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Abstract: The link between morphology and properties is well-established in the nanoparticle
literature. In this report, we show that different approaches in the synthesis of copper oxide can
lead to nanoparticles (NPs) of different size and morphology. The structure and properties of the
synthesized NPs are investigated with powder X-ray diffraction, scanning electron microscopy (SEM),
and diffuse reflectance spectroscopy (DRS). Through detailed SEM analyses, we were able to correlate
the synthetic pathways with the particles’ shape and aggregation, pointing out that bare hydrothermal
pathways yield mainly spheroidal dandelion-like aggregates, whereas, if surfactants are added, the
growth of the nanostructures along a preferential direction is promoted. The effect of the morphology
on the electronic properties was evaluated through DRS, which allowed us to obtain the electron
bandgap in every system synthesized, and to find that the rearrangement of threaded particles into
more compact structures leads to a reduction in the energy difference. The latter result was compared
with Density Functional Theory (DFT) computational models of small centrosymmetric CuO clusters,
cut from the tenorite crystal structure. The computed UV-Vis absorption spectra obtained from the
clusters are in good agreement with experimental findings.

Keywords: nanoparticles; microaggregates; bandgap; DFT; diffuse reflectance spectroscopy; copper
oxide; cluster models

1. Introduction

The interest in nanomaterials has been increasing at a very steady pace in the last
few years, as testified by the very large number of reports published in scientific and
technological literature. The ‘aces up the sleeve’ of such systems, compared with other
less coveted materials, lie in the vast range of technological properties they exhibit, that
span from superconductivity to biosensing [1–3]. Among these materials, metal oxides
have received much attention, owing to their role as chemical- and biosensors, (photo)
catalysts [4–10], and photodetectors. Additional noteworthy properties of metal oxides
include their antimicrobial power, with very limited release of harmful compounds as
compared to traditional disinfection methods [11–14], which allows them to be used
as a valid alternative in a variety of applications; most of the cited properties manifest
themselves especially when the compounds are obtained in nanosized form [4,10,15–25].

Within the oxide pool, copper oxide (CuO), in particular, is finding several applications
in devices, because of its p-type semiconductive nature. A noteworthy feature is the
tunability of its bandgap, which can be either direct (2 eV–4 eV) or indirect (1 eV–1.4 eV)
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depending on the conditions (e. g. presence of surface and/or defect states, applied strain)
and can be engineered by changing the latter [26–28]. Such a feature paves the way for its
use in opto-electronic applications of different types and has recently been employed in gas
sensing [29,30], magnetic storage [31], solar energy harvesting—transformation [32] and
catalysis [33,34], as a photothermally active and photoconductive compound [35], as well
as a biocide against several targets, including fungi [36–38], bacteria [39–41], or cellular
lines (tumor [42] and macrophage [43]).

With regard to the morphological architectures of CuO nanoparticles (NPs), plate-,
needle-, and wire-shaped arrangements and nano-cuboids, -platelets, -rods, and -belts with
preferentially oriented crystal planes have been reported [44–46].

Regarding nanoparticle synthesis, two families of protocols have been developed so
far, i.e., top-down and bottom-up methodologies, that are alternatively chosen depending
on the starting reactants and on the desired target NP size/morphology. The latter process,
often described as self-assembly, involves the aggregation of smaller fragments to form
the desired structure, through different types of reactions, e.g., co-precipitation, sol–gel,
hydrothermal–solvothermal, microemulsion, and chemical vapor [47–54]. In contrast, the
top-down approach involves the etching or fragmentation of bulk precursors to form
smaller structures, and includes mechanic actions like exfoliation, pulverization, grinding,
milling, crushing, as well as laser ablation [55].

The attainment of nanosized particles with either method is an important requirement
for the quantum confinement (QC) effect to operate [56], with consequent modulation of
the bandgap and of the resulting opto-electronic properties; in addition, Buhro et al. [57]
showed that the nanoparticle shape can have an effect on QC similar to that of the size.
In particular, the bandgap of nano-sized CuO is often shifted from the bulk value, and
ranges from 1.2 eV to 2.1 eV, according to Ogwu et al. [58]. Some of the reported shifts point
towards larger energy values (blue), and bandgaps up to 3.02 eV in aligned nanoplatelets
arrays [59] and 4.13 eV in 10-nm quantum dots [60] were described. Overall, the material
is generally considered as a narrow-bandgap semiconductor [28,61,62]. The electronic
structure of CuO was theoretically investigated using both cluster model calculations [63]
and crystal phase band structure calculations, based on the local density approximation
(LDA) [64] augmented with the on-site repulsive interaction potential U (LDA+U) [65]
and on the local spin density approximation (LSDA+U) [66] to correctly take into ac-
count the electron correlation. Several many-body perturbation calculations of different
sophistication levels were accomplished (e.g., [67–69]) by GW method (G = Green’s func-
tions, W = Coulomb potential) which support a 1.2 eV value for the indirect gap of the
bulk material.

