Meanwhile, LPBF parts show lower friction resistance
compared with the same material produced by a traditional process [4]. Therefore, LPBF
316 L SS is commonly used in many applications, such as heat exchanger, jet engines, and
biomedical parts. Nevertheless, the wear resistance, strength, and corrosion resistance of
the LPBF 316 L SS cannot meet the requirements in special environments [5–7]. Therefore,
the performance of LPBF 316 L SSs needs to be further improved.

In recent years, LPBF has been used to prepare coatings to improve the wear resistance
and corrosion resistance of 316 L SS due to its layered manufacturing characteristics.
Yazici et al. [8] studied the structural, mechanical, and tribological properties of Ti and TiN
coatings on 316 L SS by LPBF. However, it is difficult to ensure comprehensive coverage of
coatings for complex components in LPBF. Coatings typically occur only on the surface
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of SS. Due to poor wetting between the coating and the substrate, as well as difficulties in
uniform diffusion of elements, metal intermetallic compounds and defects such as cracks
often form at the interface.

Furthermore, doping reinforced particle is widely adopted to improve the performance
of LPBF 316 L SS due to its ability to directly improve the quality of the formed components
without the need for complex coating processes. Han et al. [9] found that the strength of
LPBF 316 L SS can be improved by using graphene without affecting ductility. However,
the increase in strength is not significant enough to meet the demands of special industrial
environments. Some ceramic particles such as TiN [10], TiC [11], SiC [12], have been
proven to enhance the strength and wear resistance. The results demonstrated that the
improved compressive yield strength mainly originated from the effect of grain boundary
strengthening and Orowan strengthening. Song et al. [13] found that Cr3C2 addition
significantly improved the strength of LPBF iron-based materials. However, a large number
of cracks and pores resulted in a lower elongation rate of the material. In general, adding
ceramic particles can cause a significant spheroidization effect, which has a negative impact
on the tensile performance. Meanwhile, the agglomeration of the ceramic particles and the
poor interfacial wettability between ceramic particles and the substrate generally causes
many defects and cracks, which severely deteriorates the corrosion resistance of the LPBF
316 L SS [14]. Hence, some metal particles are added instead. Fang et al. [15] used a powder
mixture of 310 S and 430 SS to prepare γ-Fe composite materials through LPBF. However,
the increase in strength of the formed LPBF SS was not significant due to the limited
strength of SS materials. Ghayoor et al. [16] improved the mechanical performance of 304 L
SS by adding Y. However, the addition of Y to the 304 L matrix resulted in the significant
balling effect, thus the improvement in strength is not significant. Sun et al. [17] found
that the addition of TiAl in LPBF 316 L SS led to an improvement in the yield strength and
ultimate tensile strength. This improvement can be attributed to the refined recrystallized
grain structure and the development of a high density of γ-TiAl nanoparticles, which
effectively act as barriers to dislocation motion. However, due to the lighter weight of
TiAl, segregation occurs at the bottom of the molten pool, resulting in a less significant
increase in strength. In comparison with compounds, single-element particles have better
electrical conductivity, single structure, and unexpected combinatorial properties. Quan
et al. [18] found both electrical conductivity and corrosion resistance of the LPBF 316 L SS
were improved after the Ag addition. However, due to the weak interfacial bonding, Ag
aggregations tended to split away from the 316 L SS, resulting in the formation of pores.
Therefore, the improvement in corrosion resistance is not significant. Yin et al. [19] found
that the addition of W particles can improve the mechanical properties of the 316 L SS.
However, the addition of W made it difficult to uniformly passivated films form on the
surface of 316 L SS which leads to less significant improvement in corrosion resistance.
Zhang et al. [20] found that the strength, hardness, and corrosion resistance of LPBF 316 L
SS can be improved by the addition of iron-based amorphous alloys. The enhancements of
properties are contributed to the oxygen purification of Y element and solid solution of Co
and Mo elements, as well as the grain refinement strengthen with the introduction of the
amorphous alloy. However, due to the high proportion of Fe in the amorphous material,
the improvement in corrosion resistance is not significant. Therefore, we urgently need
to find one more kind of reinforcing particles to effectively improve the comprehensive
performance of LPBF 316 L SS.