Based on these premises, we performed a multi-technique study to further investigated
the relation between the synthesis methods and the shape of the outcome CuO particles,
and carried out an experimental assessment of the bandgap. The operative conditions
of the bottom-up synthesis protocol were varied, and a thorough characterization of the
product NPs and of the starting reactants by using several techniques was carried out.
In particular, the synthesized materials were analyzed with (i) powder X-ray diffraction
(P-XRD) in order to investigate the crystallinity and phase identification; (ii) infrared spec-
troscopy (IR) to assess purity and composition of both products (oxides) and reactants;
(iii) scanning electron microscopy (SEM) to point out morphology and average dimensions
of the NPs; and (iv) diffuse reflectance spectroscopy (DRS) to estimate the synthesized
materials’ electronic/optical bandgap. The energy difference values were obtained from
the Tauc plot extrapolation of the Kubelka–Munk function derived from DRS spectra.
The values were compared with some new all-electron ab initio (DFT) calculations of
the energy difference between HOMO (highest occupied molecular orbital) and LUMO
(lowest unoccupied molecular orbital) energies, also known as electronic bandgap, and
with TD-DFT calculations of the vertical absorption spectrum performed on cluster mod-
els, whose validity, in the form of both neutral and ionic systems, has been described
in detail by several authors [70–73]. Notwithstanding the impossibility of performing
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calculations on model nanoparticles having dimensions comparable to the experimental
ones (micrometric), as suggested by SEM images, CuO clusters of increasing complexity
were taken into account, in order to derive a trend with respect to dimensions. Several
“spherical” centrosymmetric aggregates of Cu and O atoms with 1:1 stoichiometry, cut
from tenorite mineral monoclinic crystal [74,75], were essayed as small-scale replicas of the
dandelion motifs observed in the SEM study. Therefore, the main aim of this study is to
derive a multi-step structure–property relationship, starting from the first link between
different preparative conditions and product morphologies, and proceeding through the
second connection between morphologies and electronic properties. This approach may be
valuable for the synthesis of task-specific nanoparticles, considering the marked variability
in the technological properties of these systems.

2. Materials and Methods
2.1. Materials and Sample Preparation

Cu(NO3)2, NaHCO3, CO(NH2)2, citric acid and cetyltrimethylammonium bromide
(CTAB) were purchased at Carlo Erba, Milan, Italy.

Five different approaches were used to synthesize CuO particles, three of which are
procedures in autoclave, carried out either in a single step for a direct synthesis of CuO
or in double steps, i.e., synthesizing a precursor that is afterwards calcined. The direct
synthesis in autoclave was accomplished both with and without a templating agent (CTAB).
In addition, synthesis with the sol-gel method, using citric acid and precipitation with
NaHCO3, yielded the fourth and fifth CuO samples, respectively.

More in detail, in the two-step hydrothermal synthesis of CuO, the double salt copper
hydroxycarbonate was achieved (Cu2(OH)2CO3 CuCO3·Cu(OH)2) in the first instance,
through the reaction of copper nitrate (Cu(NO3)2), as a source of Cu2+ cations, with urea
(CO(NH2)2). The latter molecule decomposes into ammonia and carbon dioxide at tem-
peratures above 80 ◦C [76], thus gradually increasing the solution pH. CO2 and NH3
subsequently react in the alkaline solution with the copper ions present. The scheme below
shows the reactions that can take place:

CO(NH2)2 + H2O→ 2NH3 + CO2

CO2 + H2O→ H2CO3 → CO3
2− + 2H+

NH3 + H2O→ NH4
+ + OH−

2Cu2+ + 2OH− + CO3
2− → Cu2(CO3)(OH)2

The clear blue-colored solution prepared at the start (Cu(NO3)2 0.006 M, urea 0.018 M,
pH = 6.5) was heated at 100 ◦C for 6 h. At the end of the hydrothermal process, a pale
green precipitate was produced in all preparations, and the pH of the supernatant liquid
increased to 7. The solution was centrifuged, and the collected precipitate was subjected
to calcination at 300 ◦C for 3 h following an initial ramp of 2 ◦C/min, to yield the sample
labelled CuO-HT1.