Mo shows high mechanical strength and thermal conductivity [21,22], and the con-
centration of Mo cations can range from 1 to 20 at.% in passive films [23], indicating Mo
particles are promising to improve the performance of the LPBF 316 L SS. However, the
impact of Mo’s addition on the strength, wear resistance, and corrosion resistance of LPBF
316 L SS is not clear. In this work, effects of the Mo-particle content on the crystallographic
orientation, mechanical properties, tribological properties, and corrosion resistance of the
LPBF 316 L SS are systematically investigated. The results highlight the capability of
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processing stainless steel materials with excellent performance via LPBF to circumvent the
harsh requirements on traditional materials.

2. Material and Methods
2.1. LPBF Facility and Printing Procedure

The gas-atomized 316 L SS powders with D50 = 39 µm (Sandvik International Trading,
Sandviken, Sweden) and Mo powders with D50 = 7 µm (Avimetal Am Tech Co, Ltd., Beijing,
China) were mixed for 6 h by a three-dimensional motion mixing machine (GH-17L, Nan
Fang Powder Equipment Factory, Wenling, China) to ensure they were fully mixed. The
particle size distribution of the powders was tested using a laser particle size analyzer
(Bettersize2600, Bettersize Instruments Ltd., Dandong, China). In order to systematically
investigate the effect of excessive Mo addition on LPBF 316 L SS, specimens with 0, 3, 5,
7, and 10 wt.% Mo addition prepared by the SLM 125 HL (SLM Solutions Inc., Lubeck,
Germany) were named as S0, S3, S5, S7, and S10, respectively. The LPBF device and LPBF
sample are shown in Figure 1. The LPBF process was performed with oxygen content below
200 ppm. Based on a series of preliminary experiments, the samples were manufactured
with a set of LPBF processing optimal parameters listed in Table 1. Moreover, the laser
scanning angle between adjacent layers is set to be 33◦. Moreover, the substrate is preheated
to 120 °C to reduce thermal stress and ensure good mechanical stability.
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Figure 1. (a) LPBF device, (b) LPBF sample.

Table 1. The LPBF processing parameters of samples.

Samples Power
(W)

Scanning Speed
(mm/s)

Layer Thickness
(mm)

Laser Energy
(J/mm3)

S0 200 800 0.03 69
S3 215 800 0.03 75
S5 225 800 0.03 78
S7 235 800 0.03 82

S10 250 800 0.03 87

2.2. Microstructural Observation

The scanning electron microscopy (SEM; Nova NanoSEM450, FEI Sirion, Hillsboro, OR,
USA) was used to observe the microstructure, while phase identification was performed by
X-ray diffraction (XRD; Rigaku, Tokyo, Japan). Moreover, compositions of the passive films
were analyzed by the X-ray photoelectron spectroscopy (XPS; ESCALAB 250Xi spectrometer,
Thermo Scientific Co. Ltd., Waltham, MA, USA).

2.3. Mechanical Properties Testing

The relative density was measured by an electronic densitometer (ZMD-2, Fangrui Co.
Ltd., Shanghai, China) based on the Archimedes principle [24]. Moreover, relative densities
of all samples were found to be above 98% in this study. The universal testing machine and
tensile sample are shown in Figure 2. The mechanical properties were measured through
tensile test running under the universal testing machine (Exceed E45, MTS systems Co.
Ltd., Shenzhen, China). Moreover, as shown in the Figure 3a, wear tests were carried out
using a friction and wear tester (TRB3, Anton Paar Co. Ltd., Graz, Austria). As shown
in Figure 2b, a linear reciprocating dry friction wear test method was adopted, where the
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grinding ball with a diameter of 6 mm is used. The worn surfaces were characterized by
the optical microscope (OM, VK-X1000, Keyence, Osaka, Japan) and SEM. In addition,
the cross-sectional area of wear tracks was determined by the average value of from four
measurements long −X, +X, −Y, and +Y directions, respectively. Moreover, the friction
experiment is conducted at room temperature, with a load of 2 N and a frequency of 6 Hz.
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Figure 3. (a) Friction and wear tester, (b) the grinding ball fixture that holds a ball with a diameter of
6 mm, (c) the sample for friction test.

2.4. Electrochemical Testing

The electrochemical station (VersaSTAT 3F, Ametek Co. Ltd., California, USA) and elec-
trochemical samples were shown in Figure 4. To minimize errors arising from the varying
formation times of passivation films, electrochemical samples are prepared concomitantly.
To ensure the reproducibility, all the measurements were repeated at least 3 times under
20 ± 2 ◦C.
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3. Results and Discussion
3.1. Phase Analysis

To identify the phase structure, XRD patterns of the samples are presented in Figure 5.
One sees from Figure 5 that with the increasing Mo content, the phase transformation
occurs from γ-Fe for S0 to α-Fe for S10. Especially, both phases are contained in S5. The
phase transformation can be attributed to the change of the chemical composition and
cooling rate [25]. During the solidification process, more MoCx forms and segregates at the
grain boundaries due to the strong affinity and the co-segregation between Mo and C [26]
with the increasing Mo addition, which results in a reduction in C concentration within the
316 L matrix, and then promotes the generation of α-Fe with lower C than γ-Fe. Meanwhile,
the thermal conductivity of Mo (142 W·m−1·K−1) is about 10 times higher than that of
316 L SS (14 W·m−1·K−1) [27,28]. The thermal conductivity of the hybrid powder increases
with the increasing Mo addition, which results in a higher cooling rate. Furthermore, the
high cooling rate leads to the formation of the α-Fe [29]. Moreover, the increasing Mo
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addition results in the larger lattice distortion of the matrix due to the relatively large
atomic diameter, which causes higher tensile stress within the matrix and in turn promotes
the stress-induced transformation from γ-Fe to α-Fe [30].
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3.2. General Microstructure

The duplex SS has been proven to combine the excellent toughness and weldability
of γ-Fe with the high strength and chloride corrosion resistance of α-Fe [31]. Thus, the
S5 containing the duplex phase is compared with S0 in this work. Moreover, the tissue
structures for S0 and S5 are shown in Figure 6. One sees from Figure 6a,d that there are a
lot of irregular grains in S0 and S5, which results from the rapid heating/cooling rate of the
LPBF technique (>105 K/s). Figure 6b,e shows that the addition of Mo tends to increase
the dislocation density of the LPBF 316 L. While the mean grain size is largely decreased
from 18 µm for S0 to 3 µm for S5, as shown in Figure 6c,f. The formed preferential MoxC in
the molten pool can supply effective heterogeneous nucleation during the solidification
process, which results in the grain refinement [32]. Moreover, the higher cooling rate caused
by the increasing Mo addition can also play a key role in the grain refinement.

3.3. Tensile Properties

Tensile tests are conducted to investigate the effect of Mo particles on the mechanical
properties of 316 L SS. Tensile properties of the LPBF samples are shown in Figure 7, where
one sees that the ultimate tensile strength increases with increasing Mo addition, from
710 MPa for S0 to 963 MPa for S10. Moreover, the significant increase in strength with more
than 3 wt.% Mo particles addition can be attributed to the formation of brittle α-Fe. While
the insignificant decrease in elongation when the Mo addition exceeds 5 wt.% results from
the grain refinement, as it can improve both the strength and plasticity of the material [33].
Considering that S5 has both good plasticity and strength, we believe that S5 shows the
best comprehensive tensile properties in this study.
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3.4. Fracture Surface

To investigate fracture mechanism of S0, S3, S5, S7, and S10, the tensile fracture topog-
raphy is shown in Figure 8. One sees from Figure 8 that S0, S3, S5, and S7 show small and
deep dimples, indicating that all samples exhibit typical characteristics of ductile fracture.
Moreover, the traces of brittle fracture for S10 can be seen in in Figure 8i, illustrating the
combination of ductile fracture and brittle fracture. Moreover, the worsened plasticity can
be attributed to the increasing number of defects. As shown in the insert of Figure 8e,
several partially molten steel particles are found on the fracture surface. The surrounding
surface of these particles did not show any pits. These partially molten areas formed at the
interface between two layers are believed to represent a fundamental cause of the scattering
in elongation to failure and premature fractures detected in tensile samples [34,35]. As
shown in Figure 8g,f with the increasing Mo particle addition, the cracks easily propagate
from the defects when the tips reach them, ultimately leading to sample fracture [36].
The addition of Mo can effectively refine the grain size. Moreover, the increase in the
number of grains is advantageous for dispersing plastic deformation caused by external
forces, thereby reducing stress concentration. In addition, the finer the grains, the larger
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the grain boundary area, which is less conducive to crack propagation. Therefore, the
decrease in plasticity is not significant when the Mo addition exceeds 5 wt.%. Moreover, the
enhancement of strength stems from the synergistic influence of fine grain strengthening,
dislocation strengthening and solid solution strengthening. The solid solution of Mo atoms
with large atomic radius in austenite leads to the precipitation of Ni and Cr elements
at grain boundaries, which causes more pinning points, hinders the expansion of grain
boundaries and refines grains. Thus, S10 should have a higher strength. Furthermore,
similar element distribution is found for Mo and C as shown in the inset of Figure 8e, which
confirmed the existence of MoCx to some extent.
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3.5. Tribological Performance