The direct hydrothermal methods yielded CuO in the form of a black powder, without
the need for subsequent calcination, after heating for 6 h at 180 ◦C. The base used for the
precipitation step was NaHCO3, and the transition from the initial reactants to the final
product took place in one step only (sample CuO-HT2). The 6 h hydrothermal synthesis
at 180 ◦C, using urea as a base and CTAB as surfactant, also yielded a black powder
(sample CuO-SF).

In the sol-gel synthesis of CuO, equimolar solutions of Cu(NO3)2 and citric acid were
dissolved in distilled water, and the solution was heated up at 50 ◦C for 12 h, when a
brilliant blue gel formed. The gel was subjected to quenching treatment, upon heating to
200 ◦C, yielding a porous grey solid that was subsequently grided and heated up to 500 ◦C,
thus resulting in a black powder (Sample CuO-SG).
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The synthesis through precipitation (non-hydrothermal) is carried out in two steps,
with achievement of the precursor, using NaHCO3 as base and calcination of the precipitate.

In a typical synthesis, Cu(NO3)2 is dissolved in water and NaHCO3 is added as
powder under magnetic stirring at room temperature, causing the formation of a light blue
product. The vessel is sealed and kept under mechanical stirring (paddle mill) for 3 h, to
allow digestion in the presence of CO2 according to the overall reactions:

HCO3
− → CO3

2− + H+

HCO3
− + H2O→ OH− + H2CO3

H2CO3 → CO2 + H2O→ CO3
2− + 2H+

2Cu2+ + 2OH− + CO3
2− → Cu2(CO3)(OH)2

The pale green to light blue precipitate is recovered by filtration, washed with distilled
water, dried at 80 ◦C, and calcined at 350 ◦C for 3 h to yield a black powder (sample
CuO-Prec). A summary of the synthesis conditions is reported in Table 1. A systematic
diagram of the conditions used for the syntheses, as well as the type of particles that were
achieved, is reported in Scheme 1.

Table 1. Details of synthesis pathways explored in the study.

Sample [Cu(NO3)2] Method Base/Gel Ratio Surfact. Temp. Time pH Precursor Calcination

CuO-HT1 0.1 M Hydroth. CO(NH2)2 1:3 - 100 ◦C 6 h 6.5–7 Cu2(CO3)(OH)2 300 ◦C–3 h
CuO-HT2 0.1 M Hydroth. NaHCO3 1:3 - 180 ◦C 6 h - No NO
CuO-SF 0.06 M Hydroth. CO(NH2)2 1:3 CTAB 180 ◦C 6 h - No NO
CuO-SG 0.04 M Sol-Gel Citric Acid 1:1 - 50 ◦C 12 h - No 500 ◦C *

CuO-Prec 0.07 M Precip. NaHCO3 1:5 - 65 ◦C 3 h 10–8.5 Cu2(CO3)(OH)2 350 ◦C–3 h

* temperature of gel breaking.
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Scheme 1. A systematic diagram of the conditions used for the syntheses of the CuO microaggregates
and nanoparticles.

2.2. Apparatuses

The powder diffraction patterns were obtained with a Seifert 3003TT diffractometer
(Malvern Panalytical, Almelo, The Netherlands). Scans were taken with a 2θ step size of
0.02◦ with counting time 2 s/step, using Cu Ka radiation.
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Infrared spectra were recorded with a Shimadzu Prestige-21 FT-IR instrument (Kyoto,
Japan), equipped with an attenuated total reflectance (ATR) diamond crystal (Kenmore,
WA, Kyoto, Tokyo, Japan), in the range 400–4000 cm−1, with a resolution of 4 cm−1.