To reveal the influence of Mo content on the wear resistance of 316 L SS, the relationship
between the coefficient of friction and time and profiles of the cross section of the wear
track for the samples are shown in Figure 9a,b. Moreover, the corresponding tribological
characteristics of LPBF samples are listed in Table 2. One sees from Figure 9 and Table 2
that both the width and depth of the abrasion marks decrease as the Mo content increases,
indicating that the addition of Mo can effectively improve the wear resistance. While the
friction coefficient of the samples decreases firstly and then increases with the increasing
Mo addition. The reduction in the friction coefficient of S3 and S5 can be mainly attributed
to the enhancement of both the solid solution strengthening and refinement strengthening
with the increasing Mo. Moreover, the increasing friction coefficient from S7 and S10 can
be ascribed to the cracks revealed in Figure 8e,i. The emergence of flaws elevates the
surface roughness, resulting in a certain escalation in the friction coefficient of S7 and
S10. In contrast, S5 has the lowest coefficient of friction, while S10 has the lowest wear
rate coefficient.
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Table 2. Tribological properties of samples.

Specimens Frictions
Coefficient (µ)

Wear Depth
(µm)

Wear Width
(µm)

Wear Track
Area (µm2)

S0 0.473 47 ± 2.4 1018 ± 42 33,839 ± 342
S3 0.432 21 ± 1.7 820 ± 29 10,915 ± 247
S5 0.421 18 ± 1.6 650 ± 33 9592 ± 153
S7 0.479 14 ± 2.1 585 ± 27 6738 ± 324
S10 0.493 9 ± 1.4 473 ± 35 5382 ± 173

3.6. Worn Morphology

To further analyze the wear mechanism, wear patterns are obtained as shown in
Figure 10. One sees from Figure 10 that the stripped worn debris is plowed along the
direction of the slide, forming grooves of varying depths. The stripped material is crushed
by the matrix and the grinding ball in the process of wear, forming the three-body friction
of matrix, wear debris, and grinding ball. Moreover, the wear surfaces of specimen S0
shows a deep wear track with severe delamination. However, the worn surfaces of S3 and
S5 are relatively smooth, with shallow grooves and covered by a thick uniform tribo-layer.
While significant wear surface peeling can be found for S7 and S10. As shown in Figure 10b,
the predominant forms of wear observed in S0 are adhesive and abrasive wear, along
with oxidative wear resulting from increased temperatures during friction [37]. These
types of wear are largely attributed to the low hardness of the material. In contrast, the
wear morphology of S3 and S5 is characterized by mild abrasive plowing and oxidative
wear, as illustrated in Figure 10d,f. The lack of discernible adhesive wear morphology
observed in samples S3 and S5 can be attributed to the synergistic impact of solid solution
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strengthening, fine grain strengthening, and dislocation strengthening. As shown in
Figure 9g–j, the surface peeling of S7 and S10 occurs during high-speed friction, which can
be attributed to the inadequate welding properties and increased content of the brittleness
α-Fe with the increasing Mo addition. The rough surface produced during the wear process
resulted in an increase in the friction coefficient of S7 and S10.
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3.7. Electrochemical Results

In order to evaluate the localized corrosion susceptibility of LPBF samples in a NaCl
environment, potentiodynamic polarization curves are shown in Figure 11. As depicted
in Figure 11, the addition of Mo can significantly enhance the resistance of 316 L SS
against pitting corrosion. However, the corrosion current density first decreases and then
increases slightly with the increasing Mo content. Moreover, the S5 shows the best corrosion
resistance in this study, whose corrosion current density is about two orders of magnitude
lower than that of S0. Meanwhile, there is almost no overlap between the cathode and
anode branches for all the samples, indicating that the addition of Mo has a great impact on
both the cathode and anode reaction. Researchers found that the corrosion current density
is closely related to the composition of the surface passivation film [38]. Therefore, it can be
inferred that the addition of Mo particles may improve the corrosion resistance by changing
the composition of the passivation film.
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3.8. Passive Film Characterization