The surface morphology of the oxides was determined with Zeiss Auriga field
emission–scanning electron microscope (SEM, Oberkochen, Germany) operating at 6–8 kV.
The EDS maps were taken by coupling the field emission–scanning electron microscope
(SUPRA™ 35, Carl Zeiss SMT, Oberkochen, Germany) with energy dispersive microanalysis
(EDS/EDX, INCAx-sight, Model: 7426, Oxford Instruments, Abingdon, Oxfordshire, UK),
operating at 20 KV. Samples were deposited on silicon sample-holders by drop-casting of
ethanol suspensions, achieved by mild sonication. Open-source ImageJ software was used
for image analysis. Optical measurements in the ultraviolet (UV), visible (Vis), and near
infrared (NIR) spectral regions were obtained by a diffuse reflectance setup from Avantes
BV (Apeldoorn, The Netherlands). The latter comprises a combined deuterium–halogen
radiation source (AvaLight-DH-S-BAL-Labsphere, Lafayette, CO, USA) connected via an
optical fiber to a 30 mm diameter Spectralon® coated integrating sphere (AvaSphere-30-
REFL-Labsphere, USA), used to illuminate the samples (sampling port diameter 6 mm)
and to collect the radiation diffusely reflected. The samples used for DRS measurements
were prepared from each synthesized nanoparticle batch (see Section 2.1) by mixing 20 mg
of CuO with 480 mg of the highly reflective compound BaSO4. The dilution brought about
by this mixing ensures that the resulting powder has low absorption. The compounds
were placed in the well of a sample holder with a depth such as to be able to consider
the reflectance spectra as those of an infinitely thick sample (R∞). The integrating sphere
was connected through another optical fiber to a spectrometer (AvaSpec-2048 × 14-USB2).
This configuration allows applications in the 248–1050 nm range with a 2.4 nm spectral
resolution. A laptop was used for the spectrometer control and data recording, whereas
a factory-calibrated Spectralon® (Labsphere, North Sutton, NH, USA) was used as the
reflectance reference. Each reflectance spectrum was obtained by averaging five acquisitions
lasting 5 s each.

2.3. Computations

The computational study was carried out with density functional theory methods.
Four hybrid density functionals among those available in the Gaussian software (Gaussian
16 Rev. A.03) were tried, namely PBE0 [77], HSE06 [78], and the long-range-corrected
CAM-B3LYP [79] and LCwHPBE [80]. The spherical clusters subject to the calculations
were “dug” into the tenorite monoclinic crystal structure taken from the American Min-
eralogist Database [74,75] by generating a 2 × 2 × 2 structure from the unit cell with the
software Mercury 2021.3.0 [81], followed by the identification of the center of geometry
with an in-house code and of the atoms contained in spheres of given radii centered on
that point with VMD tools [82]. Two types of models were investigated: in the first batch,
the geometry of the system was kept fixed at such “experimental” values throughout the
entire calculation. To ensure proper convergence in this case, the system wavefunction
was progressively refined along a series of calculations, i.e., following the order PME6
(semiempirical)->HF/6-31G(d)->final DFT/6-31 + G(d), and using the optimized wave-
function of each cycle as a starting guess for the next one. The SCF protocol was tuned, by
switching from the default to the quadratically convergent SCF method. A satisfactory final
convergence, smaller than 10−8 atomic units and consequently appropriate for higher-level
calculations (gradient, perturbative, etc.), was obtained for the models containing 8, 16,
24, 38, and 44 Cu-O pairs only using the LCwHPBE functional, whereas the maximum
convergence obtained with 58 atom pairs was 10−5 only. The energy calculation of the
first five performing models was followed by a linear response TD-DFT expansion with a
number of states (up to 65) progressively increasing with the cluster dimension, in order
to cover approximately the same wavelength range across all models. A more complete
study was performed afterwards for the three smallest systems (8, 16, 24 Cu-O pairs), by
optimizing the structure of the cluster in vacuo with gradient methods, until the threshold
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of 4.5 × 10−4 Hartree/Bohr was reached. The nature of the stationary point found was
checked by performing a force constant/frequency calculation, and in any case, no imagi-
nary frequencies were obtained, confirming that the structure was actually a local minimum
on the potential energy surface. All the calculations were performed with the Gaussian
16 program [83] and visualized with Molden (Molden 5.9) [84] and Gaussview (GV 6) [85]
software. The latter program was used to draw the theoretical spectra by convolution of the
calculated vertical transitions, considering a 0.05 eV half width at half maximum (HWHM)
for each line.

3. Results and Discussion
3.1. Characterization of Precursors
3.1.1. FTIR Spectra

The mid-infrared transmission spectra (400–4000 cm−1) of the hydroxycarbonate
precursor of CuO-HT1 and CuO-prec is reported in Figure 1. The fingerprint region is very
similar between the two, and the following principal features can be pointed out, according
to the carbonate anion normal mode analysis reported in Figure 2 below, reproduced
from [85,86]:

• 3404 and 3313 cm−1, OH stretching, redshifted due to the interaction with the metal cation;
• 1504 and 1381 cm−1, coordinated and non-coordinated C-O stretching;
• 1095, 1045, 873 cm−1, O-H bending and C-O + O-Cu coupled stretching;
• 815 and 748 cm−1, out-of-plane bending and antisymmetric O-C-O group vibration.
• The peaks falling below 600 cm−1 are related to Cu-O skeleton vibration.
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Figure 1. Experimental FT-IR (ATR) spectra of the precursors (copper hydroxide carbonate) of
CuO-HT1 (black line) and CuO-prec (red line).

As for the final products, Figure 3 shows the ATR infrared spectra of CuO-HT1 and
CuO-Prec. The measured spectra are rather featureless in the 700–4000 cm−1 region,
whereas a multibranch absorption peak is evident in the lower frequency region in the
range 400–700 cm−1. The peak appears to have a fine structure, with absorptions around
420, 460, and 610 cm−1. Though studies on infrared and Raman spectra of CuO are not
very frequent in literature, the presence of such peaks was evidenced in a 1991 study on
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single crystals and was attributed to one Au and two Bu modes [87,88]. More recently,
investigations devoted to CuO nanoparticles pointed out absorptions at 436, 504, and
610 cm−1 [89], and at 430, 490, and 615 cm−1 [90], respectively, whereas the triplet occurs at
different values in the range 428–608 cm−1, depending on the specific nanoparticle [91]. The
peaks were attributed to Cu-O stretching vibrations occurring in different lattice directions.
In our case, very similar patterns are found for all synthesized CuO samples.
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3.1.2. XRD

The powder X-ray diffraction patterns of the precursor system employed as reaction
intermediate for CuO-HT1 and CuO-Prec syntheses (copper hydroxide carbonate) are
reported in Figure 4. The two profiles are superimposable, signaling two identical structures.
The curves were compared with the Bragg reflections of the malachite mineral crystal,
having the same Cu2(CO3)(OH)2 composition [92], and optimal correspondence was found.
An XRD analysis of all final products obtained was performed as well, with the aim of
investigating their solid structure. The measured diffraction profiles of the five samples
(see Table 1, first column, for the sample identification) are reported overlaid in Figure 5
together with the X-ray reflections of tenorite crystal, the mineral where the Cu(II) oxide
occurs in nature [93], which are shown as vertical lines at the bottom of the figure. By
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comparison among the diffraction profiles, considering both peak positions and intensities,
it could be verified that all samples contained cupric oxide at high purity, confirming the
predictions made from the analysis of infrared spectra.
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3.1.3. SEM Analysis

In addition to XRD analysis, the synthesized samples were evaluated by SEM in
order to get an insight in their morphology. Typical images were taken upon the drop
casting of sample suspensions on a silicon sample holder and are reported in Figure 6.
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Samples synthesized by the hydrothermal method, in the absence of surfactants, appear to
be composed of microaggregates of spheroidal filaments in a dandelion-like arrangement,
whose diameter was estimated between 20 and 100 nm (CuO-HT1, Figure 6a), with the
aid of an open-source software for imaging analysis (ImageJ). These microaggregates
tend to re-arrange into a larger structure (CuO-HT2, Figure 6b). The closed dandelion
surface is fringed into a duster-like particle in some cases, a feature that is observed more
clearly in CuO-HT2 samples (Figure 6b). Dandelion-like structures may be observed
in “high-temperature” hydrothermal synthesis (i.e., at temperatures ≥180◦) [94] as well
as in two-step synthesis, i.e., “low temperature” hydrothermal synthesis followed by
calcination [95] and can be considered the outcome of nucleation and growing processes
shaped by an interplay of pressure and temperature, which causes aggregation, anisotropic
growth, and consequent elongation in a preferential direction, followed by aggregation
into microstructures. In addition, the calcination step plays a role in the achievement of
more highly ordered dandelion structure, by thermal rearrangement (Figure 6a).
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Figure 6. SEM images of the synthesized CuO nanoparticles: (a) CuO-HT1, magnification 2K; (b) CuO-
HT2, magnification 2K; (c) CuO-SF, magnification 5K; (d) CuO-SG, magnification 2K; (e) CuO-Prec,
magnification 800K.