Composition and structure are two key issues in passivated films, which have an essen-
tial impact on the corrosion properties of samples [39,40]. To investigate the influence of Mo
particles on the surface passivation film, the XPS spectra and cationic fraction of S0 and S5
are shown in Figures 12 and 13. Moreover, based on the integral areas of the corresponding
peak, the oxide species in the passive film are calculated. One sees from Figure 12 that for
both S0 and S5, the passive films are primarily composed of the oxides and hydroxides
of Fe and Cr. As verified in Figure 12, there are four main peaks in the electronic orbit of
Fe2p3/2, which correspond to the Fe (706.5 eV ± 0.1 eV), FeO (707.3 eV ± 0.1 eV), Fe2O3
(710.8 eV ± 0.1 eV), and FeOOH (714.2 eV ± 0.1 eV), respectively. Due to the rapid
dissolution of Fe compounds in corrosion solution, the dissolution of passive films is
quick when a large number of Fe compounds exist in passive films, leading to the poor
corrosion resistance of passive films [41]. The addition of Mo reduces the proportion of
iron compounds in the passivation film and improves corrosion resistance. As illustrated
in Figure 12, there are three main peaks in the electronic orbit of Cr2p3/2, namely Cr
(574.1 eV ± 0.1 eV), Cr2O3 (576.3 eV ± 0.1 eV), and Cr(OH)3 (577.1 eV ± 0.1 eV). Cr2O3
and Cr(OH)3 are the typical compounds of Cr in passive films of stainless steels. Com-
pared with the Cr hydroxide, Cr2O3 is the main compound affecting the compactness
and corrosion resistance of passive film [42]. Moreover, it can be found from Figure 13
that Mo addition can effectively improve the content of Cr2O3 in passivated films, which
is consistent with the reported results [43]. This means that S5 has a denser passivation
film and better corrosion resistance. Simultaneously, the inclusion of Mo can enhance the
MoOx content within the passivation film [44], which can effectively inhibit the dissolution
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of Cr2O3. The ratio of the total hydroxides and total oxides in the passive films formed
on S0 (approximately 0.165) is smaller than that in the passive film formed on S5 (nearly
0.245), which indicates that the passive film of S0 has a lower content of hydroxides than S5.
According to the bilayer theory of passive film [45], Cr2O3 is the primary constitute of the
inner layer, while unstable oxides and hydroxide of Fe and Cr(OH)3 are mainly distributed
in the outer layer. It can be thus concluded that the Mo addition can promote the stable
formation of the inner passivation film, which leads to improved charge transfer resistance
and hinders further corrosion.
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4. Conclusions

In order to improve the performance of 316 L SS and to serve guidance for the devel-
opment of advanced materials, we fabricated a superior performing 316 L SS by adding
Mo particles from 0 to 10 wt.% via the LPBF technique. Moreover, the corresponding mi-
crostructure, tensile properties, wear performance, and corrosion resistance of the samples
have been analyzed. The conclusions are as follows:

1. With the increasing Mo particles addition, phase transformation occurs from γ-Fe
for S0 to α-Fe for S10. Especially, both the phases are contained in S5. Moreover, the
phase transformation can be attributed to the formation of MoCx and the increasing
cooling rate as well as the increasing internal stress caused by Mo addition.

2. With the increasing Mo particles addition, the ultimate tensile strength of the LPBF
316 L SS increases monotonically, while the friction coefficient decreases firstly till
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5 wt.% Mo addition and then increases. Moreover, S5 shows the best comprehensive
mechanical performance in this study, which can be attributed to the synergistic
impact of solid solution strengthening, fine grain strengthening, and dislocation
strengthening, as well as the relatively low content of defects caused by Mo addition.

3. The addition of Mo can improve the corrosion resistance by increasing the content of
Cr2O3 in the passivated film. Moreover, a low corrosion current up to 6 nA is achieved
for S5, which has two orders of magnitude lower than that of S0. However, too much
Mo particles (e.g., >5 wt.%) leads to the increase in defects. Therefore, S5 shows the
best corrosion resistance in this study.
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