The use of a long (n-hexadecyl) alkyl chain surfactant, such as CTAB, as well as the
gel-like network typically formed in the sol-gel procedure offers an alternative growth
pathway to the nanoparticles, that induces a partial tubular extension of the nanostructure,
as can be seen in Figure 6c and, particularly, in Figure 6d. The more compact structures are
definitively the outcome of the 3D frame created either by the surfactant or by the xerogel,
during the synthetic process that confines the growth in the hollow spaces of the frame. In
addition, the xerogel is removed at a higher temperature as compared to the calcination
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(500 ◦C), resulting in larger structures, with an average diameter of the short dimension of
200–700 nm. Tubules of CuO-SF have, for a large part, a diameter of 100–200 nm and are
re-arranged in a globular structure. When a synthetic precipitation procedure is followed,
including precipitate digestion (Figure 6e), nanoparticles are achieved with size in the
range 10–20 nm.

3.1.4. Diffuse Reflectance Spectroscopy

The opto-electronic behavior of all synthesized oxide nanoparticles was investigated
by DRS, a technique that has proven to yield good estimates of the electronic bandgap of a
large variety of materials. The bandgap of the CuO nanoparticle samples was estimated by
measuring R∞. This pattern, which corresponds to the reflectance of an infinitely thick layer
of the sample, can be converted into absorption spectra according to the Kubelka–Munk
function (K-M) [96,97]:

K
S

=
(1− R∞)2

2R∞

where K and S are, respectively, K-M absorption and scattering coefficients. The former
quantity is related to the intrinsic absorption coefficient of the particles α by α = K/2, in the
case of diffuse light distribution, as in our case [98]. For a batch of different preparations
of the same material (here CuO) with a similar method for preparing the solid mixture
needed for the optical measurements, S can be considered constant from sample to sample,
giving the ratio K/S ≈ α. In order to estimate the bandgap from the absorption spectra, the
Tauc relation [99] was used:

αhν = C1(hν − Eg)n

In this formula, C1 is a constant, whereas the exponent n = 2 and n = 1/2 apply to
direct and indirect gaps (as in the present investigations), respectively. The patterns are
reported in Figure 7 for all samples, whereas the fitted bandgap values are reported in
Table 2. The bandgap values comply well with literature data and appear to correlate
(apart from sample CuO-prec) with the preparation strategy and with the corresponding
morphology (see Section 3.1.3). The particles obtained with the hydrothermal synthesis
plus calcination show bandgaps smaller by 0.15–0.2 eV as compared to those synthesized
without the final calcination step (CuO-HT2), suggesting that the presence of the dandelion
superstructure into which the NP filaments rearrange at higher temperature lowers the
energy difference.

Table 2. Experimental bandgaps from Tauc plot extrapolation of Kubelka–Munk functions obtained
from the DRS R∞. (See text) and diameter range of the various structures.

Sample Gap (eV) Particle Size (nm)

CuO-HT1 1.10 20–100 *
CuO-HT2 1.30 20–100 *
CuO-SF 1.16 100–200 *
CuO-SG 1.18 200–700 *

CuO-Prec 1.26 10–20 nm
* diameter of the shortest dimension of the anisotropic dandelion and tubule structures.
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Figure 7. Diffuse reflectance spectra of the synthesized CuO nanoparticles. Color legend in the inset.

3.1.5. Theoretical Spectra

A theoretical study was carried out on “spherical” centrosymmetric models cut from
the crystal structure of tenorite crystal, containing 8, 16, 24, 38, and 44 CuO pairs. In the
smallest aggregates (8, 16, 24 ion pairs), the geometry of the system was relaxed, by energy
minimization. A picture of the two 24-member models is shown in Figure 8, whereas
pictures of all the models are reported in the supplementary information, together with the
coordinates of every aggregate (Figures S1–S8).
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Figure 8. CuO24 model geometry. (Left): crystal model; (Right): optimized structure. Color legend:
Red: oxygen atoms; pink; copper atoms.

The optimization process that maintained the original Ci point symmetry resulted in a
slight elongation of the aggregates as a consequence of the shortening of first-neighbor Cu-
O bonds, though only a few defects were introduced, and the [4,4] Cu-O coordination was
fairly wellmaintained. Regarding the bandgap calculations, two different types of bandgaps
can be obtained from these models: the ground state calculation directly yields the energy
difference between HOMO and LUMO molecular orbitals (“electronic bandgap”, reported
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in Table 3), whereas the TD-DFT calculation gives the vertical absorption spectrum and
correspondingly hints at the “optical bandgap”, i.e., the energy threshold at which photons
are absorbed in semiconductors, which is generally lower than the HOMO-LUMO gap,
owing to excitonic effects in the excited state [100]. Concerning the former type of bandgap,
the calculated values follow a monotonic decreasing trend with the number of atoms, except
the lower outlier value found for (CuO)38. This type of gap reduction is very common in
nanomaterials, and in conjugated pi-systems, it has a simple analogue in the ‘Particle in a
Box’ model and an opposite in the quantum confinement effect [101]. Regarding modeling
the excited states through TD-DFT, a variable number of vertical transitions was considered
in the calculations, increasing by the system dimension, and was chosen sufficiently large in
order to reach at least 1.4 eV, i.e., larger than the experimental estimated values by more than
0.1 eV. In particular, 20 states were employed for 8 CuO pairs, 40 for 16, and 24 and 65 for 38
and 44 pairs, respectively. It should be noted that the calculation of the bandgap depends
largely on the type of functional considered, as already documented, e.g., by some of use
for organic dyes [102]; in the calculations considered for this material, that were performed
with the LCwHPBE functional that ensured proper SCF convergence in all models, the
lowest energy wavelength found is always redshifted with respect to the experimental
K-M gaps. The spectra of the two families of models (rigid and relaxed) are reported in
Figure 9, with relaxed models in the top panel and rigid aggregates in the lower one. The
most evident effect of the geometry optimization is the general blue shift linked to the
shrinkage of the structures and the resulting quantum confinement effect discussed above,
accompanied by a larger dispersion in energy (Figure 9, upper panel). Unfortunately, the
calculated TD-DFT transitions (and excited states) contain contributions of a large number
of ground state orbitals and therefore cannot be assigned easily. Additionally, the 24-pair
optimized model gives origin to two intense peaks around 1.2 and 1.4 eV, ascribable to
a transition with sizable HOMO–LUMO character and oscillator strength. This result
complies well with the fitted experimental values obtained for “dandelion” samples and
suggests that the reduced scale models can interpret the phenomenon, at least fairly.

Table 3. LCwHPBE HOMO–LUMO gaps for the tenorite “spherical” models.

E(HOMO)
a.u

E(LUMO)
a.u

E(HOMO)
eV

E(LUMO)
eV

Gap
eV

CuO8 −0.29244 −0.13219 −7.96 −3.60 4.36
CuO16 −0.30306 −0.14384 −8.25 −3.91 4.33
CuO24 −0.31875 −0.16348 −8.67 −4.45 4.23
CuO38 −0.27582 −0.17094 −7.51 −4.65 2.85
CuO44 −0.30197 −0.15239 −8.22 −4.15 4.07

The optimized models were also employed to calculate the infrared vibrational spec-
trum that is reported in the additional material (Figure S9). The patterns obtained show a
larger number of far-infrared bands in the larger models, and can account, at least quali-
tatively, for the presence of the fine structure peaks observed in the experimental pattern
between 400 and 600 cm−1. The bands below 500 cm−1 are predicted to be mainly con-
tributed by bending modes, whereas the more intense absorption signals around 650 cm−1

are mainly stretching vibrations. It should be considered that the theoretical infrared spec-
trum has peaks falling in the range 30–798 cm−1, thus positioning the intense C-O stretching
normal mode vibrations in the highest frequency range, whereas in the experimental profile
(4000–400 cm−1), the same vibration occurs at the lowest energy side; more extended
models and far-infrared spectroscopy experiments would be necessary to investigate this
issue further.
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4. Conclusions

In the present contribution, we synthesized CuO in different morphologies rang-
ing from microaggregates to nanoparticles, following five different synthesis pathways.
Synthetic strategies were based on hydrothermal, sol-gel, and precipitation strategies,
including both direct CuO synthesis and CuO synthesis via a precursor. The vibrational
properties and the powder X-ray diffraction patterns of precursors and final CuO products
were assessed, indicating the formation of hydroxycarbonates, with a malachite crystalline
structure, for the former and tenorite for the latter. The various morphologies and average
dimensions of the CuO samples were investigated by SEM. The microscopy study showed
that the samples prepared according to hydrothermal strategies are composed of filaments
with a diameter in the 20–100 nm range, that tend to aggregate into dandelion structures,
fringed into a duster-like arrangement, upon calcination. When a surfactant is used or the
sol-gel method is applied, longer tubular motifs, with a compact structure, can be obtained,
with a size of the shortest dimension ranging between 100 and 200 nm in the former case
and between 200 and 700 nm in the latter case.

The electronic properties of all the NPs were finally appraised with DRS spectroscopy,
and the observed bandgap values were related to the differences in nanoparticle morphol-
ogy. The electronic properties of dandelion structures were also successfully modeled with
DFT calculations, employing some centrosymmetric atomic models generated from the crys-
tal structure of mineral tenorite (cupric oxide). The calculated UV-Vis absorption spectra,
based on centrosymmetric CuO clusters, are in good agreement with experimental findings.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma16134800/s1, Figures S1–S5: Atomic coordinates of
rigid cluster models (Figure S1: CuO8, Figure S2: CuO16, Figure S3: CuO24, Figure S4: CuO38,
Figure S5: CuO44); Figures S6–S8: Atomic coordinates of relaxed cluster models: Figure S6: CuO8;
Figure S7: CuO16; Figure S8: CuO24; Figure S9: Theoretical infrared spectrum calculated with DFT
for CuO8 and CuO16 relaxed models.
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52. Blinov, A.; Gvozdenko, A.; Golik, A.; Siddiqui, S.A.; Göğüş, F.; Blinova, A.; Maglakelidze, D.; Shevchenko, I.; Rebezov, M.;
Nagdalian, A. Effect of MnxOy Nanoparticles Stabilized with Methionine on Germination of Barley Seeds (Hordeum vulgare L.).
Nanomaterials 2023, 13, 1577. [CrossRef]

53. Yadav, V.K.; Ali, D.; Khan, S.H.; Gnanamoorthy, G.; Choudhary, N.; Yadav, K.K.; Thai, V.N.; Hussain, S.A.; Manhrdas, S. Synthesis
and Characterization of Amorphous Iron Oxide Nanoparticles by the Sonochemical Method and Their Application for the
Remediation of Heavy Metals from Wastewater. Nanomaterials 2020, 10, 1551. [CrossRef] [PubMed]

54. Blinov, A.V.; Kachanov, M.D.; Gvozdenko, A.A.; Nagdalian, A.A.; Blinova, A.A.; Rekhman, Z.A.; Golik, A.B.; Vakalov, D.S.;
Maglakelidze, D.G.; Nagapetova, A.G.; et al. Synthesis and Characterization of Zinc Oxide Nanoparticles Stabilized with
Biopolymers for Application in Wound-Healing Mixed Gels. Gels 2023, 9, 57. [CrossRef] [PubMed]

55. Caminiti, R.; Carbone, M.; Panero, S.; Sadun, C. Conductivity and Structure of Poly(ethylene glycol) Complexes Using Energy
Dispersive X-ray Diffraction. J. Chem. Phys. B 1999, 103, 10348–10355. [CrossRef]

56. Ponomarenko, L.A.; Schedin, F.; Katsnelson, M.I.; Yang, R.; Hill, E.W.; Novoselov, K.S.; Geim, A.K. Chaotic Dirac Billiard in
Graphene Quantum Dots. Science 2008, 320, 356–358. [CrossRef] [PubMed]

57. Zeng, H.C. Ostwald Ripening: A Synthetic Approach for Hollow Nanomaterials. Curr. Nanosci. 2007, 3, 177–181. [CrossRef]
58. Ogwu, A.A.; Darma, T.H.; Bouquerel, E. Electrical Resistivity of Copper Oxide Thin Films Prepared by Reactive Magnetron

Sputtering. J. Achiev. Mater. Manuf. Eng. 2007, 24, 172–177.
59. Yang, M.; He, J.; Hu, X.; Yan, C.; Cheng, Z. CuO Nanostructures as Quartz Crystal Microbalance Sensing Layers for Detection of

Trace Hydrogen Cyanide Gas. Environ. Sci. Technol. 2011, 45, 6088–6094. [CrossRef]
60. Borgohain, K.; Mahamuni, S. Formation of Single-Phase CuO Quantum Particles. J. Mater. Res. 2002, 17, 1220–1223. [CrossRef]
61. Zihan, J.; Yang, Z.; Dongmei, Y.; Yang, J.; Jiaming, S.; Peng, H.; Haibo, F.; Feng, T. Multifunctional optoelectronic device based on

CuO/ZnO heterojunction structure. J. Lumin. 2023, 257, 119762. [CrossRef]
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